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Motivation
In order to observe the interactions of single photons with single atoms for applica-
tions like quantum communication [1], we need a source of photon pairs which must
be spectrally bright (with a narrow bandwidth of 10 MHz) and have a high efficiency
(pairs to singles ratio).

Experimental setup
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Figure 1: The sagnac configuration with independently adjustable red and
blue beam paths.

Focus Optimization
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Figure 2: A good choice of focus gives high efficiencies.

We find that the ideal focusing for target modes is nearly equal to that of the pump.
However, there is a trade off between absolute emission rates and efficiency. We prefer
high efficiencies because our source can then be used as an heralded source of photons.
We observe uncorrected efficiencies> 37% using silicon Avalanche Photo Diodes (Si
APDs) of ≈ 50% detection efficiency. If we use highly efficient transition edge sensors
[2] instead of APDs we expect efficiencies > 70%. This will allow us to perform loop
hole free Bell tests since we will be well above the 66.7% threshold [3].

Spectral Properties
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Figure 3: Tunability of our source.

Our source can be tuned over a wide range of wavelengths by varying the temper-
ature of the crystal. (0.27 nm/◦C or 121 GHz/◦C). At 145◦C the bandwidth of the
downconverted light was 0.18 nm (82 GHz) while at room temperature it was 0.12 nm
(55 GHz). We suspect an inhomogeneity in temperature across the crystal.

The theoretical limit [4] on the bandwidth of the downconverted light due to the finite
length of the crystal (L) is given by

∆λ =
λ2

(ns − ni) ∗ L
(1)

where ns and ni represents the refractive indices of the signal and idler light within
the crystal. For our crystal, assuming there are no imperfections in the poling period,
this is 18 GHz.
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Figure 4: Visibility Vs. measurement time. Inset: A sample visibility mea-
surement made by moving a dichroic mirror of the interferometer

We see a high visibility over short intervals, however the visibility is lower when mea-
sured over a long period. This is due to slight instabilities in the Sagnac Interferometer
which we are trying to fix.

Next steps

Reduce bandwidths (Filter with cavities).
Increase efficiency (Currently 38%).
Increase Visibility (Currently 98.5%).
Perform loop-hole free Bell test.

How do we compare?
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Comments

 Fiorentino 
2004 [5]

18% --- 12,000 --- 150 micron waist

Mitchell 
2009 [6]

-- 1,000
214 (measured)

4.8 0.022 Filtered using a 
cavity

 Koing 2005  

[7]
11% 8.6 450 52 PPLN

Trojek 2008 
[8]

39% 4.2 27,000 6,435  BBO

U'Ren 2008 
[9]

50% 6.2 140,000 22,582 Time Gating

Zeilinger 
2007 [10]

~32
%

46 6,500 140 30mm long PPKTP

us 38% 97 8,000 82 25mm  long 
PPKTP

[1] T Jennewein, C Simon, G Weihs, H Weinfurter, A - PRL, 84,4729 (2000).

[2] Adriana E. Lita, Aaron J. Miller, and Sae Woo Nam, Opt. Express 16, 3032 (2008).

[3] P.H. Eberhard, Phys Rev. A 47, R747 (1993).

[4] R.S. Bennink Arxiv 1003.3810 (2010).

[5] M Fiorentino, F N. C. Wong, J H. Shapiro, et al phy rev A 69,041801 (2004).

[6] A Haase, M Mitchell, et al Optics letters 34 no 1 (2009).

[7] F. Knig, E.J. Mason, F.N.C. Wong, M.A. Albota Phy rev A 71,033805 (2005).

[8] Trojek P and Weinfurter H Appl. Phys. Lett. 92 211103 (2008).

[9] A.B. URen, C. Silberhorn, K. Banaszek, and I.A. Walmsley Arxiv 0312118v1 (2008).

[10] M. Hentschel, A poppe, A. Zeilinger Optics express 15 no 23 15377 (2007).


