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Motivation

• Quantify interaction of a two-level atom with light 

• Strong interaction without a cavity.

• Appropriate measurement

ATOM-PHOTON INTERFACE

Try to mode-match flying qubit modes to field

modes of spontaneous emission of a single atom

Key idea for high efficiency:
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The scattering ratio

Concentration of the incoming field
at the position of the atom is necessary! 

Quantification
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One solution: use a high-finesse cavity around the atom

inP

Many ongoing experiments
CalTech, Univ. of Georgia, Max-PIanck-Institute, etc…

Cavity



Lens-based

Or just use a (good) lens to focus light to an atom
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paraxial approximation

Take a Gaussian beam (laser, single-mode fiber) and do estimation

Oversimplified model --- doesn’t apply for strong focusing



Modelling

• Let the field have a spherical wave front 
after the lens and write it in vectorial
form compatible with Maxwell equations

Gaussian
mode

• Propagate field to the focus

 mode decomposition

parabolic wavefront: S. van Enk et al., 2001,

spherical wavefront: M.K. Tey et al., 2009.

 use Green theorem for a closed expression for field at focus EA

• determine atom response from semiclassical excitation probability for a given field              

for weak, on-resonant excitation  

• obtain the scattering ratio
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Modelling results

Scattering ratio:
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Energy conserved!?!?



Interference

The total field is a superposition of the excitation and scattered field
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The outgoing power is defined up to a constant
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Projection into fiber

Since no detector covers the full solid angle, we only partially collect the outgoing power
 natural choice --- projection onto the same mode as excitation 

loss S

2
, Totout EgP


= ( ) ( ) ( )dAnkxgxEEg
Sx

gTot   , ∫
∈

⋅⋅=




Integration can be carried out and we obtain experimentally measured quantities

Forward transmission
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Phase shift

One also can estimate the phase shift that the atom imposes on a near-resonant light
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Experiment

Mach-Zehnder interferometer



2.5 cm

The real thing



Results

Transmission of 

(95.9 ± 0.2)%

Max phase shift of 
(0.9 ± 0.2) ° at ~Γ/2

Rscat = 0.062 ± 0.003

Γ1 = (8.6 ± 0.4) MHz

Theoretical 

Transmission: 84%

max phase shift: 2.3°
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Conclusion

• Strong interaction of light with a single atom 
can be observed by simple focusing.

• 0.9° phase shift of a weak coherent beam 
observed together with 95.9% transmission.

Next steps

 Improve laser cooling

 Try larger numerical apertures

 Look for backscattered light

 Connect to nonclassical light sources....



Single atom

(almost) Hanbury-Brown—Twiss experiment on
atomic fluorescence during cooling

Rabi
oscillation

photon
antibunchingD
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Experiment

Present state
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