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Chapter 1

Basic field quantization - the

foundations

Quantum optics devices require, as a very first step, a reasonable understanding
of what a quantum description of light actually covers. In this chapter, we will
probably repeat elements of electrodynamics, with some specializations relevant
for the optical domain, you may have seen several times already. The intent
of this very basic introduction is to establish the notions, so one can perhaps
easier distinguish the quantum physics aspects from what is optics or classical
electrodynamics.

Specifically, we consider here electromagnetic phenomena which take place
on a time scale of τ ≈ 10−15 s, or on wave phenomena with a characteristic
length scale of λ ≈ 10−7 to 10−6 m, corresponding to energy scales of the order
E ≈ ~/τ ≈ 10−19 J ≈ 1 eV.

An excellent reference book on the field quantization, which is the basis for
the introductory part of this lecture, is Photons and Atoms: Introduction to
quantum electrodynamics [1].

1.1 Recap of classical Electrodynamics

1.1.1 Maxwell equations

We begin with understanding of the treatment of time-varying electromagnetic
fields in classical physics. In a nonrelativistic context (which will be the case
for the scope of the matter interacting with the light field), the electromagnetic
field is typically separated to two vectorial quantities with space and time as
parameters, the electric and the magnetic field:

E(x, t) B(x, t) (1.1)

7



8 CHAPTER 1. BASIC FIELD QUANTIZATION - THE FOUNDATIONS

Maxwell equations in vacuum

The dynamics of these two fields (in free space) are covered by a set of differential
equations, commonly referred to as the Maxwell equations:

∇ · E(x, t) =
1

ǫ0

ρ(x, t), (1.2)

∇× E(x, t) = − ∂

∂t
B(x, t), (1.3)

∇ · B(x, t) = 0, (1.4)

∇× B(x, t) =
1

c2

∂

∂t
E(x, t) +

1

ǫ0c2
j(x, t) (1.5)

Therein, the quantities ρ(x, t) represent a local charge density (this is a scalar
quantity), and j(x, t) a current density (this is a vector property), which describes
the motion of charges, and is connected with the charge density through the
charge current. Typically, we set ρ = 0 and j = 0 in most of the space we
consider, which allows us to understand the dynamics of a ‘free field’.

Energy content in the electromagnetic field

An important notion for quantizing the electromagnetic field will be the total
energy contained in the field of a given volume. For a system without dielectric
media, the total energy of the electromagnetic field is given by

H =
ǫ0

2

∫

dx [E2 + c2B2] . (1.6)

Here and subsequently,
∫

dx refers to volume integration over the relevant space.
This is only the energy of the free field, without any charges and currents present;
they can be added later.

1.2 Sorting the mess: Count your degrees of

freedom

The Maxwell equations are a set of coupled differential equations where E and
B (in the case of free space) are the variables describing the state of the sys-
tem completely. More specifically, each point in the volume of interest has six
scalar variables, and the state of the system is determined by describing each
of these six field components at each point in space. However, this description
is redundant. In the next subsection, we should find out how to eliminate that
redundancy, and will arrive at the minimal set of variables we need to describe
electromagnetic fields. Then, we will try to decouple the remaining equations of
motion by transformation on normal coordinates.
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1.2.1 Reducing degrees of freedom: Potentials and gauges

It can be shown that the electric and magnetic fields can always be written as
derivatives of two fields A(x, t) and U(x, t) called vector potential and scalar
potential, respectively:

E(x, t) = − ∂

∂t
A −∇U(x, t), (1.7)

B(x, t) = ∇× A(x, t) (1.8)

We can then rewrite Maxwell equations in term of the potentials by substi-
tuting eqns (1.7) and (1.8) into eqns (1.2) and (1.5), leading to

∇2U(x, t) = − 1

ǫ0

ρ(x, t) −∇ · ∂

∂t
A(x, t), (1.9)

(

1

c2

∂2

∂t2
−∇2

)

A(x, t) =
1

ǫ0c2
j(x, t) −∇

[

∇ · A(x, t) +
1

c2

∂

∂t
U

]

(1.10)

All of these expressions are derivatives but completely describe the evolution
of the field. By this trick, the number of variables describing the free field is
already reduced to four scalar values for each point. There can be additive
constants to the potentials U and A which leave the actual fields E and B and
their dynamics unchanged. With the following transformation on the potentials

A(x, t) → A′(x, t) = A(x, t) + ∇F (x, t), (1.11)

U(x, t) → U ′(x, t) = U(x, t) − ∂

∂t
F (x, t) , (1.12)

where F (x, t) is any scalar field. This transformation of potentials has no phys-
ically observable consequences: electric and magnetic fields remain unchanged,
and they are the quantities necessary to determine the forces on charged parti-
cles. Such a transformation is called gauge transformation, and the property of
the fields E and B being invariant under such a transformation is referred to as
gauge invariance.

Therefore, we are free to choose the gauge function F (x, t) to come up with
a particularly simple form of the equations of motion. There are two typical
gauges used in electrodynamics. For many occasions, e.g. the free field, the so-
called Lorentz gauge is very convenient. It is defined by

∇ · A(x, t) +
1

c2

∂

∂t
U(x, t) = 0. (1.13)

Equations (1.9) and (1.10) under Lorentz gauge take a particularly simple and
symmetric form:

¤U(x, t) =
1

ǫ0

ρ(x, t) , (1.14)

¤A(x, t) =
1

ǫ0c2
j(x, t) , (1.15)
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with the definition of the differential operator ¤ referred to as d’Alembert -
operator:

¤ :=
1

c2

∂2

∂t2
−∇2. (1.16)

This form of the Maxwell equations is particularly suited for problems where
a Lorentz invariance of the problem is important. However, for the purpose of
optics or interaction with atoms of non-relativistic speed, another gauge is more
favorable, the so-called Coulomb gauge:

∇ · A(x, t) = 0 (1.17)

Equations (1.9) and (1.10) under Coulomb gauge take the form:

∇2U(x, t) = − 1

ǫ0

ρ(x, t), (1.18)

¤A(x, t) =
1

ǫ0c2
j(x, t) − 1

c2
∇ ∂

∂t
U(x, t) (1.19)

If we operate in a region without free charges, i.e. ρ(x, t) = 0, we have
U(x, t) = 0 everywhere, and the free field is completely described by the three
components of the vector potential A(x, t). Its evolution in time is governed
by a single equation of motion, a simplified version of (1.19). Thus, the gauge
invariance helps us to identify a redundancy in the combination of scalar and
vector potential and their corresponding equations of motion.

1.2.2 Decoupling of degrees of freedom: Fourier decom-

position

Now, we have to address another problem - the Maxwell equations form a set of
coupled differential equations. The electromagnetic scenery in a region of space
is thus described by the potentials U(x, t) and A(x, t), but the values at different
points (x, y, z) in space are coupled via the spatial differential operators. We
therefore need to sort out this problem before we continue searching for further
redundancies.

In order to arrive at the simplest (as in separable) description of the evolution
of the field, we try to apply a mode decomposition of the field, very similar to the
mode decomposition of mechanical oscillators in coupled systems like the lattice
vibration or the vibration of a membrane. There, we try to express the local
variables (like local displacement) as a function of normal coordinates, which
have a completely decoupled evolution in time.

Such an attempt will be helpful for the field quantization. For most occasions,
we choose the most common normal coordinate transformation for a system (as
defined by the structure of equations of motion, and the boundary conditions)
with translational invariance, namely the Fourier transformation. It has to be
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kept in mind that this is only a convenient choice, and by no means the only
normal coordinate choice to make. There are many occasions in quantum optics
where a different mode decomposition is appropriate, we will come back to that
later in Section 1.4.

When using the Fourier transformation as the transformation to normal coor-
dinates, plane waves (which are solutions of the homogenous Maxwell equations)
form the basis for our solution. The amplitudes of various plane waves, charac-
terized by a wave vector k, will be the new coordinates. We still want to arrive
at a description of the electromagnetic field where we keep time as the parameter
describing the evolution of the variables; this choice is suited to describe obser-
vations in typical non-relativistic lab environments. Therefore, we restrict the
Fourier transformation only on the spatial coordinates. The transformation and
their inverse for the electrical field reads explicitly:

EEE (k, t) =
1

(2π)3/2

∫

dxE(x, t)e−ik·r, (1.20)

E(x, t) =
1

(2π)3/2

∫

dkEEE (k, t)eik·r (1.21)

The quantity EEE (k, t) is a set of electric field amplitudes for every k, which we
will lead to a decoupled set of equation of motion, and thus form a suitable set
of normal coordinates.

Similarly, we have transformations for all the other field quantities we have
encountered so far:

E(x, t) ↔ EEE (k, t), (1.22)

B(x, t) ↔ BBB(k, t), (1.23)

A(x, t) ↔ AAA (k, t), (1.24)

U(x, t) ↔ U (k, t), (1.25)

ρ(x, t) ↔ ρ(k, t), (1.26)

j(x, t) ↔ j(k, t) (1.27)

One thing to take note is that, while the actual fields are real, the quantities
in Fourier space can be complex. The reality of the electric field in real space,
mathematically expressed by E∗ = E, implies that

EEE
∗(k, t) = EEE (−k, t) (1.28)

for the electric field. This is a redundancy to keep in mind when counting the
degrees of freedom of our system.

Two of the few identities that are useful to keep in mind are the Parseval-
Plancherel identity and the Fourier transform of convolution product. The first
one,

∫

dxF ∗(x)G(x) =

∫

dkF
∗(k)G (k) , (1.29)
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tells us that we can evaluate the integral over the whole space of a product of
two functions (e.g. fields) also in a similar way in Fourier space. This will come
in handy for evaluating the total field energy.

The convolution product of two functions is defined as

F (x) ⊗ G(x) :=
1

(2π)3/2

∫

dx′ F (x′)G(x − x′) , (1.30)

where the integration is carried out over a three-dimensional space. A similar
definition of a convolution product can be defined in one dimension, with a prop-
erly adjusted normalization constant. Such a product typically appears in the
evolution of correlation functions.

It can easily be shown that the Fourier transformation of the convolution
product is just the product of the Fourier-transformed versions of the two func-
tions:

F (x) ⊗ G(x) ↔ F (k)G (k) (1.31)

This is a useful relation also in practical situations when correlations between
functions need to be evaluated, as the numerical evaluation of a Fourier transfor-
mation is extremely efficient.

So far, we have not seen that Fourier transformation helps to decouple the
Maxwell equations as the equations of motion for the fields, and that this is
therefore actually a transformation to normal coordinates. For this, we use the
transformation rules for differential operators,

∇· ↔ ik· , ∇× ↔ ik × etc. (1.32)

to rewrite the Maxwell equations (1.2) - (1.5) in terms of their Fourier-transformed
fields EEE (k, t) and BBB(k, t):

ik · EEE (k, t) =
1

ǫ0

ρ(k, t) (1.33)

ik × EEE (k, t) = − ∂

∂t
BBB(k, t) (1.34)

ik ·BBB(k, t) = 0 (1.35)

ik ×BBB(k, t) = − 1

c2

∂

∂t
EEE (k, t) +

1

ǫ0c2
j(k, t) (1.36)

This is now a set of coupled differential equations for each k, but the coupling
extends only over the electric and magnetic field components for a given k, not
between those of different k anymore. Thus, the Fourier transformation helped
to arrive at a decoupling between the field amplitudes at different locations x in
space, and thus is a transformation on normal coordinates.
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Similarly, the connections between fields and potentials in Fourier space are
given by

BBB(k, t) = ik ×AAA (k, t), (1.37)

EEE (k, t) = − ∂

∂t
AAA (k, t) − ikU (k, t) , (1.38)

and the gauge transformations turn into

AAA (k, t) → AAA
′(k, t) = AAA (k, t) + ikF (k, t), (1.39)

U (k, t) → U
′(k, t) = U (k, t) − ∂

∂t
F (k, t). (1.40)

The equations of motion for the potentials transform into

k2
U (k, t) =

1

ǫ0

ρ(k, t) + ik · ∂

∂t
AAA (k, t), (1.41)

1

c2

∂2

∂t2
AAA (k, t) + k2

AAA (k, t) =
1

ǫ0c2
j(k, t) − ik

1

c2

∂

∂t
U (k, t) . (1.42)

Again, these equations are simpler in Fourier space because partial differential
equations were transformed into a set of ordinary differential equations for the
different k. Thus, the Maxwell equations are strictly local in the Fourier space.

1.2.3 Longitudinal and transverse fields

In an attempt to reduce the degrees of freedom we have to consider for a field
quantization further, there is another – more subtle – redundancy we need to ad-
dress. It is connected with the fact that propagating plane waves of electromag-
netic fields are transverse fields, and can be decomposed in only two polarization
components.

As a mathematical definition, a vector field V‖(x) is called a longitudinal
vector field if and only if

∇× V‖(x) = 0 . (1.43)

This equation can be easier interpreted when written in Fourier space:

ik ×VVV ‖(k) = 0 (1.44)

The vanishing cross product between VVV ‖ and k simply means that both vectors
are parallel. Thus, a longitudinal vector field has its components aligned with
the wave vector k.

Similarly, one can define a transverse vector field V⊥(x) the following prop-
erties:

∇ · V⊥(x) = 0 , (1.45)

ik ·VVV ⊥(k) = 0 . (1.46)
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This time, the vector VVV ⊥ is perpendicular to the wave vector of a plane wave.
With these definitions, one may decompose any vector field V(x) into longi-

tudinal and transverse part. This decomposition can be carried out conveniently
from a representation in Fourier space:

VVV ‖(k) = κκκ[κκκ ·VVV (k)] , (1.47)

VVV ⊥(k) = VVV (k) −VVV ‖(k) , (1.48)

where κκκ is the unit vector in the direction of k. The longitudinal and transverse
fields (V‖(x) and V⊥(x)) in real space can then be obtained via inverse Fourier
transformation. This gives the decomposition of the following:

V(x) = V‖(x) + V⊥(x). (1.49)

With the definitions of longitudinal and transverse fields, one can see that
that the magnetic field is purely transverse. This is clear from Maxwell equation
(1.35) which gives

BBB‖(k, t) = 0 = B‖(x, t)1. (1.50)

Similarly, the expression for the source term of electrical field using eqns (1.33)
and (1.47), allows to isolate the parallel component of the electrical field EEE ‖(k, t)
in Fourier space:

EEE ‖(k, t) = − i

ǫ0

ρ(k, t)
k

k2
(1.51)

The expression for the electric field in real space can be obtained by an inverse
Fourier transformation. The Fourier transformation relating convolution product
in real space to product in Fourier space (eqn (1.31)) can be used to arrive at:

E‖(x, t) =
1

4πǫ0

∫

dx′ ρ(x′, t)
x − x′

|x − x′|3 (1.52)

This seemingly innocent expression looks just like an expression known from
electrostatics, where the field from a charge distribution is obtained using the
Green function of a point charge. However, keep in mind that E‖(x, t) is the field
created by the instantaneous position of charges ρ(x) at time t at all locations x,
and no retardation effects are taken into account. However, this does not violate
causality since E‖(x, t) itself is not a physically observable quantity on its own.
What is meaningful is the total electric field, which gets complemented by the
transverse field, which in turn takes care of any information propagating around
about charges which may have moved.

The dynamics of the transverse and longitudinal field components are still
governed by the Maxwell equations, but we are left only with two equations not
vanishing to zero:

1This means that BBB(k, t) = BBB⊥(k, t).
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∂

∂t
BBB⊥(k, t) =

∂

∂t
BBB(k, t) = −ik × EEE (k, t) = −ik × EEE ⊥(k, t), (1.53)

∂

∂t
EEE ⊥(k, t) = ic2k ×BBB(k, t) − 1

ǫ0

j⊥(k, t). (1.54)

In terms of the transverse vector potential the equation of motion is given by

1

c2

∂2

∂t2
AAA ⊥(k, t) + k2

AAA ⊥(k, t) =
1

ǫ0c2
j⊥(k, t). (1.55)

For the longitudinal component, we are left with

k2
U (k, t) =

1

ǫ0

ρ(k, t) + ik · ∂

∂t
AAA ‖(k, t). (1.56)

If the Coulomb gauge is chosen, we have AAA ‖(k, t) = 0. Then, the Maxwell
equations leave us with two distinct problems: One governs the derivation of a
scalar potential U(x) from a given charge density ρ(x), the other one governs the
evolution of propagating free fields.

Referring to eqn (1.55), for a given mode index k, we are left with two degrees
of freedom corresponding to two perpendicular directions orthogonal to k:

AAA ⊥(k, t) =
∑

ε

aε(k, t)εεε (1.57)

where εεε represents the two independent polarization directions. By using the
concept of transverse fields, we finally arrived at two variables aε(k, t) for each
point k describing completely the evolution of propagating electromagnetic fields.

1.2.4 Normal coordinates - alternative approach

With the two transverse components of the vector potential for each mode index
k and their corresponding equation of motion (1.55) we have arrived at a minimal
description of the electromagnetic field. Alternatively we could arrive to a similar
point by recalling eqns (1.53) and (1.54). Together with the assumption that
j⊥(k, t) = 0, the two equations can be combined to:

∂

∂t
(EEE ⊥[k, t) ∓ cκκκ ×BBB(k, t)] = ∓iω[EEE ⊥(k, t) ∓ cκκκ ×BBB(k, t)] (1.58)

with ω = c|k|, making use of the time dependency e−iωt for the plane waves.
This suggests us to define the following two normal coordinates,

ααα(k, t)) := − i

2N (k)
[EEE ⊥(k, t) − cκκκ ×BBB(k, t)] , (1.59)

βββ(k, t)) := − i

2N (k)
[EEE ⊥(k, t) + cκκκ ×BBB(k, t)] (1.60)



16 CHAPTER 1. BASIC FIELD QUANTIZATION - THE FOUNDATIONS

where the normalization N (k) is somewhat arbitrary and will be chosen so that
the Hamilton function has a nice form.

However, ααα(k, t) and βββ(k, t) are not independent. Since E⊥(x, t) and B(x, t)
are real quantities, we have equations similar to eqn (1.28) for EEE ⊥(k, t) and
BBB(k, t). These equations give the following relation between ααα(k, t) and βββ(k, t):

βββ(k, t) = −ααα∗(−k, t). (1.61)

It is then sufficient to describe the electric and magnetic fields by one complex
variable ααα(k, t) only.

