Single photons
how to create them, how to see them

Alessandro Ceré

Centre for
Quantum
Technologies

National University
of Singapore



Intro

« light is quantum

« light is cheap

« let’s use the quantum properties of light



Little interaction with the environment @

We can send them across long distances



Little interaction with the environment @

Hard to detect and to store



Outline

Photon: elementary, cheap, powerful



Photon

An elementary particle, the quantum of all forms of
electromagnetic radiation.

Including light.

source: Wikipedia



Photons are quantum objects

Wave and
Wave-life

Particle-like

source: www.photonics.com



Anti-photon
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“Seeing” photons is a destructive process

- Conversion of photon into electrical pulses

- Limited efficiency n

- Counting the number of photons?



Outline

How would you like your photons?



Quantized Electromagnetic Field

In a finite volume L3, we can directly quantize an EM field mode
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Light classification

thermal coherent fock state
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The second-order correlation function

Different light sources present different statistical properties
(coherence).

We are particularly interested in second-order correlation function
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Hanbury Brown and Twiss interferometer
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Coherence classification - thermal
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Coherence classification - coherent
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Coherence classification - anti-bunched (non-classical)
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It's a multimode, free space world

We set some operative conditions to define what’s a single photon
in free space, and its usefulness.

Brightness
The probability of getting a click in response to
an excitation. Low B messes up the purity: the
state is a mixture of vacuum and [1).

Purity

It’'s a vague term, everyone uses it they way
they prefer. IMHO: the description is closer
to ) than }_;[). But it can also be
associated to the fidelity of the output to the
ideal [1).

Indistinguishability
All emitted photons are the same. We can test
it with Hong-Ou-Mandel interference.



Outline

Generating single photons



Single photons from a single “atom”



Single photons from a single “atom”



Single photons from a single “atom”



Localize the emitter
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Localize the emitter




Stages of photon generation

1. excite the transition of interest

- electrical pulse
- optical pulse

2. collect the emission

3. repeat



Stages of photon generation

1. excite the transition of interest

- electrical pulse
- optical pulse

2. collect the emission
the emission in a large solid angle

3. repeat



We can change the mode structure

source: S. Ritter, et al., Nature 484, 195 (2012).



Quantum Dot in cavity
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source: N. Somaschi, et al., Nature Photonics 10, 195 (2016).



Single emitter

Pros

+ High brightness (with cavity)
+ good purity (filtering)

Cons

* bad indistinguishability (solid state)
* requires trapping/cooling



Spontaneous parametric down conversion

generate photons in pairs

signal
pump beam

optical
axes

BBO crystal



Conservations impose correlations

energy conservation

hw, = hws + hw;

momentum conservation

—

K, = Ks + K




SPDC + Cavity
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Four-wave mixing
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FWM in cold atoms




Heralding

Pros

+ wide range of wavelengths/bandwidths
» good purity (low brightness)
* great indistinguishability

Cons

+ limited brightness
* poissonian process (high order pair generation)
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Outline

Detecting single photons



Avalanche photodiodes

jitter: =~ 500 ps

temperature: ~ 230 K

Multiplikation

source: http://www.wikiwand.com



APD is a mature technology



Different materials for different spectral regions

Si - visible range
400 nm to 1060 nm
Dark count rate: 20 - 2000 cps

InGaAs - telecom range

900 nm to 1700 nm
Dark count rate: > 1kcps



Transition edge sensors - 11 ~98%

Slow: jitter
> 100 ns

Very cold 100 mK

source: S. K. Joshi, Ph.D. thesis



We need to keep them very cold




A very sensitive bolometer
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We can also count the number of photons

histogriam of peak




Superconducting nanowires - n ~ 92%

Very fast: jitter< 100 ps

“only” down to 4 K

source: MIT
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