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Atom-Photon interface

● Atoms and photons are good for different quantum information
tasks – allow an exchange of quantum information between them

● Understand elementary interaction between flying qubits and
single atoms

● Explore possibilities of controlled phase gates & friends for
photonic qubits

Motivation:

Key idea:

● Try to mode-match traveling qubit modes to field modes of
spontaneous emission of a single atom



  

Why is this interesting?

● e.g. transfer of information from flying qubits into
a quantum memory

●  requires internal states of atom and an absorption process

∣L 〉=∣L 〉∣R 〉 ∣A 〉=∣m=−1 〉∣m=1 〉



  

The basic problem

● Get strong coupling between an atom and a light field on the 
single photon level

2-level atomelectromagnetic field / photon



  

One solution: Use a cavity

( )
● High electrical field strength even for a single photon

● Preferred spontaneous emission into the cavity mode 

● A cavity can enhance the interaction between a propagating
external mode and an atom



  

Why cavities are nice

● It's clear what photons in a cavity are

discrete mode spectrum, 'textbook' energy
eigenstates for the electromagnetic field( )
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Atom in a cavity

( )
.....Jaynes-Cummings model with all its aspects

H atom=E g∣g 〉 〈g∣E e∣e 〉 〈e∣

H I= E⋅d d=e d eff ∣e 〉 〈 g∣∣g 〉 〈e∣with

● electric dipole interaction

● treat external fields as perturbation/spectator of internal field

● atom Hamiltonian

● (treat other field mode as losses)...



  

External view of  cavity+atom

( )
● continuous mode spectrum with enhanced/reduced field mode

function:

g(z;ω)

z



  

An alternative approach

● use a focusing lens pair to enhance center mode function:

g(z;ω)

z



  

Concept of an experiment

● achieve a small focal spot

● = high central field amplitude

● = good mode match between atomic emission mode
    and propagating light field



  

More technical details

● use Rubidium-87 atom because it is convenient

One atom in an optical dipole trap, loaded from a MOT



  

Almost the real exp setup



  

Focusing geometry...

25mm

...as seen by a CCTV camera at high Rb pressure



  

Single atom evidence

(almost) Hanbury-Brown—Twiss experiment on
atomic fluorescence during cooling

D1 D2 Rabi
oscillation

photon
antibunching



  

Transmission results

● almost natural line width of atomic transition

● different resonances for different probe polarizations

probe σ- probe σ+

M. K. Tey, Z. Chen, S.A. Aljunid, B. Chng, F. Huber, G. Maslennikov,C. K.
nature physics 4, 924 (2008)



  

Atomic levels in a dipole trap

● optically pump with the probe beam into 2-level system



  

Step 1: Scattering from an atom

e

● stationary excited state population:

● photon emission rate

● use this to obtain atomic susceptibility

two - level atom in external driving field (quick & dirty)

ee=
2/4

22/22/4

=E A∣d 12∣/ℏ

=
12

3 d 12
2

30ℏ c3

Rabi frequency

excited state decay rate



  

A simple scattering model

● Electrical field in laser beam before lens

● Total excitation power

                   

● Total power scattered by the atom

E=E L
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Simple model II

● “Scattering ratio”

R sc=
P sc

P i n

=
32

w L
2  E A

E L

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w f
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paraxial approximation
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A more careful model

Gaussian
mode

● assume spherical wave
front and field compatible
with Maxwell equations
to get field at atom location

● determine atom response
from semiclassical excitation
probability for a given field

● combine atom response
and original field 



  

Step 2: Get field in focus

Action of an ideal lens on a collimated,
circularly polarized Gaussian beam

y

F
ρ

E E'

wave front

E=E L e
−


2

w l
2

● spherical wave front

● locally transverse

● conserve power through
each small area

(cyl. coordinates)

θ
(Richardson, Wolf,1959)



  

Directly after lens:
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beam parameter:
   wl = 7 mm

focal length:
   f = 4.5 mm

● different polarization
components appear



  

Propagate field to focus

● numerical method:
- decompose initial field into cylindrical harmonics
- analytically propagate to focus, allows to obtain field around
  focal point

● closed expression for field at focus via Green theorem
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Focal fields for different wL

● paraxial approximation starts to break down late...

( f = 4.5 mm)



  

Ooops...strange scattering?

R sc :=
P sc

Pi n

=
3

4 u3 e−2/u2

[−1
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● scattering ratio like in plane wave excitation mode:

???1.456 @ u=2.24



  

Atomic response II

scattered field has electric dipole characteristic
corresponding to σ+ transition

E sc r =E A
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Step 3: Combine with probe

E'inEin

Esc

ETot = Ein + Esc



  

Collection into Gaussian mode
● Project total field onto Gaussian mode of collection fiber

● Forward transmission:

● Reflectivity (backward direction):

● Loss:

R=
R sc
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Scattering vs. focusing

M.K. Tey,  G. Maslennikov, T.C.H. Liew, et al., New J. Phys. 11, 040311 (2009)

experiment

parabolic
wave front

spherical wave front

full vector model

paraxial approximation

( experimental P
sc

 extracted out of

transmission measurement )
(f = 4.5 mm)



  

How far does this go?

Experiment

ε=92.6% @ u=2.24



  

 Single atom phase shift
Mach-Zehnder interferometer setup



  

Phase shift / Transmission

detuning (MHz)
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S.A. Aljunid, M.K. Tey, B. Chng,et al., arXiv:0905:3734



  

Comparison to cavity QED

● Could strong focusing replace cavities for strong coupling?

Probably not:  imperfect mode match
Gaussian modes --- atomic dipole modes

● Can strong focusing help in cavity QED experiments?

Probably yes: field enhancement due to focusing
can lower cavity finesse

● What is the balance of technical problems?

high NA lenses vs. high finesse mirrors (similar effort?)



  

Next steps

● Improve laser cooling

● Try larger numerical apertures

● Look for backscattered light

● Connect to nonclassical light sources....



  

Thank you!

http://www.qolah.org
(has also this talk)
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Results (collect full NA)
● Extinction

● Reflectivity (backward direction)

● No energy gets lost
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