Using eqns (1.61), eqns (1.59) and (1.60) can be solved for EEE ⊥(k, t) and BBB(k, t)

EEE ⊥(k, t) = iN (k)[ααα(k, t) −ααα∗(−k, t)], (1.62)

BBB⊥(k, t) = i
N (k)

c
[κκκ ×ααα(k, t) + κκκ ×ααα∗(−k, t)] (1.63)

Therefore, the knowledge of ααα(k, t) for all k enables one to derive all physical
quantities like EEE ⊥(k, t) and BBB(k, t). Since there is no restriction to the reality of
ααα(k, t),they are really independent variables. The complete field is now described
by the variables ααα(k, t).

Subtracting eqn (1.53) from eqn (1.54), with the definition of ααα(k, t) in mind,
we have

∂

∂t
ααα(k, t) + iωααα(k, t) =

i

2ǫ0N (k)
j⊥(k, t) (1.64)

This is the equation of motion of the electromagnetic field, which is completely
equivalent to eqn (1.55), this time formulated as a first order differential equation
in time, and the complex coefficients αε(k, t) are the same as the ones used in
the earlier derivation up to a normalization constant.

We note that ααα(k, t) is a transverse field because it is defined as a sum of two
transverse fields in eqn (1.59). Therefore, there are only two degrees of freedom
corresponding to the transverse direction rather than three degrees of freedom.
This means that

ααα(k, t) =
∑

ε

αε(k, t)εεε = αε1(k, t)εεε1 + αε2(k, t)εεε2 , (1.65)

where the mutually orthogonal polarization vectors εεε1 and εεε2 are perpendicular
to k for any given k.

We now have the equation of motion as a decoupled set of equations

∂

∂t
αε(k, t) + iωαε(k, t) =

i

2ǫ0N (k)
j⊥(k, t) · εεε , (1.66)

and the pair (εεε,k) is an index of the different modes of the field.
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Figure 1.1: Three mutually orthogonal vectors εεε1, εεε2 and k

1.2.5 Hamiltonian of the electromagnetic field

The total electromagnetic field energy in a propagating field2 is given by

H =
ǫ0

2

∫

dx [E2
⊥(x, t) + c2B2(x, t)] =

ǫ0

2

∫

dk [E 2
⊥(k, t) + c2

B
2(k, t)]. (1.67)

From eqns (1.62) and (1.63), we find

EEE
∗
⊥ · EEE ⊥ = N

2(ααα∗ ·ααα + ααα− ·ααα∗
− −ααα∗ ·ααα∗

− −ααα− ·ααα), (1.68)

c2
BBB

∗
⊥ ·BBB⊥ = N

2(ααα∗ ·ααα + ααα− ·ααα∗
− + ααα∗ ·ααα∗

− + ααα− ·ααα) (1.69)

with ααα∗
− = ααα∗(−k, t). The first equation for EEE ∗

⊥ · EEE ⊥ can be obtained easily. To
go from eqn (1.63) to the second equation, the following identity is used, while
keeping in mind that ααα(k, t) is transverse. The expression of the energy becomes3

H = ǫ0

∫

dkN
2[ααα∗ ·ααα + ααα− ·ααα∗

−]. (1.70)

The normalization coefficient N (k) is chosen to be
√

~ω
2ǫ0

. A change of variable

is performed for the second term in the equation above, where k is changed to
−k. Finally, we have

H =

∫

dk
∑

ε

~ω

2
[α∗

ε(k, t)αε(k, t) + αε(k, t)α∗
ε(k, t)]. (1.71)

Let’s summarize the expression for electric field, magnetic field and vector po-
tential before we proceed to consider the quantization of the radiation field:

E⊥(x, t) = i

∫

dk
∑

ε

Eω[αε(k, t)eik·x − α∗
ε(k, t)e−ik·x]εεε, (1.72)

B(x, t) = i

∫

dk

c

∑

ε

Eω[αε(k, t)eik·x − α∗
ε(k, t)e−ik·x]κκκ × εεε, (1.73)

A⊥(x, t) =

∫

dk
∑

ε

Eω

ω
[αε(k, t)eik·x + α∗

ε(k, t)e−ik·x]εεε (1.74)

2Assume the region is far away from the source and we can neglect the contribution of the
source, which is the longitudinal part of the energy

3The order of multiplication is retained for quantization purposes.
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with Eω =
√

~ω
2ǫ0(2π)3

4.

1.3 The works: Canonical quantization for dum-

mies

Let’s recall one form of the equation of motion (1.64) for the electromagnetic field
in complex variables:

∂

∂t
ααα(k, t) + iωααα(k, t) =

i

2ǫ0N (k)
j⊥(k, t) (1.75)

This equation resembles a set of equations of motion for a simple harmonic os-
cillators, each of the form

∂

∂t
α(t) + iωα(t) = f(t) . (1.76)

Its quantization is well known, and this analogy suggests that a field quantization
could be performed by interpretation of each single mode of the field as a har-
monic oscillator following the standard harmonic oscillator quantization. This
is however, is not completely according to the book. The proper way (as you
probably have seen it in your quantum mechanics textbooks) would be to

1. Start with a Lagrange-density or a complete Langrage function,

2. Identify the coordinates of the system,

3. Find the canonically conjugated momenta,

4. Use the Hamilton-Jacobi formalism to express the energies of the field in
terms of coordinates and conjugated momenta,

5. Express the physical quantities like E and B as a function of coordinates
and momenta,

6. Use the Schroedinger or Heisenberg equation to describe the dynamics of
the system in various pictures.

This procedure will lead to exactly the same result as the simple quantization
approach obtained by simply using the analogy in the normal coordinates which
shall be done in this section.

4No quantization has been performed yet, even though the expression for Eω contains ~.
This is a purely arbitrary choice of a normalization factor for the normal coordinates
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1.3.1 Quantization

Now let’s perform the quantization as according to the simple method outlined
in previous section. We use the transition

α → â, α∗ → â† (1.77)

similar to the case of harmonic oscillator. The field then turns into field operators
as shown below:

Â⊥ =
∑

j

Aωj

[

âjεεεje
ikj ·x + â†

jεεεje
−ikj ·x

]

, (1.78)

Ê⊥ = i
∑

j

Eωj

[

âjεεεje
ikj ·x − â†

jεεεje
−ikj ·x

]

, (1.79)

B̂⊥ = i
∑

j

Bωj

[

âj(κκκj × εεεj)e
ikj ·x − â†

j(κκκj × εεεj)e
−ikj ·x

]

. (1.80)

The Hamilton operator of the field is given by

Ĥ =
∑

j

~ωj

2
(â†

j âj + âj â
†
j) (1.81)

which, as expected, resembles that of harmonic oscillators.

1.3.2 Harmonic oscillator physics

The individual terms Ĥj of the Hamilton operator in eqn (1.81),

Ĥ =
∑

j

Ĥj , Ĥj =
~ωj

2
(â†

j âj + âj â
†
j) , (1.82)

define the dynamics for the field state in each mode. We will come back to a
few field states later, but mention that each mode j is associated with a Hilbert
space Hj to capture every possible single-mode state |Ψj〉. A convenient way
to characterize a in that space is its decomposition into the spectrum of energy
eigenstates. We re-write the Ĥj in the form

Ĥj = ~ωj(n̂ +
1

2
) with n̂ = â†â (1.83)

with the so-called number operator n̂ and using the commutator relation [â, â†] =
1. The energy eigenstates of the harmonic oscillator are given by the discrete set
of eigenstates |n〉 of the number operator,

n̂|n〉 = n|n〉 , n = 0, 1, 2, . . . (1.84)



20 CHAPTER 1. BASIC FIELD QUANTIZATION - THE FOUNDATIONS

Any state in this mode can now be expressed as a superposition of number states:

|Ψ〉 =
∞

∑

n=0

cn|n〉 with coefficients cn ∈ C ,

∞
∑

n=0

|cn|2 = 1 (1.85)

It is useful to see the analogy of a harmonic oscillator with a mass and a restoring
force to the harmonic oscillator associated with an electromagnetic field mode.
For the first case, we have a Hamilton operator of the form

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 (1.86)

with operator x̂ and p̂ for position and momentum of the mass m. These operators
can be expressed as sum and difference of the ladder operators â and â†:

x̂ =

√

~

2mω

(

â† + â
)

(1.87)

p̂ =

√

~mω

2
i

(

â† − â
)

(1.88)

Since the position (or momentum) probability amplitude φ(x) is well known for
some common harmonic oscillator states (e.g. the number states), this analogy
can help to derive a distribution corresponding field quantities we will see in the
next section.

1.3.3 Field operators

Often the field operators are again split up into

Ê = Ê(+) + Ê(−) (1.89)

where

Ê(+)(x, t) = i
∑

j

Eωj
εεεj âje

ik·x, (1.90)

Ê(−)(x, t) = −i
∑

j

Eωj
εεεj â

†
je

−ik·x. (1.91)

They are referred to as positive and negative frequency contributions, corre-
sponding to the evolutions in a Heisenberg picture; there Ê becomes time depen-
dent, as well as the raising and lowering operators â and â†.

For the lowering operator, it can be shown by remembering [N̂ , â] = −â and
N̂ = 1

~ω
Ĥ − 1

2
that

i~
∂

∂t
â(t) =

[

â(t), Ĥ
]

= ~ωâ(t). (1.92)
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Solving this equation will result in

â(t) = â(0)e−iωt. (1.93)

The same can be done for the raising operator that leads us to the following
equation of motion for the raising operator and its solution:

i~
∂

∂t
â†(t) =

[

â†(t), Ĥ
]

= −~ωâ†(t), (1.94)

â†(t) = â†(0)eiωt. (1.95)

In the Heisenberg picture, the electric field operator becomes time-dependent
and takes the form

Ê⊥(x, t) = i
∑

j

Eωj
εεεj

{

âje
i(k·x−ωt) − â†

je
−i(k·x−ωt)

}

(1.96)

Next, we consider the following definitions of two operators,

âQ :=
1

2

(

â + â†
)

, (1.97)

âP :=
1

2i

(

â − â†
)

. (1.98)

These two operators corresponds to the x̂ and p̂ operators of the harmonic os-
cillator which was discussed earlier. They are often referred to as quadrature
amplitudes.

The two quadrature amplitudes are Hermitian operators, as can be shown:

â†
Q =

1

2

(

â† + â
)

= âQ, (1.99)

â†
P = − 1

2i

(

â† − â
)

=
1

2i

(

â − â†
)

= âP . (1.100)

This means that the two operators can be associated with observables. In fact,
they are associated with the sine and the cosine component of a particular field
amplitude, as can be seen from the expression of the field operator in terms of
these operators.

Ê(x, t) = −
∑

j

2Eωj
εεεj {âQ,j sin(k · x − ωjt) + âP,j cos(k · x − ωjt)} . (1.101)

The commutation relation between âP and âQ can be shown easily as follow:

[âP , âQ] =
1

4i

[

â − â†, â + â†
]

=
1

4i

([

â, â†
]

−
[

â†, â
])

=
1

2i
(1.102)

The reader can verify that for a single mode field, the Hamilton operator can
be written in terms of the quadrature amplitude as

Ĥ = ~ω
(

â2
Q + â2

P

)

(1.103)
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1.4 Different mode decompositions

So far, we have been using plane waves to decouple the partial differential equa-
tions, and to arrive at independent complex amplitudes αk,ǫ as independent vari-
ables. This is a convenient choice if we don’t have any conductors or dielectrics in
our volume of interest, but it is not the only possible mode decomposition. Before
performing the quantization, let us review the case where we have a different set
of boundary conditions.

For geometries where one wants to look at the interaction with an atom resting
at the origin of a coordinate system, a set of spherical modes is more appropriate.
Such a mode decomposition is e.g. useful for the understanding the spontaneous
emission of light from an excited atom, or when dealing with spherical resonator
geometries as sometimes found for microwaves.

Other common mode decompositions involve a cylindrical geometry, which
will be important for describing the electromagnetic field e.g. in optical fibers.
There, the boundary conditions for guided modes lead to a field which is centered
in the vicinity of a core in the fiber with high refractive index, while electric
field decays with the radial distance according to a Bessel function or something
similar, depending on the profile for the refractive index in the optical fiber.

A very common mode decomposition in experimental setups involves Gaussian
beams, which have a radial field distribution following a Gaussian, and a well-
defined dependency of the characteristic width along a light beam. These modes
are eigensolutions for the paraxial wave equation, and are typically found in laser
physics as eigenfunctions for arrangements of concave mirror cavities.

Many field geometries limit the volume of interest, thus leading to a modified
mode structure altogether. A confinement of all three dimensions of space is
typically referred to as a cavity. For simplicity, let’s consider the simplest case
and postulate a periodic boundary condition.

1.4.1 Periodic boundary conditions

The simplest step to make a transition from continuous variables to cavities is
to enforce periodic boundary conditions. There, the wave vector k can only have
integer multiples of the form:

kx =
2πnx

L
, ky =

2πny

L
, kz =

2πnz

L
. (1.104)

where L is the period5. Here, ki refers to the component of the wave vector in
the i direction.

5For simplicity, we consider this to be the same in all directions
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We can write down the following correspondence between the sum in continu-
ous case for the infinite space and the sum in discrete case for the finite cavities:

∫

dk f(k) ↔
∑

kx,y,z

(

2π

L

)3

f(kx,y,z) (1.105)

We then arrive at expressions

Hfree,⊥ =
∑

j=(kx,y,z ,εεε)

~ωj

2
(α∗

jαji + αjα
∗
j ), (1.106)

A⊥ =
∑

j

Aωj

[

αjεεεje
ikj ·x + α∗

jεεεje
−ikj ·x

]

, (1.107)

E⊥ = i
∑

j

Eωj

[

αjεεεje
ikj ·x − α∗

jεεεje
−ikj ·x

]

, (1.108)

B⊥ = i
∑

j

Bωj

[

αj(κκκj × εεεj)e
ikj ·x − α∗

j (κκκj × εεεj)e
−ikj ·x

]

(1.109)

with

Eωj
=

[

~ωj

2ǫ0L3

]1/2

, Bωj
=

Eωj

c
, Aωj

=
Eωj

ωj

(1.110)

The mode index j now points to a discrete (but still infinite) set of modes, and
the integration over all modes to obtain the electrical field strength E at any
location x turns into a discrete sum.

For the particular case of periodic boundary conditions we still can get away
with the simple exponentials describing plane waves; however, for realistic bound-
ary conditions, this is not the case anymore.

1.5 Realistic boundary conditions: Modes be-

yond plane waves

In a slightly more generalized mode decomposition, the operator for the electric
field may be written as

Ê(x, t) = i
∑

j

Eωj

(

gj(x)âj(t) − g∗
j(x)â†

j(t)
)

, (1.111)

where the spatial dependency and polarization property of a mode is covered by a
mode function gj(x), the time dependency is transferred into the ladder operators
â, â†, and the dimensional components, together with some normalization of the
mode function, is contained in the constant Eωj

. The corresponding operator for
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the magnetic field can just be derived out of this quantity via one of the Maxwell
equations, (1.4), taking into account the time dependency of the ladder operators:

∂âj/∂t = −iωj âj , ∂â†
j/∂t = iωj â

†
j . (1.112)

With this, we end up with a magnetic field operator

B̂(x, t) =
∑

j

Bωj

(

∇× g(x)â(t) + ∇× g∗(x)â†(t)
)

, with Bωj
= Eωj

/ωj .

(1.113)
In practice, the mode functions gj(x) and the dispersion relation ωj are known

or chosen as an ansatz, and it remains to find the normalization constant Eωj
to

make sure that the Hamilton operator, given as a volume integral in the form
of eqn (1.67), corresponds to the standard harmonic oscillator Hamiltonian in
eqn (1.81).

For a given mode function g(x) and dispersion relation compatible with the
Maxwell equations, the normalization constant is given by:

Ej =

√

~ωj

ǫ0V
with V :=

∫

dx

[

|g(x)|2 +
c2

ω2
|∇ × g(x)|2

]

(1.114)

The choice of the mode function can now easily adapted to the symmetry of
the problem or boundary condition. Depending on the problem, the mode indices
j may be discrete, continuous, or a combination of both. In the following, we
give a set of examples for various geometries.

Occasionally, it may be helpful to include a finite length or volume, artificially
discretizing some continuous mode indices. This may be helpful when evaluating
the normalization constant E and keeping track of state densities for transition
rates, but should not affect the underlying physics.

1.5.1 Square wave guide

This refers to very simple boundary conditions: The electromagnetic field is
confined into a square pipe with ideally conducting walls (see Fig. 1.2a ). It is a
mode decomposition suitable for TE modes as found in microwave waveguides.
While not exactly of concern in the optics regime, it may become an important
set of boundary condition in the context of quantum circuit dynamics.

The generalized mode index j ≡ (n,m, k) is formed by two discrete mode
indices n,m = 0, 1, 2, . . . ; n · m 6= 0 characterizing the nodes in the transverse
direction across the waveguide, and a continuous mode index k characterizing the
wave vector along the waveguide.

The mode function g(x) of a TEnm mode is given by

g(x) = êye
ikz sin

(nπ

a
x
)

cos
(mπ

b
y
)

, (1.115)
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Figure 1.2: Two simple boundary conditions for electromagnetic waves. (a) A
waveguide with ideally conducting walls, as used in the microwave domain; (b)
a coaxial waveguide, as found at low frequencies. Both geometries illustrate how
to carry out field quantization in uncommon mode geometries.

and the dispersion relation is by

ω2
j = c2

0

(

k2 + n2π2/a2 + m2π2/b2
)

. (1.116)

This dispersion relation is characteristic for waveguides, which in general have
some discretized transverse mode structure and a continuous parameter k, which
resembles the wave vector of the plane wave solution. The second part poses a
confinement term, leading to a dispersion just due to the geometry of the mode6.

To carry out the normalization, we introduce a “quantization length” L in
the z direction. This discretizes the mode index k to k = 2πl/L, l = 0, 1, 2, . . ..
The normalization constant for this mode is given by

Ej =

√

~ωj

ǫ0V
, V =

Lba

2
·
{

1 ,m = 0
1/2 ,m > 0

(1.117)

1.5.2 Gaussian beams

Many optical experiments work with light beams with a transverse Gaussian
beam profile under a paraxial approximation. Such modes typically represent
eigenmodes of optical resonators formed by spherical mirrors.

