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* Quantum Information and Communication protocols

information exchange between “flying” qubits (photons) and
stationary qubits (atoms)
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Interaction Electric field operator (single mode)
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Cavity to compensate for losses £,>K,Y |
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? can we go for even lower finesse to achieve strong coupling ?

Focusing !?
S.E. Morrin et al., Phys.Rev. Lett 73, 1489 (1994)
. Finesse=4.5,k=(2)-540 MHz
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» Confocal cavity with w = A

. gy=(27)-32MHz
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Finesse enough to observe
cavity mediated changes in
spontaneous emission

hw

2
Tw,Le,




Centre for

Strong Focusing 95 Nl

Technalogies of Singapor,

- u

? what is the maximal coupling one can achieve with strong focusing ?
? what is the maximum field at the focus EA, related to input field EL?
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Parabolic wave front
1

0 0.5 1 1.5 2 2.5 3
Focusing strength u

analytical solution for field at the focus gives (M.K.Tey et.al., NJP, 11, 043209 (2011))
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The normalization constant for a 400 ! ! ! ! !
strongly focused mode becomes 350 |
i WmRSC<u> g W0
j— E i
3A°Le, < 20
S 200
, 2
and the coupling strength foran 3 150
atom in an antinode of cavity's § 100 L
standing wave is
\/]TCR (u) 50 | t=27ns, L=10mm
gO:h - 0 | | | | |
T L 0 0.5 1 15 2 25
focusing strength u
Current experiments on strong focusing Strong coupling expected for

u~035L=6mm, g,~(27)-40 MHz ~ Kk~(27)10 MHz=R~0.99
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|. Sahl, On burning mirrors and lenses
(Publisher unknown, Baghdad, 984)

prototype lens turned from PMMA by
SYNTEC OPTICS

surface irregularity < 100 angstrom
sag error (spherical surface) £ 300 nm

wavefront deviations ~ A/10 PV

Work in progress!
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Single-mode optical cavity with small waist --- need to work near stability threshold

testing with a different cavity, L =10 cm, R =-5cm, R=0.97, F = 150

Ll L2 L3 200
i i : T T
150 1T T
% 100 r
Oscilloscope =
diffraction ECDL
grating 50 r
O 1 1 1 L
FG 99.96 99.97 99.98 99/.99 100
Cavity Length (mm) /
y) /
wi=="-+L(2R —L) w,=7.5um,g,=(27)5.3 MHz, kx=(27)-16 MHz

21

Ways to go: decrease L further, make more tests on stability in vacuum
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Atom has to be well localized at the antinode of the standing wave

In our experiments we trap ¥ Rb atom in a tightly focused optical tweezer

Raman cooling of an atom to the ground state of the trap can be performed
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(n)=0.55+0.07

atomic delocalization
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A model describing optical resonators with a strongly

focused mode is proposed. An analytical expression

IS obtained for the coupling strength, beyond paraxial
approximation.

We have designed an anaclastic cavity lens with
NA=0.3 that can be used in cavity QED experiments
with strong focusing

To achieve maximal coupling strength a thermal
Motion of atoms must be minimized.
We have performed a Raman sideband cooling of single
*’Rb atom in a tightly focusing dipole trap to

(n)=0.55+0.07
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Single atom
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(almost) Hanbury-Brown—Twiss experiment on

atomic fluorescence during cooling
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