Status of R&D on Quantum communication and related R&D in Singapore

Christian Kurtsiefer

Centre for Quantum Technologies

Updating Quantum Cryptography, Akihabara Dec 1-2, 2008

Overview

- BBM92 protocol advantages
- Free space transmission channel
- Daylight operation
- An E91 implementation with quantitative knowledge of information leakage
- Physical attack schemes

Related activities in Singapore (not scope of this presentation):

- Valerio Scarani: Finite key length related problems, implications of the device-independent idea on other fields in physics
- B.G. Englert & team: Singapore protocol, reference-frame free QKD schemes
- L.C. Kwek / Simon Benjamin: Concepts on optically networked atoms in cavities

BB84 protocol

Prepare & measure protocols (BB84 & friends/derivatives):

uses error fraction to estimate eavesdropper's knowledge

- Raw key with errors: N_r bits
- Quantum bit error ratio (QBER): η

due to measurements

• Number of bits leaked to an eavesdropper N_e

$$N_e = N_r (h(\eta) + h(\eta))$$
possible knowledge reveale
of an eavesdropper error co

revealed in (optimal) error correction

binary entropy: $h(\eta) = -\eta \log_2 \eta - (1 - \eta) \log_2 (1 - \eta)$

for *infinite* key length and (!) single photons

...needs lots* of trusted random numbers!

*Mbit/sec for kbit/sec key

BB84: Spectral backdoor

Don't measure polarization, but e.g. color: The Hilbert Space in your system is larger than it appears

of Singapore

public discussion (sifting, key gen / state estimation)

error correction, privacy amplification

- no trusted random numbers for key
- direct use of quantum randomness for measurement basis

• Replace active basis choice by passive choice in a beam splitter

J.G. Rarity, P.C.M. Owens, P.R. Tapster, J. Mod. Opt. **41**, 2345 (1994)

Entangled photon sources

• Use non-collinear type-II parametric down conversion

two indistinguishable decay paths lead to $|\Psi^{-}\rangle = \frac{1}{\sqrt{2}} (|HV\rangle - |VH\rangle)$ $= \frac{1}{\sqrt{2}} (|+-\rangle - |-+\rangle)$

P.G. Kwiat et al., PRL 75, 4337 (1995)

Practical pair source

Blue diode-laser as pump source, BBO as nonlinear crystal

- 24,000 s⁻¹ detected pairs from 40 mW pump @ 407nm in single mode fibers at 810/818 nm, 2mm BBO crystal
- polarization correlation visibility in 45° basis: 92%

Colinear down conversion, periodically poled materials

- Up to 1000 times brighter than non-colinear sources
- Polarization correlation visibility in 45° basis > 99%

NUS campus test range

Receiver unit

polarization analyzer passively quenched Silicon APD - QE ~50% ~1000s⁻¹ dark cnt rate

spatial filter (150 µrad)

(40 mm FWHM)

Identified raw coincidences between close and remote receiver

(with interference filter 5nm FWHM, 50% peak transmission)

....and after The Works:

- CASCADE error correction with ~6000 bit packets
- assume incoherent attack strategy for privacy amplification
- average efficiency of EC/PA: >57%
- average final key rate: 650 bits/sec

No interference filter

- use a RG780 long pass filter to suppress visible light
- average final key rate 850 bits/sec

```
(link loss 8.3 dB)
```

Daylight also can?

Previous work: Los Alamos

Faint coherent pulses: R. *Hughes et al., J. Mod. Opt.* **47**, 549 (2000)

- detectors may die
- detector saturation: dead time $\tau_d \approx 1 \mu s$ for passive quenching

loss of useful signal
$$r' = r \frac{1}{1 + r \tau_d}$$

• accidental coincidences increase QBER:

$$q_{t} = \frac{1}{r'_{a} + r'_{s}} \left(q_{i} r'_{s} + \frac{1}{2} r'_{a} \right)$$

Reducing background

use good spatial, spectral and temporal filtering

spatial: 100 µrad acceptance angle spectral: 6.7 nm wide interference filter

avoid excessive scattering in optical path

Realistic numbers

 intrinsic QBER: 4.3%, coincidence time τc = 2 ns, detector τd = 1 μs

'true' background event rate (kcps)

- background does not kill the QBER
- detector saturation is limiting us!

Setup on a 350m stretch...

transmitter:

Experimental results

Extract background influence

Can, lah!

 continuous key generation over free-space link in daytime:

Find eavesdropper not via errors, but via testing entanglement: Ekert91 – type and tomographic protocols

Bell inequality I

Correlation between setting *i*, *j*:

$$E(i,j) := \frac{n(i,j) + n(\overline{i},\overline{j}) - n(i,\overline{j}) - n(\overline{i},j)}{n(i,j) + n(\overline{i},\overline{j}) + n(\overline{i},\overline{j}) + n(\overline{i},\overline{j})}$$

combined correlation function:

$$S := E(1,1') + E(1,2') + E(2,1') - E(2,2')$$

If there is a local hidden parameter λ (= knowledge of **E**) governing the measurement outcomes of **A** and **B**, then:

$$|S| \leq 2$$

To some extent: T. Jennewein et al., Phys. Rev. Lett. 84, 4729 (2000)

Bell inequality II

For proper settings 1, 2, 1', 2' and state $|\Psi^-\rangle$: $S=\pm 2\sqrt{2}$

 Estimate quantitatively the knowledge of Eve of raw key between A and B from S:

$$I_{E}(S) = h \left(1 + \frac{\sqrt{S^{2}/4 - 1}}{2} \right)$$

- Assume "fair sampling" between key measurement and Bell test
- No fingerprint problems of photons due to side channels A. Acin, N. Brunner, N. Gisin, S. Massar, S. Pironio, V. Scarani, PRL 98, 230501 (2007)

E91 Implementation

A. Ling, M. Peloso, I. Marcikic, A. Lamas-Linares, V. Scarani, C.K., Phys. Rev. A 78, 020301(2008)

Field results (1.4km range)

typical data run (with tropical rainfall inbetween)

of Singapore

 For non-lossy detectors and a measurement basis decision at "free will" of the observers:

No assumptions on devices and source is necessary to get an upper bound for eavesdropping!

A. Acin, N. Brunner, N. Gisin, S. Massar, S. Pironio, V. Scarani, PRL 98, 230501 (2007)

Compare technical specs?

- 'clockless' QKD scheme, uses timestamping only with resolution nominally 125 ps (efficient sifting)
- Photodetection rates ~1 M cps (detectors), up to 6 Mcps for electronics
- synchronization entirely software based (no specific HW channel)
- no dedicated classical channel (wireless or other TCP link will do)
- form factors: Reaching consumer grade complexity?

Field usage, open source

PDC pair source & sender

 Software is open source (GPLv2): http://code.google.com/p/qcrypto

Open hardware under way

 System gets simpler and more robust, low power consumption (<65W)

receiving side

On the more technical side....

• remove need for good reference clocks, we can initialize and maintain coincidence identification with standard crystal oscillators with $\Delta f / f \approx 10^{-4}$

Timing channel attack I

Timing channel attack II

Classical timing information carries fingerprint of detectors:

Timing ch attack III

Make sure no detail timing information is revealed.....

- Alternative cures (costly for background):
 - coarser quantized timing information
 - add timing noise

Nastier attacks: V. Makarov Trondheim H.K. Lo, Toronto

Time for Coffee....

Thank you !

http://qoptics.quantumlah.org/lah/

CQT Graduate program: http://cqtphd.quantumlah.org