In a typical experiment, the transverse mode parameter (waist, w0) is fixed,
and the longitudinal mode index is a continuous wave number k. In a regime
where there is no significant wavefront curvature, the mode function is given by

g(x) = εεεe−ρ2/w2
0eikz , (1.118)

6Keep in mind that this is not a complete set of modes, it just covers the ones with the
lowest cutoff frequencies for a > b. There is also another field mode type, the TM modes. See
e.g. Jackson [2] for a comprehensive list of modes.
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|E|

y

z

Figure 1.3: Wave fronts and electrical field distribution of a Gaussian beam.

with a radial distance ρ =
√

x2 + y2, a transverse polarization vector εεε, and a
position z along the propagation direction. The dispersion relation for this mode
is given by

ω2 =
c2
0

ǫr

(

k2 +
2

w2

)

. (1.119)

This expression contains already the permittivity ǫr if the field is present in a
dielectric medium. To cover the vacuum case, just set ǫr = 1. The normalization
constant E for the electric field operators is given by

E =

√

~ω

πw2Lǫ0ǫr

. (1.120)

Herein, we introduced a “quantization length” L, assuming a periodic boundary
condition in the propagation direction z. While not necessary, it avoids some
confusion when counting over target modes.

This particular mode decomposition is also a good approximation when single
mode optical fibers are used to support the electromagnetic field. While the
specific dielectric boundary conditions in optical fibers are more complicated and
depend on the doping structure, the most common optical fibers have a transverse
mode structure which resembles closely a Gaussian mode.

A discretized longitudinal mode index is actually a very common condition for
optical resonators, assuming the leakage to the environment is relatively small. If
the transition to a continuum is desired, the relevant observable quantity can be
first evaluated with a discrete mode spectrum, followed by a transition L → ∞.
We will see an example of such a procedure in Chapter 3.

A generalization of this mode function is obtained once the divergence of
the Gaussian beam is taken into account. This is typically present in optical
resonators with moderate focusing. There, the mode function becomes

g(x) = εεε
w0

w(z)
e−ρ2/2w2(z)eikz+ik ρ2

2R(z)
+iζ(z) (1.121)
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with a beam waist w0 other commonly used quantities

beam parameter: w(z) = w0

√

1 + (z/zR)2

radius of curvature: R(z) = z + z2
R/z

Guoy phase: ζ(z) = tan−1 z/zR

Raleigh range: z2
R = πw2

0/λ

(1.122)

Further extension of this concept includes higher order transverse modes;
similarly to the waveguides with conductive walls, these modes are characterized
by the nodes in radial and angular components, or by nodes in a rectangular
geometry (See e.g. Saleh/Teich [3]).

1.5.3 Spherical Harmonics

This mode decomposition is particularly suited to adapt to electrical multipole
transitions in atoms and molecules, since the problem has a rotational symmetry
around the center, which contains the atom.

These modes fall into two classes, the transverse electrical (TE) or magnetic
multipole fields, and the transverse magnetic (TM) or electrical multipole fields,
each of them forming a complete set of modes for the electromagnetic field sim-
ilarly to the plane waves we have seen earlier. Mode indices are given by a
combination of two discrete indices L,M addressing the angular momentum,
with L = 0, 1, 2, . . . and M = −L,−L + 1, . . . , L − 1, L and a radial wave index
k ∈ [−∞, +∞].

Their angular dependency involves the normalized vector spherical harmonics,

XLM(θ, φ) :=
1

√

L(L + 1)

1

i
(r ×∇)YLM(θ, φ) , (1.123)

with the usual spherical harmonics YLM known from atomic physics. For TM
modes, associated with electrical multipole radiation, the mode function for the
electrical field is given by

g(x) =
i

k
∇× (hL(kr)XLM(θ, φ)) (1.124)

with the spherical Hankel functions

hL(kr) =
√

π/2kr
[

JL+1/2(kr) ± iNL+1/2(kr)
]

(1.125)

governing the radial dependency. For electrical dipole modes, which are the
most important modes for atomic transitions in the optical domain, L = 1, and
M = 0,±1 corresponding to π and σ± polarized light. There, the radial part
becomes

h1(kr) = −eikr

kr

(

±1 +
i

kr

)

, (1.126)
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where the ± reflects the sign of k, distinguishing between asymptotically incoming
or outgoing solutions. The dispersion relation is simply ω = ck, and asymptoti-
cally (i.e. for r ≫ λ ) the field resembles a locally transverse spherical wave. A
comprehensive description of these modes can e.g. be found in Jackson [2].

Such modes are used to connect the spontaneous emission rate of atoms with
their induced electrical dipole moment or susceptibility [4].

1.5.4 Coaxial cable

This is a somewhat textbook-like mode decomposition, which does not really
reach into the optical domain, but is simple to solve analytically. It refers to
the propagating modes in the usual cables used for signal transmission. These
cables are formed by two concentric cylinders with radii r1, r2 which confine the
electrical field as depicted in Fig. 1.2(b). The most common (low frequency)
mode function is indexed by a wave vector k and has a radial electrical field
dependency:

g(x) =

{

eρ
eikz

ρ
for r1 < r < r2 ,

0 elsewhere
(1.127)

with the radial unit vector eρ. The dispersion relation has no confinement correc-
tion, i.e., ω = ck. For a finite length L of the cable (periodic boundary conditions,
i.e. k = n · 2πL, n ∈ N), one can simply calculate the “mode volume” V of the
cable according to eqn (1.114) as

V =

∫

dx

[

|g|2 +
c2

ω2
|∇ × g|2

]

= 4πL log
r2

r1

(1.128)

leading to a normalization constant

Ek =

√

~ωk

ǫ0V
=

√

~ωk

4πǫ0L log(r2/r1)
(1.129)

Keep in mind that the dimension of Ek is not the one of the field strength, only
the combined product of the mode function g and Ek. Just for getting a feeling for
orders of magnitude, we evaluate the normalization constant for a cable of length
L=1 m and k = 10π/L, corresponding to ω/2π = 1.5 GHz. With log r2/r1 = 1,
this results in a normalization constant E ≈100 nV - a quantity just about too
small for contemporary microwave measurement, but not too far either. The
currently developing area of quantum circuit dynamics is starting to explore this
parameter regime.



Chapter 2

A silly question: What is a

photon?

So far, we only payed attention to the general field quantization - and did not
consider specific states of the field. The intent of this lecture is to look at a
few states of light, and attempt to get an idea what we mean when we talk
about photons. This is not as clean of a question to answer as one would desire:
much of the confusion and sometimes arguments between different camps in the
community are based on different definitions, or perhaps conceptions which are
carried over from a traditional mechanistic view.

To approach this problem, we quickly visit the history of how the concept of a
photon came about. Then, we continue with the standard way of introducing field
states in finite-size spaces, which perhaps allow the formally cleanest definition
of what a photon is in the sense that these field states are energy eigenstates,
and thus are stable excitations of a field. Such a set of boundary conditions is
provided in practice by optical cavities or other resonators. This also allows a
clean definition of typical field states, very similar to simple harmonic oscillator
modes.

Another important approach of what a photon could be is inspired by the
detection process, based on the photoelectric effect. Such a detection process is
able to witness the smallest amount of energy, and usually results in a “detection
event” localized in time. This is perhaps the most particle-like definition, and
matches a wide range of experiments.

Another common definition of a photon is tied to a generation process, the
most prominent one being the spontaneous emission of an excited state of an
atom. Again, this leads to a field localized in time and space, not exactly reflecting
an energy eigenstate.

29
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2.1 History: The photon of Lewis and Lamb’s

rage

A somewhat polemic article of W.E. Lamb with a brief historical overview is not
only entertaining, but helpful to get an idea where the problem lies [5].

An investigation on the external photoelectric effect by Lenard in 1902 [6]
and others lead to the observation that the maximal kinetic energy of the elec-
trons emitted from metals under illumination with light did not depend on the
intensity of the light, but only on its frequency. The simple interpretation of
this observation by Einstein, namely that the absorption of light can only take
place in discrete quanta, and that the dependency of the electron’s kinetic energy
with frequency should be given by the Planck constant, is sometimes seen as the
‘birth’ of the photon concept, assigning a corpuscular character to light in the
framework of quantum physics [7]. The predicted linear dependency was then
verified experimentally with a high accuracy by R. Millikan [8].

The explanation of the photoelectric effect, however, does not really require
a quantized treatment of the electromagnetic field, but can be understood by
a quantum description of the electron with time-dependent electrical fields and
first-order perturbation theory [9].

The original notion of a photon as a particle was introduced by G.N. Lewis
in 1926 [10] in a slightly different context, as a carrier for transmitting radiation
between atoms which should obey a conservation law. That concept has long
vanished.

2.2 Tying it to energy levels: Cavity QED

The perhaps cleanest situation can be found where one has a discrete set of
modes: The electromagnetic field in each mode can be described as a harmonic
oscillator, and many of the system states (e.g. states of the electromagnetic field)
can be understood in terms of harmonic oscillator states.

To be in a situation with a discrete set of modes, we need to have the electro-
magnetic field confined to a finite volume, preferably with distinct frequencies for
the different modes. This is realized with optical cavities, or more recently with
electronic resonators of a sufficiently high quality factor such that a coupling to
an environment becomes only a small perturbation.

To understand the consequences of quantization of the electric and magnetic
fields, we need to look into the expectation values and the variance of the fields
using the tools of quantum mechanics. To simplify the treatment, we restrict the
treatment to states which only involve a single mode, come back to multi-mode
fields later.

Here we briefly review a few harmonic oscillator states most relevant for quan-
tum optics in cavities, namely the number states (or energy eigenstates, also



2.2. TYING IT TO ENERGY LEVELS: CAVITY QED 31

known as Fock states), the thermal states, and the coherent states.

2.2.1 Number states

The number states (as energy eigenstates of the harmonic oscillator) have been
discussed before. We now consider the expectation values and variance of the
electric field for a single mode in a number state.

Assuming we focus our attention to the mode indexed by l, we find

〈n|Êl|n〉 = iEl〈n|âle
ik·x − â†

l e
−ik·x|n〉 = 0 . (2.1)

The equality is due to property of raising/lowering operator and the orthogonality
of the number states:

〈n|âl|n〉 = 〈n|n − 1〉
√

n = 0, (2.2)

〈n|â†
l |n〉 = 〈n|n + 1〉

√
n + 1 = 0 (2.3)

With this, the expectation value of Ê
2

l can easily be obtained:

〈n|Ê2
l |n〉 = E

2
l (2n + 1) (2.4)

Here, for the ground state |0〉 which we can identify as the vacuum state, the
average of the field is zero, but there is fluctuations of the field, since

〈Ê2
l 〉 = E

2
l (2.5)

which is nonzero.
The spread or uncertainty of the electric field in a number state is given by

∆Êl =

√

〈Ê2
l 〉 − 〈Êl〉2 = El

√
2n + 1 (2.6)

Similarly, the expectation values of the quadrature amplitudes can be ob-
tained:

〈n|âQ|n〉 = 〈n|âP |n〉 = 0, (2.7)

〈n|â2
Q|n〉 = 〈n|â2

P |n〉 =
2n + 1

4
. (2.8)

2.2.2 Thermal states

In many cases, the exact state of a quantum mechanical system is not known, but
can be described by an ensemble of possible states following a classical probability
distribution; the classical thermal ensembles are a very typical example where one
has a certain lack of classical knowledge about the exact state.
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Such a partial knowledge about the state of a system can be expressed using a
so-called density matrix ρ, which may be composed of projectors for a set of pure
quantum states |ψ〉n, where the probability of such a realization (of the system
in state |ψn〉) is pn:

ρ̂ =
∑

n

pn|ψn〉〈ψn| (2.9)

The expectation values of operators Â is a weighted average over the expectation
values of the constituting states in the density matrix definition above, and may
be obtained by tracing over these operators:

〈Â〉 =
∑

n

pn〈ψn|Â|ψn〉
∑

n

〈Ψn|Â|Ψn〉 =: tr
(

ρ̂Â
)

(2.10)

where the sum is taken over a complete set of base vectors |Ψn〉. By definition,
the trace of a meaningful density matrix has to be 1:

tr (ρ̂) = 1 (2.11)

Sometimes, the definition

〈Â〉 = tr
(

ρ̂1/2Âρ̂−1/2
)

(2.12)

is used, where the operator ρ̂1/2 is defined by the MacLaurin series expansion for
operators.

For thermal states, the probability distribution is determined by the energy
of each state, i.e.

pn =
1

Z
e−βEn (2.13)

where En is the energy of the state |ψn〉, β = (kBT )−1, and Z a normalization
constant (partition function) so that the sum of probabilities equals to 1:

Z =
∑

n

e−βEn . (2.14)

For the harmonic oscillator in particular, we find

Z =
∞

∑

n=0

e−βEn =
∞

∑

n=0

e−β~ω(n+ 1
2
) = e−β~ω/2

∞
∑

n=0

e−β~ωn

=
e−β~ω/2

1 − e−β~ω
. (2.15)

The probability pn of being in the energy eigenstate |psun〉 can then be written
as

pn =
eβ~ωn

(1 − e−β~ω)−1 =
An

(1 − A)−1
, with A = e−β~ω. (2.16)
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In the density matrix formulation, one can write the thermal state as

ρ̂ =
∑

n

1

Z
e−βEn|n〉〈n| =

∞
∑

n=0

An

(1 − A)−1
|n〉〈n| (2.17)

Coming back to the expectation values for the electrical field of a single mode
and its variance, we now find

〈Êl〉thermal = 0, (2.18)

〈Ê2

l 〉thermal = E
2
l

1 + A

1 − A
(2.19)

In the high temperature limit (kBT ≫ ~ω) we have

A = e−β~ω ≈ 1 − β~ω. (2.20)

This means that the variance of the electrical field is given by

〈Ê2

l 〉thermal ≈ E
2
l

2

β~ω
=

kBT

(2π)3ǫ0

(2.21)

On the other hand, for low temperature limit where kBT ≪ ~ω, A ≪ 1 we
have

〈Ê2

l 〉thermal ≈ E
2
l , (2.22)

indicating that for low temperatures, the vacuum fluctuations dominate the dis-
tribution of possible measurement results for the electric field.

This is an important point for finding out at which temperatures experiments
can be carried out. At room temperature (T = 300 K), the characteristic thermal
frequency to decide upon high- or low temperature limit is given by

ωRT =
kBT

~
≈ 2π · 6.25 THz , (2.23)

corresponding to a vacuum wavelength of about 48µm. Thus, in the optical
domain with frequencies on the order of 1014 Hz or wavelengths on the order of
1µm, electromagnetic fields are typically in the ground state or in close approxi-
mation thereof, while for experiments in the microwave domain (frequencies from
a few 1 GHz to a few 100 GHz), thermal occupation of mode is a problem, and
the structures coupling to a thermal environment due to losses need to be cooled
down to very low temperatures.

2.2.3 Coherent states

One of the perhaps most important class of states in quantum optics were intro-
duced by Roy Glauber in 1963 [11]. They are the closest quantum mechanical
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analogon to classical motion of a harmonic oscillator, and – as any other pure os-
cillator state – are coherent superpositions of energy eigenstates of the oscillator.

For a formal approach to these states, consider the lowering operator â and
one of its eigenstates |α〉 corresponding to the eigenvalue α:

â|α〉 = α|α〉 (2.24)

There exists actually such a state for every α ∈ C. We leave it as an exercise to
the reader to derive a representation of |α〉 in the energy eigenbasis {|n〉} in the
form

|α〉 =
∞

∑

n=0

cn|n〉 . (2.25)

The (normalized) result for that representation for a given α is given by

|α〉 =
∞

∑

n=0

e−|α|2/2 αn

√
n!
|n〉 (2.26)

One particular state is obtained for α = 0: all contributions but of the ground
state of the oscillator vanish, so the corresponding coherent state is the ground
state itself:

|α = 0〉 = |n = 0〉 . (2.27)

We now can find the expectation values for the electric field and its variance,
as we have done before for number states and thermal states:

〈α|Êl|α〉 = iElεεεl

(

αeik·x − α∗e−ik·x
)

(2.28)

Here, the expression of Ê in terms of âQ and âP comes in handy. With

〈α|âQ|α〉 =
1

2
〈α|(â + â†)|α〉 =

1

2
(α + α∗) = Re(α), (2.29)

〈α|âP |α〉 =
1

2i
〈α|(â − â†)|α〉 =

1

2i
(α − α∗) = Im(α) , (2.30)

we can write the expectation value of the electrical field operator as

〈Êl〉 = −Elεεεl {2〈âQ〉 sin (k · x − ωt) + 〈âP 〉 cos (k · x − ωt)}
= −2Elεεεl {Re(α) sin (k · x − ωt) − Im(α) cos (k · x − ωt)} . (2.31)

Real and imaginary part of α are the expectation values of the sine and cosine
component of something which looks like a classical field, e.g. an expectation
value of the field strength that oscillates sinusoidally in time. Therefore, these
states are also called quasi-classical states. Note that this property applies not
only to the harmonic oscillators associated with an electromagnetic field mode,
but any harmonic oscillator following a Hamiltonian with the same structure.
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Let’s now have a closer look at the variance of the electrical field, expressed
both in the variance of 〈Ê〉 itself and its quadrature components. We start by
finding the expectation value of the square of the electric field,

〈Ê2

l 〉 = 〈α|
{

iElεεεl

(

âle
ik·x − â†

l e
−ik·x

)}2

|α〉
= −E 2

l

{

α2e2ik·x − (2αα∗ + 1) + α∗2e−2ik·x
}

.
(2.32)

For the variance, we also need

〈Êl〉2 =
{

iEl

(

αeik·x − α∗e−ik·x
)}2

= −E 2
l

{

α2e2ik·x − 2αα∗ + α∗2e−2ik·x
}

.
(2.33)

With both of these terms, we can evaluate the variance of the electric field,

(∆Êl)
2 = 〈Ê2

l 〉 − 〈Êl〉2 = E
2
l . (2.34)

Thus, the variance of the field is independent of the value of α, and equal to the
variance of the field for a vacuum state since this is also a coherent state with
α = 0.

Now we turn to the variances in the quadrature components.

