

Efficient, Narrowband PPKTP based Source for Polarization Entangled Photons

By, Siddarth Koduru Joshi Chen Ming Chia, Felix Anger, Antia Lamas-Linares, Christian Kurtsiefer.

Efficiency = Pairs to Singles Ratio = Heralding Efficiency

Marco Fiorentino*, Gaétan Messin, Christopher E. Kuklewicz, Franco N. C. Wong, and Jeffrey H. Shapiro Phys. Rev. A 69, 041801(R) (2004).

Paul G. Kwiat, Philippe H. Eberhard, Aephraim M. Steinberg, and Raymond Y. Chiao Phys. Rev. A 49, 3209–3220

Focusing for Higher Efficiency

Pairs to singles ratio (Efficiency) of > 38%. (No corrections)

System efficiency > 38% APD detection efficiency ~55% => Source efficiency > 69% > Eberhard limit for loop hole free Bell test (66.7%)

* Better detectors

Improve focusing conditions

* Reduce reflection losses

Better detectors
APD ~50 to 55 %

Improve focusing conditions

* Reduce reflection losses

* Better detectors

APD ~50 to 55 % TES ~95 to > 99 %

Improve focusing conditions

* Reduce reflection losses

A. E. Lita, A. J. Miller, S. Nam, Opt. Exp. 16 5 3032 (2008).

Better detectors

APD ~50 to 55 % TES ~95 to > 99 %

Improve focusing conditions

Reduce reflection losses
14 surfaces => ~5 % loss

A. E. Lita, A. J. Miller, S. Nam, Opt. Exp. 16 5 3032 (2008).

Entanglement Quality

Polarization correlations in the $\pm 45^{\circ}$ basis = 98.4%

Entanglement Quality

Polarization correlations in the $\pm 45^{\circ}$ basis = 98.4%

Measured Bandwidth

Intensity (a.u.)

Bandwidth of down-converted light at 145° C is 0.18nm (82GHz). Bandwidth at room temperature is 0.12nm (55GHz).

Bandwidth Constraints

Theoretically ~18 GHz

$$\Delta \lambda = \lambda^2 / ((\mathbf{n_s} - \mathbf{n_i}) * \mathbf{L})$$

Bandwidth Constraints

Theoretically ~18 GHz

$$\Delta \lambda = \lambda^2 / ((\mathbf{n}_s - \mathbf{n}_i) * \mathbf{L})$$

 * Temperature inhomogeneity 82 GHz @ 145°C 55 GHz @ 25°C

Imperfections in the crystal poling period

Summery

- High efficiency (pairs to singles ratio) > 38 %
- ~8,000 pairs/s/mW
- 82 GHz Bandwidth
- 98.4% Polarization Correlations in the ± 45° basis
- No spectral filtering
- Collected using Singlemode Fibers

Questions?

What is walk off

Wavelength nm

Bandwidth measured using a solid etalon

Blue curve: expected signal with 0.04nm (18 GHz) bandwidth Purple curve: expected signal with 0.4nm (183GHz) bandwidth

Resolution ~ 0.04 nm(18GHz)

Tunable

PPKTP Temperature (°C)

Efficiency Vs. pump power