〈â2
Q〉 =

1

4

(

α2 + α∗2 + 2αα∗ + 1
)

(2.35)

〈âQ〉2 =
1

4

(

α2 + α∗2 + 2αα∗
)

(2.36)

(∆âQ)2 = 〈â2
Q〉 − 〈âQ〉2 =

1

4
(2.37)

Similarly, the variance of the other quadrature component evaluates to

(∆âP )2 = 〈â2
P 〉 − 〈âP 〉2 =

1

4
(2.38)

Both quadrature amplitudes show the same variance, which is also the same as for
the vacuum. Since there is an uncertainty relation between the quadratures, and
the ground state is a minimal uncertainty state, this implies that the eigenstate
of â is a minimum uncertainty state for the associated quadrature amplitudes of
the electromagnetic field.

Without any proof, it should be noted that the coherent states represent the
state typically emitted by a laser operating far above threshold, and assuming
that the phase of the laser radiation is fixed by convention or a conditional mea-
surement in an experiment.

It should also be noted that coherent states don’t have a fixed number of
photons in them, if the notion ‘having n photons in a system’ refers to the system
being in the n-th excited energy eigenstate of the discrete field mode.
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2.3 Tying it to the detection processes

So far, we have discussed observables and measurements only from a very formal
point of view. In this section, we will have a somewhat closer look into various
measurement techniques for light, and try to get an idea what we really measure
in a particular configuration - and how this connects to the various “observables”.

2.3.1 The photoelectric process

Until very recently, all optical measurement techniques relevant for the domain
of quantum optics were based on various versions of the photoelectric effect. The
effect of electron emission upon irradiation of a metallic surface was essential in
the development of a quantum mechanical description of light.

IphVr
+ −

A K

λ

Figure 2.1: Experimental configuration to observe the photoelectric effect: Light
at wavelength λ causes electrons leaving the metal surface with an energy inde-
pendent of the intensity of the light.

The photoelectric effect refers to the phenomenon that upon exposure to
light, electrons may be emitted from a metal surface and was experimentally
observed in 1887 by H. Hertz [12] as a change in a spark intensity upon exposure
of electrodes to ultraviolet light. More quantitative studies were carried out 1899
by J.J. Thomspon, who observed together with the discovery of electrons that
the emitted charge increases with intensity and frequency of the light. In 1902, P.
von Lenard carried out more quantitative measurements on the electron energy
emitted by light exposure in an experimental configuration symbolized in Fig. 2.1
and found that the stopping potential Vr needed to suppress the observation of
a photocurrent Iph in a vacuum photodiode depended only on the wavelength of
the light, and concluded that the kinetic energy of electrons after being liberated
from the metal compound is determined by the frequency of the light, not its
intensity. He also found a strong dependency of the liberation energy of the
electrons, today referred to as work function , which depended strongly on the
preparation of the metal.

This led to the spectacular interpretation in 1905 by A. Einstein that the
electron emission was due to an absorption process of electrons in the metal, and
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that absorption of light could only take place in well-defined packets or quanta
of light, supplying another pillar in the foundation of a quantum mechanical
treatment of the electromagnetic radiation besides M. Planck’s description of
blackbody radiation.

The numeric expression for the kinetic energy of the emitted electrons,

Ekin = hf − Φ , (2.39)

with f being the frequency of a monochromatic light field and Φ a material
constant suggested a linear dependency between the excess energy of the elec-
trons and the light frequency. This linearity was then quantitatively observed in
experiments of R.A. Millikan in 1915.

Photomultiplier

The charge of the single photoelectron liberated in an absorption process is very
small, and it is technologically challenging to detect this single charge directly.
Therefore, the metallic surface generating the primary photoelectron is often
followed by an electron multiplier. This is an arrangement of subsequent metal
surfaces, were electrons are accelerated towards these metal surfaces (dynodes)
such that upon impact, a larger number of electrons are emitted, which are
subsequently accelerated towards the next plate:

Iph

V1 V2 V3 V4 V5

V2 V4

photo
cathode

VC

Faraday cup

λ

−1 kV

The photocathode, the dynode arrangement and a final Faraday cup to collect
the secondary charge emission from the last dynode are kept in a small vacuum
tube, and the cascaded accelerating potentials of the dynodes (a few 100 V) are
derived via a voltage divider chain from a single high voltage source.

The overall gain of such an electron multiplication stage can be on the order
of 106 to 108, leading to a charge pulse on the order of 10−11 As. Such a charge
can be conveniently detected, leading to a measurable signal from a single single
primary photoelectron.

The number of photoelectrons per unit time is proportional to the light power,
as we will see later, so the photocurrent in such a device can be used to determine
low light power levels.

A fundamental prerequisite for using the photoelectric effect to detect visible
light is that the work function Φ of the photo cathode is sufficiently small. As the
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Figure 2.2: Schematic of a p−i−n photodiode. Electron-hole pairs are generated
in a depletion region with a low charge carrier density i, and separated by an
electrical field so they can be detected as a macroscopic current.

binding energy of electrons in the metallic bulk can be on the order of a few eV,
a careful choice of the photocathode material is necessary to observe the photo-
electric effect with visible or infrared light. Typically, efficient photocathodes are
made out of a combination of silver and several alkali metals and metal oxides.

Solid state photodiodes

Another important effect used for light detection utilizes the internal photoelec-
tric effect in semiconductors, light is absorbed by an electron in the valence band,
and transported into the conduction band. There, only the energy to bridge the
band gap needs to be provided.

Such electron-hole pairs can then be separated with an electrical field in the
semiconductor, leading to a detectable electrical current. Such photodetectors
typically have the geometry of a semiconductor diode, with a depleted region of
low conduction where the electron-hole pairs are generated by the absorbed light
(see Fig. 2.2). These pin devices have a diode characteristic, and are operated
in a reverse biased scheme. Typically, a large depletion volume is desired both
to allow for an efficient absorption of the incoming light and to ensure a small
parasitic capacity of the pn junction for a fast response of the photodetection
process. The wavelength-dependent absorption coefficient is shown in Fig. 2.3.
For a wavelength of λ = 600 nm, the absorption length is on the order of 5µm,
which gives some constraints to the construction of Silicon photodiodes.

Various semiconductor materials are used for this type of photodetector, al-
lowing to construct photodetectors for a large range of wavelengths. In a wave-
length regime from 1000 nm to 200 nm, silicon is the most common semiconductor
material with its band gap energy of 1.25 eV. For longer wavelengths, e.g. the typ-
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Figure 2.3: Absorption coefficient for silicon at room temperature and 77 K.

ical choice in optical fiber communication (λ ≈ 1300 nm and ≈ 1550 nm) are III-V
semiconductors like GaAs or InGaAs.

For some very fast photodetectors, the depletion region in a Schottky contact
(i.e., metal-semiconductor interface) is utilized instead of a pn junction.

Semiconductor photodiodes typically exhibit a very high quantum efficiency η.
This quantity describes the probability that light is converted into photoelectrons
or electron/hole pairs, and detected. With appropriate anti-reflective coatings of
the semiconductor to avoid the surface reflection at the large refractive index
contrast interface, most of the light can be guided into the semiconductor. A
proper dimension of the depletion region allows for a complete absorption of
the light. It is not uncommon to find photodiodes with a quantum efficiency of
η =95% or higher.

For a monochromatic light field at an optical frequency f = c/λ, there is a
simple relationship between the observed photocurrent Iph and the optical power
P of the incident light. The rate of electron-hole pair creation, re, is just given
by the rate of elementary absorption processes:

ra = P/(hf) =
Pλ

hc
(2.40)

The resulting photocurrent, considering a quantum efficiency η, is simply given
by the rate re and charge per electron:

Iph = ηere = ηera = η
eλ

hc
P =: SP (2.41)

For the wavelength of a HeNe laser, λ = 633 nm, the sensitivity S of a photodiode
with η = 98% is S = 0.5 A/W.

One of the practical advantages of semiconductor photodiodes in comparison
with photomultipliers is their low cost, a typically very small size and the absence
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Figure 2.4: Structure of a reach-through Silicon avalanche diode. A large region
where electron-hope pairs are created due to absorption of light is combined with
a region of high electric field strength (p-n+ junction) where an avalanche of
charge carriers are triggered.

of high voltages. On the physics side, we will see that many measurements of
quantum states of light will require a high quantum efficiency, which is currently
unparalleled with any other photodetection techniques.

Avalanche photodetectors

One of the shortcomings of a simple photodiode in comparison with a photomul-
tiplier is the difficulty to observe single absorption processes, as the charge of a
single electron-hole pair is hard to distinguish from normal electronic noise in a
system.

However, it is possible to find an analogon to the electron multiplication
process of a photomultiplier in a solid state device. In so-called avalanche diodes,
a region with a high electrical field allows a charge carrier to acquire enough
energy to create additional electron-hole pairs in scattering processes, similar to
the ionization processes in an electrical discharge through a gas.

Such a semiconductor device can be combined with a charge-depleted region,
where electron-hole pairs are generated as a consequence of light absorption (see
Fig. 2.4). An avalanche photodiode with a built-in charge amplification mecha-
nism can then also be used to detect a single absorption process.

The gain G of such photodiodes increases with the applied reverse bias voltage
VR. These devices are often operated in a regime where one photoelectron creates
a charge avalanche of about 100 electron/hole pairs. In this regime, the avalanche
photodiode is used in a similar way as a normal pin-photodiode. The gain of the
multiplication region diverges at the so-called breakdown voltage Vbr, where the
stationary operation of the device leads to a self-sustaining conduction in reverse
direction even without additional light from outside. Such a mode of operation is
similar to an electrical discharge in a gas, where electrons and ions are accelerated
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Figure 2.5: Gain G of an avalanche photodiode as a function of the reverse bias
voltage VR.
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Figure 2.6: Operation of an avalanche photodiode to observe single absorption
processes. The device is reverse-biased above its breakdown voltage Vbr such that
a single photoelectron can switch the device into a conducting mode. The subse-
quent voltage drop across the quenching resistor RQ restores the non-conducting
mode again.

in an electrical field and create more conduction carriers via impact ionization of
the residual neutral gas. For semiconductor devices, such an operation over an
extended time would deposit a destructive amount of heat into the device.

However, if the energy deposited in the device is limited, this operation regime
can be used to identify individual photoelectrons, in a very similar way that a
Geiger counter can be operated to observe the breakdown triggered by a few
ions in a gas cell created by an incident particle. In a very simple approach, the
discharge current during a breakdown of the diode is limited by a large resistor,
which leads to a voltage drop below the breakdown voltage Vbr.
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Figure 2.7: An atom gets into an excited state after absorption of light.

2.3.2 How to describe photodetection in terms of quan-

tum mechanics?

We have seen several photodetector schemes so far - most of them rely on an
elementary process of absorption of light, which is then detected by some other
mechanism. Let us therefore consider the physical process of creating a photo-
electron. We further simplify our detector to a two-level system instead of the
more commonly found continuum of excitation states of usual photodetectors.
The absorption process is then modeled by the following transition:

Energy conservation makes it necessary that the energy of the field and the
detector system stays constant. Therefore the operator associated with the tran-
sition in the photodetector model has not only to “destroy” an energy quantum
of the field, but also create an excitation of the detector. Restricting to a single
field mode, we could represent this process by an operator

ĥ = âd̂† , (2.42)

where â is our usual lowering operator for the field, and

d̂† = |e〉〈g| (2.43)

describes the rising operator for the atom or electron. If the excitation operator
ĥ should be the outcome of a physical interaction process, it has to be derived
from an interaction Hamiltonian of the form

ĤI = const · (âd̂† + â†d̂) (2.44)

To ensure hermiticity, with an atomic lowering operator d̂ = |g〉〈e|. We will see
such process later.

Single photoelectrons

Let’s now consider the probability of observing a photoelectron. Assume the ini-
tial field before the creation of a photoelectron is in the state |ψi〉, and afterwards
in the final state |ψf〉. The probability for such a transition is proportional to
|〈ψf |â|ψi〉|2.
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If a photoelectron can be generated by a large bandwidth of frequencies from
the electrical field, this probability can be expressed in terms of the sum over
different modes of the electrical field operator Ê(+) containing the lowering oper-
ators:

w̃ ∝
∣

∣

∣
〈ψf |Ê(+)(x, t)|ψi〉

∣

∣

∣

2

(2.45)

This may be interpreted as the probability of creating a photoelectron at a posi-
tion x and a time t – the usual model of light-matter interaction indeed justifies
that, where we assign a well-defined location to the electron.

To use this probability to come up with some meaningful field measurement
technique, let’s keep in mind that for a given situation, we do not really do
anything with the field state afterwards, and we consider only the photoelectron.
We thus can obtain the probability of observing a photoelectron as a sum over
all possible final field states,

w1 =
∑

f

|〈ψf |Ê(+)(x, t)|ψi〉|2

=
∑

f

〈ψi|Ê(−)|ψf〉〈ψf |Ê(+)|ψi〉 (2.46)

= 〈ψi|Ê(−)Ê(+)|ψi〉 ,

where the completeness property has been used:
∑

f

|ψf〉〈ψf | = I (2.47)

We end up with the probability w1 of observing a photoelectron to be pro-
portional to 〈Ê(−)Ê(+)〉. For stationary fields, this photoelectrons creation prob-
ability may be used to calculate a photo counting rate r.

However, the fact that we observe a number of discrete photoelectrons is not
really an outcome of the field quantization procedure – you can derive a proba-
bility distribution for creating photoelectrons equally well assuming assuming a
classical field interacting with a quantized detector system. There, the interaction
Hamiltonian between field and system has a contribution

|e〉〈g|E(+)
cl d(+) + |g〉〈e|E(−)

cl d(−) (2.48)

where E
(+)
cl and E

(−)
cl are components with positive and negative frequency re-

spectively, and the d±) are the corresponding components of the electric dipole
matrix elements of the considered transition. The photoelectron count rate then
is proportional to

r = E
(−)
cl E

(+)
cl ∝ Icl (2.49)

where Icl is the classical intensity of the light field, derived out of the Poynting
vector:

I =

〈

1

µ0

E × B

〉

· n. (2.50)
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Photoelectron pairs

In the last section, we made the transition from a single photoelectron probability
to a rate rather silently, assuming we can consider all photoelectron creation
processes independently and summing them up, e.g. by assuming we evaluate the
single photoelectron detection probability for infinitesimal time intervals ∆t.

This may not always be appropriate. Let us therefore construct an expression
for the probability w2 of observing a pair of photoelectrons at two locations x1

and x2 at two times t1 and t2 (in the time intervals [t1, t1 +∆t1] and [t2, t2 +∆t2])
similar to the single photoelectron case:

w2(x1,x2, t1, t2) ∝ |〈ψf |Ê(+)(x2, t2)Ê
(+)(x1, t1)|ψi〉|2. (2.51)

Ê(+)(x1, t1) and Ê(+)(x2, t2) refers to the creation of first and second photoelec-
trons respectively. Again, this should be summed over all the final field states,
since we are only interested in the observation of the photoelectrons. This leads
to

w ∝ 〈ψi|Ê(−)(x1, t1)Ê
(−)(x2, t2)Ê

(+)(x2, t2)Ê
(+)(x1, t1)|ψi〉. (2.52)

Again, this probability may be associated with a count rate – this time, the
observed quantity would be a coincidence count rate of detectors at x1 and x2 at
times t1 and t2.

2.3.3 Correlation functions: First and second order

The expression for the single photodetection probability w1 looks like an expec-
tation value of a product of fields,

〈Ê(−)Ê(+)〉 (2.53)

at the same position x and time t.
This concept can be generalized to different points x1, x2, t1 and t2 to a

quantity
G(1)(x1,x2, t1, t2) := 〈Ê(−)(x1, t1)Ê

(+)(x2, t2)〉 (2.54)

which is called the first order correlation function of the field.
Similarly to the generalization of the simple photoelectron, this coincidence

counting rate expression can be generalized into a definition of a second order
correlation function for the electromagnetic field:

G(2)(x1,x2,x3,x4, t1, t2, t3, t4) := 〈Ê(−)(x1, t1)Ê
(−)(x2, t2)Ê

(+)(x3, t3)Ê
(+)(x4, t4)〉

(2.55)
Let’s consider the case of a stationary field, where the two times involved in

the definition of G(1)(x1,x2, t1, t2) are reduced to a time difference:

G(1)(x1,x2, t1, t2) → G(1)(x1,x2, τ) with τ = t2 − t1 (2.56)
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Figure 2.8: Double slit experiment. The field is detected at point P separated
by distances s1, s2 from the two openings in the screen.

The count rate (or intensity) is then given by G(1)(x,x, 0) for a given position x.
We can perform a normalization of the correlation function using the intensities:

g(1)(x1,x2, τ) =
〈Ê(−)(x1, t)Ê

(+)(x2, t + τ)〉
√

〈Ê(−)(x1, t)Ê(+)(x1, t)〉〈Ê(−)(x2, t + τ)Ê(+)(x2, t + τ)〉
(2.57)

Similarly for the second order correlation function,

g(2)(x1,x2, τ) =
〈Ê(−)(x1, t)Ê

(−)(x2, t + τ)Ê(+)(x2, t + τ)Ê(+)(x1, t)〉
〈Ê(−)(x1, t)Ê(+)(x1, t)〉〈Ê(−)(x2, t + τ)Ê(+)(x2, t + τ)〉

. (2.58)

The normalization of this function is chosen such that the denominator contain
two expressions 〈Ê(−)(xi, t)Ê

(+)(xi, t)〉, which are intensities at the two locations,
and independent of time for stationary fields.

These quantities are referred to as first order and second order coherence func-
tions. They have a relatively simple interpretation for many optical experiments.

2.3.4 Double slit experiment

To understand the first order coherence function, we consider the double slit
experiment as shown in Fig. 2.8.

Simple propagation of the field according to Huygens principle (under ignoring
any fine emission structure due to diffraction, and attenuation at with distance
from the openings in the screen) leads to an electrical field at the detector location
P of

Ê(±)(r, t) = Ê(±)
(

r1, t −
s1

c

)

+ Ê(±)
(

r2, t −
s2

c

)

(2.59)
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For the intensity at the point P of observation behind the slit, we have

I(r, t) = 〈Ê(−)(r, t)Ê(+)(r, t)〉
= 〈Ê(−)

(

r1, t −
s1

c

)

Ê(+)
(

r1, t −
s1

c

)

〉

+〈Ê(−)
(

r2, t −
s2

c

)

Ê(+)
(

r2, t −
s2

c

)

〉 (2.60)

+2Re[〈Ê(−)
(

r1, t −
s1

c

)

Ê(+)
(

r2, t −
s2

c

)

〉]

= I1 + I2 + 2Re[
√

I1I2g
(1)(r1, r2, τ)]

with
I1,2 =

〈

Ê(−)
(

r1,2, t −
s1,2

c

)

Ê(+)
(

r1,2, t −
s1,2

c

)〉

(2.61)

and

τ =
s2 − s1

c
(2.62)

the time difference of propagation from the slits/holes to the detector position.
This can be rewritten using our new coherence function

g(1)(x1,x2, τ) =
∣

∣g(1)(r1, r2, τ)
∣

∣ eiϕ(r1,r2,t) , (2.63)

where the fastest change along the screen comes from the varying time difference.
For a light field with a fixed frequency ω0, the phase ϕ can be decomposed into

ϕ = α(r1, r2, τ) − ω0τ, (2.64)

where α is a slowly varying function1.
With this, the intensity at the observation point P is given by

I(r) = I1 + I2 + 2
√

I1I2 cos

(

α − s1 − s2

c
ω0

)

|g(1)(r1, r2, τ)| (2.65)

leading to the well-known interference pattern of a double slit2, where the |g(1)(r1, r2, τ)|
term determines the “visibility” of the interference pattern. The quantitative def-
inition of visibility of an interference pattern is given by

V :=
Imax − Imin

Imax + Imin

, (2.66)

which can be expressed in terms of the coherence function:

V =
2
√

I1I2

I1 + I2

|g(1)(r1, r2, τ)| (2.67)

1For infinitesimally small pinholes, α is a constant
2This expression includes Fresnel and Fraunhofer diffraction.
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For I1 = I2, the visibility itself is equal to the modulus of the first-order coherence.
If light at two positions r1 and r2 is mutually incoherent, no interference

pattern forms, or V = 0 and g(1)(r1, r2, τ) = 0. Maximal visibility of V = 1
occurs when |g(1)(r1, r2, τ)| = 1 or the fields are mutually coherent.

This is a result perfectly compatible with classical optics. In fact, the notion
of a complex coherence function is very well established in classical optics, and
can be used to describe incoherent or partially coherent light. For the first-order
coherence describing field-field correlations, there are in fact no difference between
the prediction of classical optics and the fact that we had to describe the field
quantum mechanically.

2.3.5 Power spectrum

Another important coherence property is the connection between the power spec-
trum for different frequencies and the temporal coherence. One can show that
the power density defined by

S(r, ω) = |E (ω)|2 , (2.68)

where

E (ω) =
1√
π

∫ ∞

−∞

E(x, t)e−iωtdt (2.69)

is just the Fourier component of the electrical field at a given (angular) frequency
ω.

The spectral power density is also related to the first order correlation function
via

S(r, ω) =
1

π
Re

∫ ∞

−∞

G(1)(r, r, τ)eiωτdτ (2.70)

Therefore, there is a close connection between the form of the power spectrum
and the coherence length.

As an example, consider the green light component in common fluorescent
lamps (resulting from mercury atoms emitting at around 546 nm). The atoms
move with a velocity given by their thermal distribution, and thereby exhibit
a Doppler effect for the emitted wavelength (which will dominate the spectral
broadening). Assume the frequency distribution is Gaussian, with a center fre-
quency ω0 and a certain width σ:

S(ω) = Ae−
(ω−ω0)2

2σ2 (2.71)

The corresponding coherence function is a Gaussian distribution again, this
time centered around τ = 0:

G(τ) ∝ e−
t2σ2

2 = e
− t2

2τ2
c with τc =

1

σ
(2.72)
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Figure 2.9: Spectral density of a light, with a Gaussian distribution centered
around ω0.
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Figure 2.10: The coherence function of a light with a Gaussian frequency spec-
trum.

τc may be considered as the coherence time of the light field. Such a definition
always makes sense if the whole distribution G(1)(τ) can be characterized by a
single number. Using the complex degree of coherence g(1), we obtain a function
which is normalized to 1 for τ = 0.

2.3.6 Coherence functions of the various field states

To get an understanding of the second order correlation function, we restrict
ourselves to the case when only one mode present and evaluate them at a fixed
location X. For comparison, we o the same thing also for the first order correla-
tions. These simplified the correlation functions become

g(1)(τ) =
〈â†(t)â(t + τ)〉

〈â†â〉 (2.73)
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g(2)(τ) =
〈â†(t)â†(t + τ)â(t + τ)â(t)〉

〈â†â〉2 . (2.74)

Let’s now evaluate these functions for the three classes of states we have
considered before. The first one that we consider is the number states:

g(1)(τ) =
〈â†(t)â(t + τ)〉

〈â†â〉 =
〈n|â†(t)â(t)e−iωτ |n〉

〈n|â†â|n〉 = e−iωτ (2.75)

g(2)(τ) =
〈â†(t)â†(t + τ)â(t + τ)â(t)〉

〈â†â〉2 =

√
n
√

n − 1
√

n − 1
√

n

n2
= 1 − 1

n2
(2.76)

where we have made use of the following:

â(t) = â(t = 0)e−iωt (2.77)

â†(t) = â†(t = 0)eiωt (2.78)

Note that the first order coherence function of number states has the property
that |g(1)(τ)| = 1. The second order coherence function has the property g(2)(τ) <
1 which implies that there is photon anti-bunching for number states. This
means that given two detectors, if we detected a photon at the first detector,
the probability of seeing another photon at the second detector at the same time
is lowered.

Next, we proceed to coherent states where we have:

g(1)(τ) =
α∗αe−iωτ

αα∗
= e−iωτ (2.79)

g(2)(τ) =
α∗2α2

(α∗α)2
= 1. (2.80)

And finally we have for thermal states

g(1)(τ) =

∑

n pnne−iωτ

∑

n pnn
= e−iωτ (2.81)

g(2)(τ) =

∑

n(1 − A)Ann(n − 1)

(
∑

n(1 − A)Ann)2
= 2 (2.82)

Here, in contrast to the number states, we observe photon bunching due to
g(2)(τ) = 2. We also note that the different states of the light field do not
reveal themselves in the first order correlation function, but in the second order
correlation function.

2.3.7 Interpretation of the g(2)(τ) function

An interpretation of the g(2)(τ) may be obtained if we go back to the definition
of w2. There, we find the probability w2 of finding a photoelectron in the time
interval [t, t + ∆t], and another one at the time interval [t + τ, t + τ + ∆t].
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g(2)(τ) is then simply the probability of finding two photoelectrons separated
by a duration τ (in a given time interval ∆t), compared to the squared probability
of finding one photoelectron. Therefore, cases with g(2)(τ) = 1 correspond to the
case where the pair probability is just the squared probability of a single count.
The quasi-classical state |α〉 shows exactly such a behavior.

For g(2)(τ) < 1, as seen for photon number states, this probability is reduced.
This fact is referred to as “photon anti-bunching”, i.e. for this state it looks like
photons prefer to be detected separately. States of the light filed with g(2)(τ) > 1
are referred to as exhibiting photon bunching, with an increased probability of
finding two photoelectrons at the same time.

We continue to discuss what happens to the g(2)(τ) if light from two uncor-
related sources is detected. We use statistical argument here, where we denote
the probability of seeing one photon from A and B to be PA and PB respectively,
with

PA + PB = 1. (2.83)

Now, we consider the case when two photons from source A are detected.
This happens with a probability of P 2

A with the corresponding g
(2)
A (τ) for source

A. Similarly, we also have detection of two photons from source B with probability
P 2

B and g
(2)
B (τ). Finally, there is also a possibility that one photon is from source

A, while the other one is from source B. The probability of this happening is
1 − P 2

A − P 2
B and the g

(2)
AB(τ) associated is 1 for uncorrelated light source.

Now, the overall g(2) function for light from two uncorrelated sources is given
by

g(2)(τ) = P 2
Ag

(2)
A (τ) + P 2

Bg
(2)
B (τ) + (1 − P 2

A − P 2
B). (2.84)

If the two sources A and B are similar, that is their g(2) functions are the same
g

(2)
A (τ) = g

(2)
B (τ), and PA = PB, we have

g(2)(τ) =
1

2
g

(2)
A (τ) +

1

2
. (2.85)

If the light is from two uncorrelated sources, the non-classical property of g(2) 6= 1
is diluted.

2.3.8 Experimental measurements of photon pair correla-

tions

With the second order correlation function g(2)(τ) we have have seen a mathe-
matical object or measure to distinguish between different quantum mechanical
states of a light field, which classically is only characterized by an intensity and
a frequency.

The differences between different states comes about in the probability of
observing photoelectron pairs at a given time difference. Such experiments have
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been pioneered by H. Hanburry-Brown and R. Twiss starting from 1956, and are
now in widespread use.

The definition of g(2)(τ) is already quite operational. The light of an optical
mode under consideration is sent to two photodetectors using a beam splitter,
and a photoelectron pair creation is detected as a coincidence count between the
two outputs:

D1

D2

coincidence 
unit

mode under
investigation

pair count rate

Figure 2.11: The mode under investigation is sent through a beam splitter where
it is detected at the two detectors D1 or D2 before being sent through a coincidence
unit.

By varying the time difference of the photodetection event, g(2)(τ) can be
measured. Furthermore, the observation of individual rates at detector D1 and
D2 allow a proper normalization.

Such a setup is referred to as a Hanbury-Brown–Twiss configuration, accord-
ing to the first experiments of this kind [13, 14, 15]. In initial experiments, the
coincidence was obtained in a way by multiplying the photocurrents of the two
photomultipliers.

This setup was first used to investigate light from a spectral line emitted by
mercury, where intensity fluctuations have been found. Subsequently, this tech-
nique was applied to investigate light from stars, and to measure the transverse
coherence length, allowing people to determine the diameter of a light source
with a large virtual aperture and without running into phase stability problems.

Recently, this measurement technique was used to investigate and more or
less define so-called single-photon sources as physical systems which exhibit a
vanishing second order correlation function for τ = 0, meaning that the proba-
bility of creating more than one photoelectron at any single time vanishes. We
come back to this in Section 2.5.2.

2.3.9 Localized wave packets

So far, we have considered photodetectors which generate a single photoelectron,
and described their outcomes in statistical terms. Such a description does not
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Figure 2.12: Wave packet, made up by modes with a similar wave vector k0. Such
a packet can be localizable in space and time, and present a light field which can
lead to a localizable detection event.

imply the localization of a light field at all, but the observation of a single photo-
electron or breakdown of an avalanche diode is a macroscopic signal, which one is
tempted to give a localized light field as a physical reason. Later we will see that
it is indeed possible to create light fields which are very well localized in time
or space, and one would like to think of a light field which can generate exactly
one photodetection event as a particle-like object - that would be our localized
photon.

This concept, however, seems to be at odds with the definition of photons
we encountered earlier, namely some sort of Fock states in well-defined discrete
modes, which exhibit no localization in space or time, but are energy eigenstates
of the field and thus stationary.

So how can we have a localization of a photon in time in a way that seems
compatible with the observation of a single photodetection event, or a well-defined
pair of them? The answer is reasonably simple: We can use a wave packet or a
linear combination of different modes, and populate each of these modes with a
certain state.

A simple example would be Gaussian wave packets. Take f(k) as an amplitude
for a component k of the field decomposition in plane waves indexed by k, with

f(k) =
1

A
e
−

(k−k0)2

2σ2
k for t = 0 (2.86)

If f(k) is the amplitude of a particular Fourier component of a classical elec-
tromagnetic field, this would result in an electric field E(r) of

E(r) =

∫

f(k)eik·rdk. (2.87)

If the time evolution is included, we have

E(r, t) =

∫

f(k)ei(k·r−ωkt)dk with ωk = |k|c (2.88)
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This is a localized moving wave packet with a well-defined center (in space)
moving with the speed of light, c, and a constant spatial extent with a variance
of 1

σ2
k

= σ2
r .

In order to write a creation operator for such a field state, we can just use
the idea introduced with the beam splitter, where we expressed the lowering and
raising operator at the output ports as linear combinations of the modes at the
input:

ĉ =
∑

i

λiâi (2.89)

This linear combination of modes can be generalized for wave packets to

ĉk0 =
∑

k

f(k)âk. (2.90)

Such an object would be able to generate exactly one photodetection event (as-
suming a wide band photodetector, i.e., that each of the contributing components
â†

k|0〉 would generate a detection event as well), and would exhibit a certain local-
ization in time. If the distribution is reasonably restricted to a small number of
mode indices k with a similar frequency, it still would appear to make sense to as-
sign a center wavelength to the object |Ψ〉 = ĉk0|0〉 - which with some justification
may be referred to as a localized photon.

2.4 Direct measurement of electric fields

Up to now, the optical measurements on quantized light fields we considered
were related to detecting a photoelectron rates. In order to closer investigate the
electrical field forming the light directly, we need to find a way to measure the
electrical fields directly.

One approach of understanding how to measure fields connects to the basic
setup in a Hanbury-Brown–Twiss measurement of photoelectron pairs, where two
photodetectors are located behind a beam splitter. We used that beam splitter
merely to divert a fraction of the light in a field mode of interest on each detector.

However, the beam splitter has not only two output modes c and d receiving
contributions from one input mode a, but also from a second input port b, with
the associated field fluctuations even if no light is entering this port. We therefore
should consider this element more carefully.

2.4.1 Beam splitter

In classical optics, one can derive a relation between in and outgoing field am-
plitudes of a beam splitter; the outgoing fields are a linear combination of the
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mode a

mode c

mode b

mode d

Figure 2.13: The beam splitter with two input modes a and b and two output
modes c and d.

incoming fields of the form

(

EC

ED

)

=

(
√

T i
√

1 − T

i
√

1 − T
√

T

)(

EA

EB

)

= S

(

EA

EB

)

(2.91)

where we define the “transfer matrix”

S :=

(
√

T i
√

1 − T

i
√

1 − T
√

T

)

. (2.92)

Here, we assume that we choose only one polarization, e.g. the polarization vector
perpendicular to the plane of incidence. In this expression, T characterizes the
fraction of transmitted intensity. For a balanced or symmetric beam splitter,
T = 0.5, i.e. half of the light is transmitted and the other half reflected.

A somewhat surprising aspect of that transfer matrix is the i appearing on the
reflection entries - where should that asymmetry come from? It can be understood
when looking at a particular physical implementation of a beam splitter: One
example would be a reflection from an air-glass interface, where the reflection
from inside surface differs from the reflection on the outside surface by sign change
in the electrical field. The choice of the phases of reflection is somewhat arbitrary
and depends on the specific implementation, but it is always 180 degrees between
the two reflections. The choice i for a model beam splitter is just a possibility
which leads to a symmetric scattering matrix.

The linearity in fields carries simply over into a linear relationship between
field operators, and the beam splitter itself may be regarded as an element which
transforms creation and annihilation operators:

(

ĉ

d̂

)

= S

(

â

b̂

)

=

(
√

T â i
√

1 − T b̂

i
√

1 − T â
√

T b̂

)

(2.93)
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Figure 2.14: Basic homodyne detection configuration. The field in mode a gets
superimposed with the field of a local oscillator in mode b in a coherent state |β〉.

We now can express the photocurrents or count rates recorded at detectors C
and D as expectation values 〈n̂C〉 and 〈n̂D〉, where n̂C,D = â†

C,DâC,D:

〈n̂C〉 = 〈ĉ†ĉ〉 = T 〈â†â〉 + (1 − T )〈b̂†b̂〉 + i
√

T
√

1 − T 〈â†b̂ − b̂†â〉, (2.94)

〈n̂D〉 = 〈d̂†d̂〉 = (1 − T )〈â†â〉 + T 〈b̂†b̂〉 − i
√

T
√

1 − T 〈â†b̂ − b̂†â〉. (2.95)

Both terms consists of intensities contributions 〈â†â〉 and 〈b̂†b̂〉, and a mixed
term with 〈â†b̂〉 and 〈b̂†â〉.

2.4.2 Homodyne detection

Let’s now assume that we have a “local oscillator field” in mode b̂, where field
b is in a coherent state |β〉. Such a situation can be realized using a classical
light source. It turns out that a laser light source far above threshold may be
considered as such a light source.

Assuming that the combined field state in modes a and b separates in the
form

|ψ〉 = |ψA〉 ⊗ |β〉 , (2.96)

the expectation value of the photon number in the detection mode c is given by

〈n̂C〉 = T 〈n̂A〉 + (1 − T )|β|2 + i
√

T
√

1 − T 〈â†b̂ − b̂†â〉 (2.97)

If we interpret this as an expectation value of the number of detected photoelec-
trons, this vale refers to the expectation value of a discrete count rate (or photo
current) at detector C. Using β = |β|eiϕ, this turns into

〈n̂C〉 = T 〈n̂A〉 + (1 − T )|β|2 + i
√

T
√

1 − T |β| 〈âeiϕ − âe−iϕ〉 . (2.98)
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For ϕ = 0, the interference term t the end contains an expression for the expecta-
tion value for the field Ê, so this method allows one to really measure the electric
field.

We can define a generalized quadrature component along a phase angle ϕ by

âϕ :=
1

2

(

â†eiϕ + âe−iϕ
)

= âQ cos ϕ + âP sin ϕ , (2.99)

which can be used to simplify the expectation value in eqn (2.98):

〈n̂C〉 = T 〈n̂A〉 + (1 − T )|β|2 + 2
√

T (1 − T ) |β| 〈â(ϕ+π/2)〉. (2.100)

To compensate for the residual noise in the local oscillator, one often takes
the difference of photocurrents in the two photodetectors, iC − iD, corresponding
to an observable n̂C − n̂D. Then, only the interference term survives, and the
noisy terms due to the local oscillator and the variance in the numbers of photons
in the input state cancels out for T = 0.5:

〈n̂C − n̂D〉 = 2i
√

T (1 − T )|β|〈â†eiϕ − âe−iϕ〉
= −|β|〈â(ϕ+π/2)〉 (2.101)

This technique can now be used to measure the quadrature amplitude âϕ

directly and get information about the variances of the light field directly, and is
referred to as a balanced homodyne detection. It became an important detection
tool for detecting squeezed states of light, with a reduced noise level in one of
the quadrature components, as well as for more complex interacting systems in
quantum information processing using continuous variables.

2.4.3 Heterodyne detection

The idea in a homodyning setup is to remove all the contributions containing
intensities by looking for the difference in photocurrents, and extract the infor-
mation about the electrical field out of that difference. In practice, the difference
will always be a small contribution to the total photocurrent. Furthermore, the
small difference will be contaminated by significant noise in the photodetection
signal at low frequencies due to other sources than the photocurrent, which tends
to be far above the shot noise limit corresponding to the photoelectron number
fluctuation from the coherent state contributions.

To overcome the low frequency noise problem, another slightly modified con-
figuration for field detection is typically used, referred to as heterodyne detection.
The main idea behind this scheme is rather technical and takes the difference is
not at low frequencies, but moves it to a frequency where (a) the photodetetors
exhibit a low intrinsic noise, and (b) the necessary amplifiers can be built with
better noise properties. The shift is realized by using a difference Ω/2π in the
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Figure 2.15: A setup for heterodyne measurement of a light field at frequency ω0.

frequencies for the mode a under investigation and the local oscillator mode in
the coherent state |β〉. Then, the photocurrent difference component containing
information about the electrical filed in mode a is contained in a spectral com-
ponent at Ω/2π in the photocurrent difference signal, which can be amplified
without adding significant electronic noise. From there, the interesting spectral
component can be brought back to a DC level with a second homodyning process,
this time for classical electronic signals. The necessary element is just a mixer,
which multiplies the amplified photocurrent difference with a sinusoidal signal at
Ω/2π. A phase shifter in the radio frequency path allows an easy access to both
quadrature components of the electromagnetic field. A sketch summarizing this
scheme is shown in Fig. 2.15.

In both homodyne- and heterodyne detection schemes the identification of a
single photon is not exactly trivial; even the assignment of a well-defined value
of α in a homodyne measurement is difficult. In practice, there is a time interval
necessary, or a corresponding frequency window, over which a photocurrent or
its fluctuations are registered. Only with this notion we arrive at well-localizable
light states, which can be used as qubits or carrier of some information later on.

2.5 Tying “the photon” to the generation pro-

cess

So far, we have seen how a photon can be defined via the detection scheme - in
particular, the conversion into a single photoelectron seemed a very good candi-
date to define localizable photons. We are now looking for generation processes
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Figure 2.16: Three possible decay paths from J = 0 to J = 1.

which can provide us with a state that makes a photodetector give a localizable
signal, and would be rightly described by a wave packet object generated by
eqn (2.90).

2.5.1 Spontaneous emission

An explicit example for a compound “photon” is the light field emitted by spon-
taneous emission from an atom. Typically, the two levels can only be part of
atomic levels, where there is a multiplicity in the levels. This allows interaction
of the light field with the electronic states according to E · p, where E is the
electric field and p is the atomic electric polarization.

We also realize that there are a few possible decay paths in a typical atomic
transitions, which is summarized in Fig. 2.16.

Now, for the spontaneous emission, Wigner and Weisskopf have given a closed
expression for the state of the system [4]:

|ψ(t)〉 = a(t)|e〉A ⊗ |0〉field (2.102)

+
∑

ρ

bρ,−1(t)|g−1〉 ⊗ |nρ = 1, nρ′ 6=ρ = 0〉

+
∑

ρ

bρ,0(t)|g0〉 ⊗ |nρ = 1, nρ′ 6=ρ = 0〉

+
∑

ρ

bρ,+1(t)|g+1〉 ⊗ |nρ = 1, nρ′ 6=ρ = 0〉

with

a(t) = e−γt/2, (2.103)

bρ,m(t) =
weg

~

e−γt/2 − e−i∆(ρ)t

iγ/2 − ∆(ρ)
CG [0, 0; 1,m|1,m] . (2.104)

Therein, ρ,m is a mode index corresponding to a spherical vector harmonic and
an outgoing radial part. The details and derivation of this expression are part
of atomic physics, so we just mention that weg is some form of reduced electric
dipole matrix element between the two levels, γ = 1/τ corresponds to the natural
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line width of that transition, given by the lifetime τ of the excited state, ∆(ρ) =
ckρ − ω0 is the detuning of a particular radial mode from the atomic resonance
frequency ω0, CG is a Clebsch-Gordan coefficient corresponding to the angular
momentum modulus of ground- and excited level (here chosen to be 0 and 1,
respectively), and m is one of -1, 0 or +1, describing the type of transition (σ−, π
or σ+).

For the spherical symmetry of the problem it is adequate to formulate the
electrical field operator

Ê(x) = i
∑

k,m

Eωk

(

âk,mgk,m(x) − â†
k,mg∗

k,m(x)
)

(2.105)

with two scalar mode indices k,m and a mode function gk,m(x) expressing the
position x in spherical coordinates r, θ, ϕ:

gm,k(r, θ, ϕ) ≈ Re

[

e−ikr

kr

]

r

|r| × Xl,m(θ, ϕ) (2.106)

An exact expression needs to include the field at the atom more cleanly; the above
expression, however, is a good approximation a few wavelengths away from the
atom [2].

The dominating part is a spherical wave propagating away from the atom
at the coordinate origin, with a certain width due to the fact that the emission
process takes only a finite time (see Fig. 2.17). The vector spherical harmonics
Xl,m(θ, ϕ) basically contain information of the polarization in the various direc-
tions. For example, along the z direction (θ = 0, often referred to as quantization
axis) the m = ±1 or σ± transitions correspond to left- and right circular polariza-
tion. This function also contains the emission pattern of the different transitions,
e.g. the fact that for the m = 0 or π transition, the field in z direction vanishes.

We typically regard the outgoing state (a linear combination of single exci-
tations in many modes) as a single photon, since the energy content of the field
is limited by the initial atomic excitation. Moreover, we would expect typically
only one photoelectron to be created in a detector. We also have a localized
wave packet, centered around a frequency ω0 corresponding to the initial energy
difference Ee − Eg = ~ω0.

What we would like to do now is to combine the time dependencies of all the
components {ρ,m} in eqn (2.102) into simpler ones, corresponding to the three
possible classes of transitions, σ±, π into a set of new mode functions g̃m(r) in
the very same way as we express the modes at the output of a beam splitter as
a linear combination of modes at its inputs. This will be done more formally in
Chapter 4, where we make the connection between photons and qubits.
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Figure 2.17: Mode function of the field around an atom after the radiative decay
from an excited state: one on the role model examples of a localizable photon.

2.5.2 Single photon sources

Apart from the definition of what single photon states could be, we should con-
sider specific physical implementations. While it is possible to prepare a single
atom with a high probability into an excited state to establish the initial condi-
tion for a single photon emitted via subsequent spontaneous emission, it is not the
simplest experimental approach. A much simpler approach is to excite an atomic
system continuously, and observe the photodetection statistics of the scattered
light of the microscopic system.

NV center single photon source

One of the perhaps simplest experimental implementations of such a single photon
source is shown in Fig. 2.18, where a single charged nitrogen atom, which is
embedded in a diamond lattice with an adjacent vacancy is used as the single
quantum system. This nitrogen atom has an electronic transition which can emit
light in the red wavelength range, and can be driven into the excited state by
optical excitation with green light, by passing through some higher excited states
and a subsequent relaxation to something close to a two-level system. Being
embedded in a material with a high band gap, the electronic excitation is released
with a high probability via a radiative decay, under additional broadening due to
a change in the vibrational state of the atom/host lattice combination.

In an experimental setup, excitation light is focused down onto a single such
color center, which can be done because these centers can be prepared with a
very low density in a diamond host, such that the average distance between these
centers is larger than a few optical wavelengths. Then, excitation light can be
focused on a single color center, and the emitted light from the very same center
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Figure 2.18: Experimental setup to observe single photon light from nitrogen-
vacancy color centers in diamond. The excitation of the atom-like color center
takes place with a short wavelength to an ensemble of states, which eventually
lead to a spontaneous emission of a photon at a longer wavelength.

can be collected with a confocal microscope geometry. Since the spontaneous
emitted light has wavelength which is far enough away from the excitation light
(usually, a frequency-doubled Nd:YVO4 laser at a wavelength of 532 nm is used),
color separation between the excitation light and the emitted light can be done
with a high extinction ratio such that after spectral filtering, the photon statistics
of the scattered light can be detected easily.

A typical photon statistics experiment following the setup of Hanbury-Brown
and Twiss is shown in Fig. 2.19. The emitted light from the color center is
directed onto a beam splitter, which distributes the field onto two photodetectors
with a single photoelectron detection mechanism. The photoelectron detection
signals are then histogrammed with respect of their arrival time difference to
experimentally obtain a second order correlation function g(2)(τ).

The experimental traces (c) in this figure shows a clear reduction of g(2) be-
low 1 around τ = 0 for low optical excitation powers, indicating that no two
photoelectrons are generated at the same time. The interpretation of such an
experimental signature is that the emitted light field is made up by isolated, or
single photons. For larger excitation power levels, the “anti-bunching dip” gets
narrower quickly, reflecting the fact that the NV center is transferred faster into
the excited state again, ready for the emission of the next photon. The anticorre-
lation signature g(2)(τ = 0) = 0 gets more and more washed out, as the recovery
time for the NV center excitation comes closer to the detector timing uncertainty.

The internal dynamics of the NV center guarantees that, once a photon has
been emitted, the center is in the electronic ground state, and can only emit
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Figure 2.19: Observation of photon anti-bunching behavior in a Hanburry-
Brown–Twiss geometry (a), where the time difference between photoevent pairs
is analyzed. The corresponding level model of the NV center consists of three
levels (b), and at room temperature the transitions between them can be well
described using simple rate equations. The uncorrected measurement results (c)
for different excitation powers reveal a characteristic signature of a photon anti-
bunching for τ=0, thus indicating that there is a strong suppression of emission
of more than one photon at the same time.
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Figure 2.20: Second order correlation function for light scattered by a single atom
under the exposure of near-resonant optical radiation. The atom was held in an
optical tweezer, and the excitation light was driving a Rabi oscillation between
ground- and excited state. The photon antibunching is still present for time
differences τ = 0 between photodetection events.

the next photon once the probability of being transferred into the excited state
due to the presence of the excitation light has increased again. This particular
experiment has been carried out at room temperature, where the presence of a
huge phonon background in the diamond host leads to a very fast decoherence
between ground- and excited state. Thus, the internal dynamics of the NV center
is adequately described by a set of rate equations for the populations in the
participating internal levels. From the presence of two exponential components
in g(2)(τ), it can be inferred that there are at least three participating levels.

Single photons from single atoms

A measurement on a physical system which shows much less decoherence between
the internal electronic states is shown in Fig. 2.20. A single rubidium atom was
trapped in an optical tweezer, while it was exposed to near-resonant excitation
light. The atom undergoes occasionally a spontaneous emission, which is captured
by a microscope objective onto a pair of photodetectors.

This time, the coherences between ground- and excited state can not be ne-
glected, and g(2)(τ) shows a damped oscillatory behavior together with a clear
antibunching signature at τ = 0. The damping time constant is related to the
radiative lifetime of the excited state (26 ns for this transition), and the Rabi os-
cillation reflects the coherent population transfer under the electric field strength
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of the excitation light.
This atomic single photon source, however, is far from being deterministic:

While the probability of observing two photodetection events at the same time
is very low, the probability of detecting a photon at a desired time is very small.
This is due to the fact that the atom emits the photon in a spherical harmonics
mode, but the collection optics manages to receive only a small fraction of the full
solid angle. Furthermore, this particular excitation scheme is not deterministic
at all, but driven by a continuous light source.

Deterministic single photon sources

To overcome the statistical nature of the single photons emitted in the previous
two examples, two aspects need to be considered:

1. The excitation process has to happen at a well-defined time, and with a
high probability. This can be achieved with an optical excitation either by
a short pulse performing half a Rabi oscillation, or via an adiabatic transfer
scheme. Both methods require a light pulse much shorter than the radiative
lifetime of the excited state.

2. The collection process into a particular target mode has to be efficient.
If the target mode should be mapped into a propagating beam, or into
an optical fiber, the matching of the spontaneous emission mode in free
space is very limited. A method to circumvent this problem is to enhance
the electrical field strength of a particular target mode with an optical
cavity, such that the spontaneous emission takes preferably place into that
specific mode. This requires usually optical cavities with a high finesse.
Implementations of such sources have been demonstrated both with atoms
in free space as with single emitters (quantum dots) in a solid state matrix.

2.5.3 Heralded photon sources

Another method to prepare light fields into single photon states makes use that
photon pairs can be generated with a strong temporal correlation via parametric
down conversion. Then, one photon of a pair acts as a witness for the other
photon, and an experiment can be triggered on a successful observation of the
first photon. We will deal with this process in the next chapter.



Chapter 3

Parametric down conversion: A

common workhorse

A key resource for many experiments in quantum information are sources of en-
tangled photon pairs, based on parametric down conversion. In this process,
energy from a pump field gets transformed into correlated photon pairs. In this
lecture, we will present the underlying physical process for parametric down con-
version.

We start with an extension of the electromagnetic field quantization into a
regime of optical materials which respond to external fields. There is actually
very little change in the field description to what we have seen so far. Then
we will introduce a description of nonlinear optical materials, which allow for
an interaction between the electromagnetic field in different modes. We tie this
together to present one of the typical down conversion processes, and analyze
quantitatively the generation rate of photon pairs.

3.1 Optics in media

Optical materials like glasses play an important role in manipulating electromag-
netic fields: They allow us to change the mode structure. It should be of no
surprise that they also play an important role in quantum optics. We quickly go
through the ideas of how the interaction with such media is modeled, and how
this affects the field quantization.

3.1.1 Macroscopic Maxwell equations

The response of an optical material to incoming fields is the combination of
responses from a large number of atoms making up that material. In the optical
regime, with wavelengths on the order of 10−7 . . . 10−6 m and a spacing of the
atoms of 10−10 . . . 10−9 m can be well described by averaging over the material’s

65
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response, and by introducing new mean filed quantities connected to the electric
and magnetic response of the material. The resulting Maxwell equations for these
macroscopic fields can be written as:

∇ · D(x, t) = ρfree(x, t) , (3.1)

∇× E(x, t) = − ∂

∂t
B(x, t) , (3.2)

∇ · B(x, t) = 0 , (3.3)

∇× H(x, t) =
∂

∂t
D(x, t) + j(x, t) , (3.4)

with new quantitates of the dielectric displacement D(x, t) and a magnetic field
strength H(x, t). In the simplest case, these quantities are linearly related to the
electrical field E and the induction flux density B by

D(x, t) = ǫ◦ǫrE(x, t) , (3.5)

B(x, t) = µ◦µrH(x, t) . (3.6)

There, the permittivity ǫr and the relative permeability µr summarize the mate-
rial’s response to electromagnetic fields. Most optical materials do not connect to
the magnetic field component at optical frequencies, so we can set µr = 1. They
do, however, respond to the electrical field, so we will have a closer look at this
part.

Firstly, the relationship in eqn (3.5) can be broken up into

D(x, t) = ǫ◦E(x, t) + P(x, t) , (3.7)

with a contribution of the original electric filed E and a polarization P, which
characterizes the averaged induced electrical dipole moments of the material. For
linear materials, this macroscopic polarization can be expressed as

P = ǫ◦χE , (3.8)

where χ is the susceptibility tensor characterizing the material, or simply a matrix
connecting two vector quantities. For isotropic media like a gas or a glass, it is
a scalar. We will later on drop this linear connection between electric field and
material response.

For now, we consider the simple case that we have an isotropic, homogenous
medium with no free charges, current densities and any magnetic susceptibility,
i.e., ρfree = 0, j = 0, µr = 1 and χ is constant for all x. The dielectric permittivity
is given by ǫr = 1 + χ, and the solutions to the macroscopic Maxwell equations
can be derived from a wave equation similarly as in the vacuum case, but this
time with a reduced speed of light,

c =
1√

ǫ0ǫrµ0µr

=
1√
ǫ0µ0

1√
ǫr

=
c0

n
, (3.9)
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with n being the refractive index of the media.
Note that the introduction of the new field quantities D and H did not intro-

duce any new degrees of freedom - they just capture the presence of a material
responding to the field in a way that averages over the response of a large number
of atoms. Thus, the main strategy to quantize the electromagnetic field remains
the same.

3.1.2 Energy density in dielectric media

The important quantity to carry out a field quantization in practice is an ex-
pression for the total energy in the electromagnetic field. With the quantities
introduced to capture the material response, this quantity is given by

H =
1

2

∫

dx [E(x) · D(x) + B(x) · H(x)] , (3.10)

which in media with dielectric response only can be reduced to

H =
1

2

∫

dx

[

E(x) · D(x) +
1

µ0

B2(x)

]

=
ǫ0

2

∫

dx
[

E(x)(1 + χ)E(x) + c2B(x)2
]

.

(3.11)
This equation has still the same structure as eqn 1.67 for the electromagnetic
field in free space, i.e., the same mode decomposition strategy applies, leading to
degrees of freedom which are governed by a harmonic oscillator-type dynamics.
For an isotropic medium, the presence of the medium just leads to a modification
of the electric field contribution to the total energy by the permittivity ǫr = 1+χ.
For birefringent media, where the linear susceptibility depends on the direction
of the electric field, the field decomposition can still be carried out as long as
a proper polarization basis is chosen; the technical details are well-covered in
books on light propagation in crystalline media (see e.g. [3]), but would exceed
the scope of this lecture.

Similarly, the field operators can be written in the same way as for the vacuum
case,

Ê = Ê(x, t) = i
∑

j

Eωj

(

gj(x)âj(t) − g∗
j(x)â†

j(t)
)

, (3.12)

The presence of the medium manifests now in a modified constant E capturing
the physical constants, and the connection between Ê and B̂ needs to take care
of the modified speed of light in the medium.

3.1.3 Frequency dependence of refractive index

Typically, the susceptibility χ of an optical medium dependent on the frequency of
the exciting field. This is owed to the fact that the response of the medium in the
optical domain may be considered as an off-resonant excitation of electrons bound
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in the material. Typical binding energies of electrons in transparent materials
are on the order of a few electron volts, corresponding to a resonance frequency
corresponding to light in the ultraviolet regime. This is compatible with the fact
that most materials transparent in the optical regime absorb ultraviolet light.
The response of the medium in the visible regime then corresponds to the low-
frequency tail of a resonance in the ultraviolet.

A semi-heuristic description of this behavior used to characterize the disper-
sion property of transparent materials is based on such a model, assuming that
the susceptibility is due to one or several resonances in the material. This model
is referred to as a Sellmeier equation of a given material, typically formulated as
a dependency of the refractive index n from the vacuum wavelength λ0:

n2 − 1 =
∑

i

Ai

1 − Bi/λ2
0

+ . . . + Ci/λ
i
0 (3.13)

Note that this is not a unique way of expressing the ultraviolet resonances, and
serves mostly as an engineering tool where the coefficients Ai, Bi, Ci don’t have an
immediate physical interpretation, but are chosen to give an accurate (typically
good to 10−6) estimation of the refractive index in the visible regime, based on
a few refractive index measurements at a few wavelengths. When you encounter
a set of Sellmeier equations characterizing a particular material, make sure you
are using the corresponding model function.

The general structure of this dispersion relation is that the refractive index in-
creases with the frequency. If you encounter a birefringent material, the Sellmeier
equations are typically given for electrical fields polarized in particular directions
and propagation directions, where plane waves are solutions the set of Maxwell
equations. Depending on the symmetry of the material, two or three sets of Sell-
meier equations are required to give a full description of the dispersion properties
for the optical medium. The resulting description is reasonably messy.

3.1.4 Nonlinear response of a medium

The linear response of a medium to an electric field has ensured that the complete
electromagnetic field still can be decomposed into decoupled modes, and the field
states in these individual modes evolve independently from each other.

We now consider a nonlinear response of the medium to an exciting field. Such
a nonlinearity may be thought of as originating from a nonharmonic potential
of the electrons in the media. As such a nonlinear response is usually a small
effect, it can be captured well by a Taylor expansion of the polarization P of the
material in the exciting electrical field E:

P = ǫ0

(

χE + χ(2)E2 + χ(3)E3 . . .
)

(3.14)

The newly introduced susceptibility tensors χ(n) capture the higher order terms
of the material response, and are tensor objects of higher order; as an example,
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a contribution to the polarization vector due to the first higher order term χ(2)

can be written in components as:

P
(2)
j = ǫ0

∑

k,l=x,y,z

χ
(2)
jklEkEl , with i = x, y, z (3.15)

The second order nonlinear susceptibility tensor χ(2) must reflect the symmetry of
the underlying material; this usually reduces the number of independent entries
in this tensor substantially. One of the most important symmetry constraints of
this type is that the material must lack an inversion symmetry in order to have
χ(2) 6= 0 (try to prove this!). Thus, all gases, amorphous materials like glass or
polymers, and a large number of crystalline materials do not exhibit this type of
nonlinear response to an external electrical field.

A typical signature of these higher order processes in classical optics is higher
harmonics generation: If you consider a monochromatic electrical field (e.g. in
form of a plane wave) at a frequency ω,

E(x, t) = E0 ei(k·x−ωt) , (3.16)

the second order nonlinear susceptibility will result in polarization components
which oscillate at twice the original frequency,

P(2)(t) ∝ χ(2)E2 ∝ e−2iωt . (3.17)

This polarization component at a new frequency can be considered as a source
term in the Maxwell equations, and will propagate through the medium according
to the dispersion relation.

An example where such a process takes place are green laser pointers, which
have a laser emitting light at a vacuum wavelength of 1064 nm, and a small piece
of Potassium titanylphosphate (KTP) as a material with a nonlinear suscepti-
bility to convert part of this light into radiation with a vacuum wavelength of
532 nm appearing as green. We will see later, however, that a nonlinear suscepti-
bility alone is not enough to observe this process, but the dispersion properties of
the material must allow the fundamental and second harmonic wave to propagate
through the crystal with the same speed.

3.2 Nonlinear optics: Three wave mixing

To describe the energy transfer between different modes due to the nonlinear
susceptibility quantitatively, we consider the Hamiltonian with the higher terms
in the susceptibility:

Ĥ =
ǫ0

2

∫

dx
[

E(x) ·
(

ǫrE(x) + χ(2)E2(x)
)

+ c2B2(x)
]

(3.18)



70 CHAPTER 3. PARAMETRIC DOWN CONVERSION

=
ǫ0

2

∫

dx
[

ǫrE
2(x) + c2B2(x)

]

+
ǫ0

2

∫

dxE(x) · χ(2)E2(x) (3.19)

=: Ĥ0 + Ĥ
(2)
I (3.20)

There, we have split up the interaction with the medium into a part H0 with
decoupled harmonic oscillator modes, and an interaction term HI containing the
effects induced by the nonlinear susceptibility. Before we have a closer look to
this interaction Hamiltonian, we quickly mention that in cases where higher order
susceptibilities have to be considered, the interaction Hamiltonian takes a similar
form. For example, a χ(3) or Kerr nonlinearity leads to:

Ĥ
(3)
I :=

ǫ0

2

∫

dxχ(3)Ê
4
(x) (3.21)

Returning to the H
(2)
I again, we can gain some insight if we carry out the spatial

integration. Recalling the electrical field operators from eqn (1.111),

Ê(x, t) = i
∑

j

Eωj

(

gj(x)âj(t) − g∗
j(x)â†

j(t)
)

, (3.22)

the interaction Hamiltonian is an integral over space, and a generalized sum (i.e.,
sum and/or integral) over three mode indices:

Ĥ
(2)
I = −i

∫

dx
∑

j

∑

k

∑

l

{EjEkEl (3.23)

χ(2)
[

gj(x)âj − gj(x)â†
j

] [

gk(x)âk − gk(x)â†
k

] [

gl(x)âl − gl(x)â†
l

]}

(3.24)

This operator splits thus up into eight terms of the form

Ĥ
(2)
I = C0 âj âkâl + C1 â†

j âkâl + C2 âj â
†
kâl + C3 âj âkâ

†
l + h.c. , (3.25)

where the terms come in hermitian conjugated pairs. Each term has three ladder
operators mediating transitions between population of modes - this gives the
associated process the name three-wave mixing. The notion of waves is motivated
by plane wave as mode functions g(x).

To illustrate the conditions under which the different terms contribute, we
consider the prefactor C1 for the second term in eqn (3.25) as an example, which
mediates a process removing a photon in mode j and generates one in modes k
and l each:

C1 = i
ǫ0

2

∑

j

∑

k

∑

l

EjEkEl

∫

dxχ(2)g∗
j(x)gk(x)gl(x) (3.26)

Assuming plane waves as mode functions j, k, l of the form

g(x) = êj eikj ·x , (3.27)
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where ê is a polarization vector, the integral in the expression for C1 becomes

C1 = i
ǫ0

2

∑

j

∑

k

∑

l

EjEkEl(êjχ
(2)êkêl)

∫

dx e−ikj ·x eikk·x eikl·x (3.28)

= i
ǫ0

2

∑

j

∑

k

∑

l

EjEkElχ
(2)
eff

∫

dx ei(kk+kk−kj)·x (3.29)

(3.30)

With

∫

dx ei(kk+kl−kj)·x = 2πδ(kk + kl − kj) for a infinite integration volume,
≈ 2πδ(kk + kl − kj) for a finite integration volume,

(3.31)
the coefficient C1 only survives if the wave vectors of the removed photon matches
the sum of the two created ones. This specific process is referred to as down
conversion, and the above condition is referred to as the phase matching condition
for the corresponding nonlinear optical process. For geometries which don’t show
a full translational symmetry, e.g. for an interaction region of finite size, the
momentum conservation is only approximately fulfilled.

Remember that the terms in the interaction Hamiltonian always come in
pairs: Hence, when the coefficient for a down conversion from mode j to modes
k, l is non-vanishing, the reverse process is also possible. In this case, this would
correspond to an upconversion process.

The modes in the phase matching conditions do not necessarily need to be
distinct: The upconversion process with k = l, for example, corresponds to the
SHG process mentioned earlier.

Keep in mind that the phase matching condition is only an overlap argument
of various participating modes in a given interaction volume: It applies equally
in a treatment of optical interactions in classical physics, and is not something
which comes out of a quantum description of light. For many quantum optical ex-
periments, it is nevertheless important to meet these phase matching conditions.
Thus, we will elaborate a little on them in the next section.

3.3 Phase matching

Apart from the phase matching condition, which can be interpreted as momentum
conservation in the limit of a large interaction region, the energy in conversion
processes must be conserved. This puts another constraint on the processes taking
place concurrently.

For the down conversion process introduced above, the three participating
modes are traditionally labeled as pump (that’s the mode which has the lowering
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Figure 3.1: Non-critical phase matching in LiIO3 for SHG or degenerate para-
metric conversion. An ordinarily polarized plane wave at 580 nm and an extraor-
dinarily polarized wave at half the (vacuum-)wavelength have the same refractive
index of n = 1.88825.

operator), and as signal and idler for the modes where photons are created in.
The energy conservation then can then be written as

ωp = ωs + ωi . (3.32)

In the limit of large conversion regions considered for understanding the concept,
the momentum conservation becomes:

kp = ks + ki (3.33)

Meeting both eqns (3.32) and (3.33) at the same time for a range of modes can
be accomplished by choosing proper polarizations and engineering the dispersion
relation

ω = c|k|/n (3.34)

and adjusting refractive index n with various methods. We will go through a few
examples for parametric down conversion from a pump frequency ωp to a set of
degenerate frequencies ωs = ωi = ωp/2 for the target modes. To meet eqn (3.33)
in a collinear geometry (i.e., kp ‖ ks ‖ ki), the refractive indices for pump and
target modes must be the same. As mentioned in Section 3.1.3, the refractive
index for the pump (higher frequency) is larger than for the signal and idler fre-
quencies. This problem is typically addressed by choosing different polarizations
for the various modes since materials with non-vanishing χ(2) are usually birefrin-
gent. Figure 3.3 shows this for the example of Lithium Iodate, LiIO3, a negatively
uniaxial birefringent material. A wave with a linear polarization parallel to the
optical axis experiences the extraordinary refractive index ne, while a plane wave
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with a polarization vector in a plane orthogonal to the optical axis experiences
the larger ordinary refractive index.

The refractive index ne for a pump wavelength of 295 nm (this refers to the
vacuum wavelength, a commonly used proxy measure for the frequency) matches
the ordinary index no at a degenerate target wavelength of 580 nm. Thus, for a
pump polarized parallel to the optical axis, parametric conversion into a mode
copropagating with the pump but with orthogonal polarization would be allowed.

The combination of polarizations (e − o − o) for pump, signal and idler is
referred to as type-I phase matching. In this example, the propagation directions
match the optical axes, which is referred to as non-critical phase matching.

The polarizations of the two target modes do not need to be the same; by
choosing one of the target modes as e, and the other one as o-polarized, non-
critical phase matching for a pump wavelength of 373.6 nm can be achieved in
the LiIO3, with the degenerate target modes at a wavelength of 747.3 nm. Such
a polarization combination is referred to as type-II phase matching.

Obviously, the non-critical phase matching works only for very few wavelength
combinations. There are, however, several efficient ways to extend the phase
matching range: Refractive indices of a given material can be altered by material
engineering, temperature, the propagation direction and an artificially introduced
periodic reorientation. We will briefly discuss the last three methods.

3.3.1 Phase matching by temperature tuning

A number of materials have a strong dependency of their refractive index with
temperature; a prominent example is potassium niobate, KNbO3, a biaxial bire-
fringent material with a strong optical nonlinearity and a strong temperature
dependency of the refractive index (about 0.5% over 100K, [16]).

3.3.2 Phase matching by angle tuning

Another common way to ensure phase matching is to manipulate the refractive
index of one or more modes by choosing propagation directions through the con-
version crystals where the electric field vector is not parallel to one of the principal
axes of the susceptibility tensor. We refer the reader to any textbook on classical
optics in birefringent crystalline materials for details, and show the basic idea
only for a simple example for this so-called critical phase matching.

For birefringent materials and a given propagation direction with respect to
the principal axes of the material, there are always two orthogonal polarization
vectors where the solutions of Maxwell equations can be written as plane waves
with a well-defined propagation speed c/n. For uniaxial birefringent materials,
two of the principal linear susceptibilities are the same, and correspond to the so-
called ordinary refractive index no =

√
1 + χo, while the response to a dielectric

displacement along the optical axis is governed by the extraordinary refractive
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Figure 3.2: Critical phase matching (type-I and type-II) for a uniaxial birefringent
crystal in a collinear configuration. The refractive indices of extraordinary beams
are tuned by choosing an angle θ between the wave vectors and the optical axis
of the crystal.

index ne. A wave described by a propagation vector k which forms an angle θ
with the optical axis has then one polarization mode (“ordinary wave”) with the
corresponding refractive index no and an electrical field vector in the plane normal
the optical axis, while the other polarization mode (“extraordinary wave”) has
an orthogonal polarization and is n′

e is propagating corresponding to a refractive
index

n′
e(θ) =

neno
√

n2
o + (n2

e − n2
o) cos2 θ

. (3.35)

Thus, by choosing a proper orientation angle θ, the refractive index for the ex-
traordinary wave can be adjusted between ne and no. Keep in mind that the
refractive indices ne and no still depend on the frequency. As an example, we
consider the negatively uniaxial crystal BBO, and wavelengths of λp = 351 nm
for the pump, and λs = λi = 702 nm for frequency degenerate target modes in
a down conversion configuration. The refractive indices at these wavelengths are
shown in the following table:

ne no

λ = 351 nm 1.5784 1.7069
λ = 702 nm 1.5484 1.6648

This combination of refractive indices allows both for type-I and type-II phase
matching for copropagating target and pump modes. For type-I, the target modes
have to be both ordinary waves with n = 1.66, which lies between ne and no for
the pump wavelength. With an angle θ = 33.3◦, the extraordinary refractive
index n′

e(θ) can be matched to the ordinary refractive index no of the target
modes.

For type-II phase matching, one of the target modes is ordinarily, the other
extraordinarily polarized. Since no combination of ordinary and extraordinary
refractive index of the target modes can reach the ordinary refractive index at
the pump wavelength, the pump wavelength is also extraordinarily polarized.



3.3. PHASE MATCHING 75

Λ

Figure 3.3: Engineered phase matching by electrically poling periodically various
segments in a nonlinear optical material like KTP or Lithium niobate with a
periode Λ. Additionally to the intrinsic wave vectors in the conversion material,
an integer multiple of a quasi phase matching wave vector 2π/Λ is added to the
phase matching condition.

The with the dispersion relation c|k| = nω, the phase matching condition for
degenerate down conversion (ωp/2 = ωs = ωi) now reads

2n′
e,351(θ) = n′

e,702(θ) + no,702 , (3.36)

which has a solution for θ = 48.9◦. Such a configuration has been used for a
large number of experiments with down-converted photon pairs. It should be
mentioned, though, that the critical phase matching approach has the disadvan-
tage that the wave vector and Poynting vector, describing the energy flow in
a beam, are no longer parallel for the extraordinary waves. For modes with a
finite transverse extent, this leads to a “transverse walk-off” between ordinary
and extraordinary modes, which may have a number of undesirable consequences,
among them a limitation of the possible geometric overlap of different modes. On
the other hand, it allows usually to use popular laser wavelengths.

While the birefringent properties of a uniaxial crystal are completely deter-
mined by one angle θ, and thus the phase matching conditions are fully met,
it should not be forgotten that the orientation of the nonlinear optical tensor
elements may still depend on the other free orientation angle.

3.3.3 Phase matching by periodic poling

Another recent, very popular method to meet the phase matching condition in
nonlinear optical materials is to engineer the optical properties of a material by
breaking the translational symmetry of the conversion material, and modulate the
optical property like the sign of the nonlinear optical susceptibility periodically.
This can be achieved by applying strong static electrical fields in small portions
of a nonlinear optical crystal under certain conditions. The field is applied to the
material with the aid of microstructured electrodes, which later can be removed
once the crystal is poled.
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The new device has still a partial translational symmetry, since the optical
properties repeat with the poling periode Λ. The phase matching condition is
now replaced by a quasi-phase matching condition:

kp = ks + ki +
2π m

Λ
, m ∈ Z0 (3.37)

By choosing the poling periode Λ and the quasiphasematching order m accord-
ingly, wavelength combinations can be reached with materials with an intrinsic
high nonlinear optical susceptibility. Materials which have been used for this type
of phase matching include the very common LiNbO3 (and is in this modification
referred to as PPLN, periodically poled lithium niobate), as well as potassium
titanylphosphate (KTP, or PPKTP).

While with these materials, a tremendous increase of brightness for photon
pair sources have been observed, one needs to keep in mind that the engineered
periodicity is subject to manufacturing uncertainties; particularly the duty cycle
of the poling structures can be noisy across the conversion material. As a conse-
quence, the material can be considered as a region with a distribution of poling
periods beyond the single value given by 2π/Λ, and allow for a small contribution
of phase matching at a large number of modes. This may contribute to noise in a
variety of nonlinear optical processes like upconverison or also parametric down
conversion.

3.4 Calculating something useful: Absolute pair

production rates

While many experiments with photon pairs from parametric down conversion
can be and have been carried out with considering the rather qualitative phase
matching criteria discussed in the previous section, it is helpful for developing
these light sources better to get a quantitative expression on how many pairs can
be expected in a particular geometry [17].

The example we consider in this chapter assumes that we generate photon
pairs into modes which are defined by single mode optical fibers, which allows
later on to manipulate the downconverted light conveniently in any interfero-
metric arrangements - those typically require well-defined spatial modes, and an
optical fiber acts as an efficient spatial mode filter for such purposes.

3.4.1 The model

To keep the calculation of an expected photon pair rate simple, we restrict our-
selves to a geometry where the pump field is collinear with the target modes.
Furthermore, we neglect all dispersion effects in the conversion crystal. The ge-
ometry of the model situation is shown in Fig. 3.4.1.
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Figure 3.4: Model geometry to calculate pair generation rates in PDC collected
by a single mode optical fiber. The pump and target modes are nearly collimated
Gaussian beams with beam waists wp,s,i, the conversion crystal should have a
thickness d in propagation direction z and a size much larger than the beam waists
in the transverse directions. For convenience, the nonlinear optical material is
thought to be embedded in a material with the same refractive indices ns, ni, np

as in the conversion region. We also introduce a quantization length L for the
target modes.

The conversion is taking place in a crystal of thickness d in the main propaga-
tion direction of all modes, which we assume to have a Gaussian mode profile. For
simplicity, we also neglect a possible transverse beam walk-off in case we use criti-
cal phase matching. Furthermore, we assume that we have chosen a type-II phase
matching condition, such that the two target modes are distinct by their polariza-
tion. By embedding the conversion crystal in a surrounding with the same linear
susceptibilities (and thereby refractive indices) as in the conversion region, we
can make use of the expression (eqns 1.118-1.120) in Section 1.5 for the electrical
field operator Ê(x)s,i. The corresponding beam waists for signal and idler modes
are ws, wi, and the corresponding refractive indices are ns =

√
ǫs, ni =

√
ǫi. The

quantization length L should not influence the result of the pair rate and is just
kept for conceptual convenience. With this, and keeping in mind that we still
have the longitudinal wave vector ks and ki as a one-dimensional mode index for
the target modes, the target field operators become

Ês,i(x) = i
∑

ks,i

Eks,i
εεεeiks,ize−ρ2/w2

0 âks,i+h.c. with Eks,i
=

√

~ωks,i

πw2
s,iLǫ0n2

s,i

(3.38)

With the quantization length L and periodic boundary conditions, the mode
indices ks,i are integer multiples of 2π/L.

The pump field is assumed also to be monochromatic and in a Gaussian mode
with waist wp. The electrical field in the pump mode is treated as a classical
amplitude, written in a similar form as the quantized field modes:

Ep(x, t) = iE0

{

gp(x)e−iωpt − g∗
p(x)eiωt

}

(3.39)
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with the same Gaussian mode function gp(x) from eqn 1.118 as the quantized
fields, with a pump waist wp. The optical power carried by this classical, real-
valued electrical field is given by

P = E2
0npπw2

pǫ0c , (3.40)

an expression which can be obtained by integrating the average Poynting vector,
〈S〉 = 〈Ep × Bp〉t /µ0 over the cross section of the beam.

3.4.2 Interaction Hamiltonian

To evaluate the rate of photon pairs generated in the spatial modes collected into
the optical fiber, we need to consider the interaction Hamiltonian ĤI as outlined
in eqn 3.19, which is assumed to be a small perturbation to the free field. For a
classical driving field, this Hamiltonian becomes explicitly time dependent.

ĤI(t) =
ǫ0

2

∫

d3xEp(x, t) : χ(2) :
∑

ks

Êks
(x) :

∑

ki

Êki
(x) (3.41)

Since we only want to consider processes where photon pairs are generated out
of the vacuum of the target modes, it is sufficient to restrict the Hamiltonian to
two terms for pair creation/annihilation, and we arrive at:

ĤI(t) = i
ǫ0

2
(εεεp : χ(2)εεεs : εεεi)E0

∞
∫

−∞

dxdy

d/2
∫

−d/2

dz
∑

ks,ki

~
√

ωsωi

πǫ0wswiLnsni

(3.42)

×ei∆ωte−i∆kze−(x2+y2)/w2
se−(x2+y2)/w2

i âks
(0)âki

(0) + h.c. (3.43)

We have introduced the detuning parameter ∆ω = ωp−ωs−ωi and a wave vector
mismatch ∆k = kp − ks − ki. With the effective nonlinearity deff (capturing the
contraction of the nonlinear susceptibility for the polarizations used, 2deff = εεεp :
χ(2)εεεs : εεεi ), we can carry out the spatial integration of the mode function overlap
and simplify the above expression:

ĤI(t) = ideffE0

∑

ks,ki

~
√

ωsωi

πwswiLnsni

× ei∆ωtΦ(∆k)âks
(0)âki

(0) + h.c. ,(3.44)

with

Φ(∆k) =

∞
∫

−∞

dxdy

d/2
∫

−d/2

dz e−i∆kze−(x2+y2)/w2
se−(x2+y2)/w2

i e−(x2+y2)/w2
p (3.45)

= π

(

1

w2
p

+
1

w2
s

+
1

w2
i

)−1

d sinc (∆kd/2) (3.46)

We observe that the interaction Hamiltonian does not vanish for a range of ∆k
due to the finite length d of the conversion crystal.
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3.4.3 Fermi’s Golden Rule and spectral rates

To make a quantitative statement on the number of photon pairs generated per
unit time, we will use Fermi’s Golden Rule for a transition rate R(ks) from a
field in an initial vacuum state |i〉 = |0ks

; 0ki
〉 into a final state |f〉 = |1ks

; 1ki
〉

with one photon in each of the target modes ks, ki. Fermi’s Golden Rule makes
a statement about asymptotic scattering rates, thus energy must be conserved.
We express this using the dispersion relation for signal and idler modes:

∆ω = ωp − ks
c

ns

− ki
c

ni

= 0 (3.47)

First, we consider now a transition rate R(ks) for photon pairs with a fixed
target mode ks. The density of states ρ(∆E) per unit of energy ∆E = ~∆ω is
extracted out of the quasi-continuum of target modes ki:

ρ(∆E) =
∆m

∆ki

· ∂ki

∂(~∆ω)
=

L

2π
· ni

~c
(3.48)

With the approximation that the frequencies ωs, ωi vary only little over the range
where Φ(∆k) contributes, the transition rate is then given by

R(ks) =
2π

~

∣

∣

∣
〈f |ĤI |i〉

∣

∣

∣

2

ρ(∆E) (3.49)

=

∣

∣

∣

∣

deffE0

πwswi

Φ(∆k)

∣

∣

∣

∣

2
ωsωi

n2
snicL

(3.50)

We would now like to map this transition rate into a fixed discrete mode ks into
a spectral rate density. For that, we just multiply the above expression with the
number Lns/2πc of modes ks per frequency interval ωs, and obtain

dR(ωs)

dωs

=

[

deffE0Φ(∆k)

πwswic

]2
ωsωi

2πnsni

(3.51)

At this point, the earlier introduced quantization length L has vanished.
We still need to express the wave vector mismatch ∆k as a function of the

frequency ωs. For that, we use dispersion relation for the different modes and
arrive at

∆k =
1

c
(ωp(np − ni) − ωs(ns − ni)) =

ns − ni

c
(ω0

s − ωs) (3.52)

The sinc function leads to a spectral distribution of the downconverted light in
the signal mode around a center frequency ω0

s = ωp(np − ni)/(ns − ni) with a
width of ∆ωs = 4πc/(ns − ni)/d between the first two zeros. The thicker the
conversion crystal length d, the narrower the spectrum of the collected light.

To quote typical numbers, we consider degenerate type-II down conversion in
adequately aligned BBO from 351 nm to a center wavelength of 702 nm. There,
ns − ni ≈ 0.111. For a d = 2 mm thick crystal, the spectral width (between
the zeros of the sinc function) would be ∆ω = 2π · 2.7 THz corresponding to
∆λ ≈ 4.4 nm.
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3.4.4 Connecting it together

The spectral conversion rate of photon pairs can be integrated over all frequencies
ωs. Assuming that only a small spectral region around ω0

s contributes to the total
pairs generated, the integration on over the spectral rate can be carried out over
the mode overlap expression only; with δωs = ωs − ω0

s and

∞
∫

−∞

dδωs Φ2(
ns − ni

c
δωs) =

2π3cd

ni − ns

(

w−2
p + w−2

s + w−2
i

)−2
(3.53)

we can finally write down the total pair rate RT as

RT =
d2

effE
2
0

w2
sw

2
i

ωsωicd

nsni(ni − ns)

(

w−2
p + w−2

s + w−2
i

)−2
(3.54)

=
d2

effPdωsωi

npnsni(ni − ns)πǫ0w2
sw

2
i w

2
p

(

w−2
p + w−2

s + w−2
i

)2 (3.55)

With the common choice of waists, ws = wi = wp/α, we get

RT =
d2

effPdωsωi

npnsni(ni − ns)πǫ0w2
s (α−1 + 2α)2 , (3.56)

which for a fixed ws maximizes for α = 1/
√

2 to a value of

RT =
d2

effPdωsωi

8πǫ0npnsni(ni − ns)w2
s

. (3.57)

A few observations on this expression should conclude this section:

• The rate of photon pairs grows linearly in the pump power and the crystal
length;

• it also grows quadratically with the optical nonlinearity; therefore, it is very
advantageous to look for materials with a strong optical nonlinearity; this
makes it advantageous to consider waveguide structures in nonlinear optical
materials, since there the mode can be confined to an area of about λ2 over
a long distance d;

• The total rate grows inversely proportional to the pump waist area, and
maximizes if the ratio between target and pump mode waists are

√
2;

• While the spectral pair density is independent of the refractive index dif-
ference, the absolute rate grows inversely proportional to ni − ns, or the
birefringence of the material.
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Figure 3.5: Temporal correlations in photodetection events in parametric down
conversion. The second order correlation function shows a prominent peak for
a detection time difference τ = 0. Its width is usually limited by the timing
resolution of the detectors.

3.5 Temporal correlations in photon pairs

One of the important aspects of light generated by parametric down conversion is
its strong temporal correlation between photodetection events observed between
light in signal and idler modes. An experimental schematic for this observation
is shown in Fig. 3.5). First experimentally observed by Burnham and Weinberg
[18], one usually finds a peaked pair correlation function for photodetection events
where the width tc is typically limited by the detector resolution. Thus, it appears
that photoelectrons are preferably generated in coincidence.

This observation suggests that there are wave packets for signal and idler
generated in a common “birth event”; it also leads to the view that each individual
photon of a pair is a well-localized wave packet. More sophisticated measurements
(see Hong-Ou-Mandel experiment in Section 4.2.3) indicate that the width tc of
the second order correlation function is indeed given by the coherence time of
the corresponding spectral distribution for each photon, and that Fourier-limited
wave packets would be appropriate descriptions for the photons in each mode.

For practical purposes, this allows to identify photon pairs by coincidence
detection: A very powerful experimental method to take care of situations where
one of the photons in a pair could not be detected, or was lost in either the
collection or some optical elements between down conversion region and detectors.
By looking for coincidences between two photodetectors, a selection of situations
can be made where both of the photons made it through the entire experimental
setup.

3.5.1 Heralded single photon source

This strong correlation in time can be utilized to “prepare by detection” of one
of the photons a situation where there will be with a high probability a photon
in the other mode. Hence, a photon pair source can in many cases be used to
prepare single photon states.
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The limitation of the heralding efficiency is typically given by the detection
efficiency of both photodetectors, and by the collection efficiency in a particular
down conversion setup. With many contemporary down conversion sources with
a peak emission in the sensitive region of silicon avalanche detectors, a ratio
between pair events and single detection events of about 30% can be reached; This
efficiency is a product of both detection and collection efficiency. With detection
efficiencies around 50% for silicon avalanche photodiodes, this corresponds to
collection efficiencies around 60%. However, sources have been reported with a
very good overlap of pump and target modes which seem to achieve collection
efficiencies around 80%.

In any case, the very well localized wave packets associated with photoelectron
pair detections in very good timing definition gives rise to try to treat these
photons as distinguishable particles. In the next chapter we will see how such
individual particles, with an additional set of degrees of freedom, can be used to
encode information.



Chapter 4

Quantum information with

photons

So far, we have treated photons – or more accurately, the electromagnetic field –
with the aid of field operators and a variety of harmonic oscillator states. The elec-
tromagnetic field, similar e.g. to a position of a particle, is a continuous variable,
and quantum mechanical properties in such a scenario are typically described and
observed in terms of correlation functions between different continuous variables.

We have seen, however, that there is a set of physical phenomena where it
makes sense to consider photons as localized electromagnetic fields, similar to
how we perceive massive particles. We are used to the fact that particles can
have “internal” degrees of freedom, which can be used to store or transport
information. The simplest way of representing this concept in a quantum physics
way is to think of such internal degrees as a qubit.

This chapter will review some of the practical considerations that arise when
trying to select a physical system to perform quantum information tasks. Specif-
ically, we will see how photons can be used as qubits, as they are virtually the
universal choice when considering flying qubits used for quantum communication
purposes. On the other hand, photons interact very weakly with each other and
this limits the type of tasks that can be easily performed.

4.1 Single photons as qubits

Qubits are a convenient basic unit of storing or transporting information by a
carrier governed by quantum physics. It is usually required that such a carrier
is reasonably localized or otherwise distinguishable, such that it makes sense to
talk about a system which is comprised by many qubits. In the previous chapters
we have seen that in an attempt to generate and detect electromagnetic fields,
photons can be often considered as fields which have this localizable property.
We now need to find out how to make the transition from the field description to

83
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a qubit implementation with single photons.

4.1.1 What is a qubit?

In principle any two level system could be chosen as the physical basis for qubits.
In practice, all qubits are not created equal, and they may vary strongly in the
ease of preparation, complexity of performing generalized rotations (single qubit
gates), and their resistance to decoherence from interactions with the environ-
ment.

Whatever degrees of freedom we choose, a pure qubit state will be completely
described by:

|ψ〉 = α|0〉 + β|1〉 α, β ∈ C , |α|2 + |β|2 = 1. (4.1)

Any system that we choose to implement our qubits should not only support the
full range of qubits states, but also provide a mechanism to transform one qubit
state into another (single qubit rotations).

4.1.2 Preliminaries: How an electron spin becomes a sep-

arable degree of freedom

In this section, we shall see how can we make connection between spin of an
electron with internal, or much better, separable degree of freedom. As a first
step, we should reconsider the way an electron spin is treated. This mechanism
will help us understanding how to implement an equivalent with electromagnetic
fields.

The spin of an electron is described by the spin wave function which arises
naturally from the Dirac equation. In general, we can write the wave function of
an electron as a vector quantity

|Ψe〉 ≡
(

φ↑(x)
φ↓(x)

)

, (4.2)

where the two entries correspond to a spin up component and a spin down com-
ponent. For completeness, it should be mentioned that in a relativistically correct
description, this is a four-dimensional object, with the two additional entries cor-
responding to the two spin components of the positron mode, but we will not
touch this further.

We may write this spin wave now as a superposition of two components,

|Ψe〉 ≡ φ↑(x)

(

1
0

)

+ φ↓(x)

(

0
1

)

, (4.3)

with two terms written as a product of a spatial wave function and a vector with
two components designating the spin state of the electron.
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This re-writing of the spin wave function is an expression that, typically quot-
ing observations of charge and mass conservation, we tend to consider the spatial
aspects of the electron state as separable from its spin property. That process
can be taken further by writing down a state in the form

ψ(x)

(

α
β

)

. (4.4)

At this point, we would consider ψ(x) as the spatial wave function governing the
center-of-mass motion (and refer to it as an external degree of freedom), whereas
the column vector represents the spin part of the wave function (which, as it
is not subject to any spatial variation, we can refer to as an internal degree of
freedom). The whole object (here: electron) is described as a tensor product of
the from

|Ψe〉 = |ψext〉 ⊗ |ψint〉 , (4.5)

which resides in a product space for the external and internal degree of freedom.
We should keep in mind, however, that this is not a restriction of the electron state
to a particular subclass of separable states, as we always can have superpositions
of states of the form eqn (4.5) which don’t separate, and finally compose the most
general state eqn (4.2).

For electrons, this treatment is reasonably familiar: For the external degree
of freedom, we continue to use the description of a massive particle with a scalar
wave function describing its position, while we use a simple two-dimensional space
to describe the spin properties, typically decoupled from the position degree of
freedom.

In many physical systems, we can manipulate this internal degree of freedom
independent of the external wave function, although we often have to go for some
length to suppress the coupling to the environment due to the charge, e.g. by
using silver atoms with one unpaired electron spin to observe the Stern-Gerlach
effect. Probably a better example is the nuclear spin of some atoms, where
superposition states can last for hours without being affected by the position of
the nucleus to the extent that spin-polarized can be prepared and then inhaled
for medical imaging purposes without affecting the spin.

4.1.3 Generating “internal” degrees of freedom with pho-

tons

The concept we have seen in making the transition from a continuous Dirac
state of an electron to a combination of internal and external degrees of freedom
can easily be transferred to electromagnetic fields: First, we choose a light field
which corresponds to a “single particle”, as defined by the generation or detection
process; in the previous chapter we have seen how this can be done for photons,
and how they can be localized e.g. by wave packets.
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We now simply try to find a set of wave packet modes, and populate them in
a fashion that can be described like an internal degree of freedom similar to the
spin state of an electron. We will present a few common choices for appropriate
degrees of freedom: polarization, which-way and time-bin are among the most
widely used.

Polarization qubits

Let us first consider the polarization of a spontaneously emitted photon from an
atom localized at the origin. Two possible decay options, that are ∆m = +1 and
∆m = −1, have similar spatial distribution for the light fields. We shall consider
how can we describe the light field as a combination of internal and external
degree of freedom.

Besides this, we can also choose the basis for the photon’s polarization as
horizontal polarization (|H〉) and vertical polarization (|V 〉). It is possible to use
column vectors to represent the state:

|H〉 ≡
(

1
0

)

|V 〉 ≡
(

0
1

)

(4.6)

Similarly, we could equally well describe its polarization in terms of linear
polarization along +45◦ and -45◦ directions or right handed and left handed
circular polarization.

The states |±45◦〉 and circular polarization |L〉 and |R〉 for left and right
handed polarization can be written in terms of |H〉 and |V 〉 as follows:

|+45◦〉 =
1√
2

(

1
1

)

=
1√
2
(|H〉 + |V 〉), (4.7)

|−45◦〉 =
1√
2

(

1
−1

)

=
1√
2
(|H〉 − |V 〉), (4.8)

|L〉 =
1√
2

(

1
i

)

=
1√
2
(|H〉 + i|V 〉), (4.9)

|R〉 =
1√
2

(

1
−i

)

=
1√
2
(|H〉 − i|V 〉) (4.10)

So we see that the polarization state of a single photon maps conveniently
to a qubit. We now need to find out how to implement qubit rotations, i.e. ,
arbitrary unitary transformations of this degree of freedom. For polarization,
these rotations or single qubit gates can simply be implemented by the use of
birefringent materials. In these materials the refractive index is dependent on
the polarization direction.

The optical elements that implement polarization rotations are known as wave
plates and are constructed such that two orthogonal linear polarizations acquire a
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Figure 4.1: Plates of birefringent materials exerting different phase shifts for
polarizations along different crystal axes. By rotating such a wave plate by an
angle ϕ, a number of single qubit transformations can be implemented.

definite phase difference. Generally available wave plates implement a retardation
of π (λ/2, half wave plate) or π/2 (λ/4, quarter wave plate) for polarizations
parallel to their principal axes (see Fig. 4.1). For a half wave plate aligned with
the basis vectors (referred sometimes to as “computational basis” in quantum
information), the action on the qubit can be represented by the matrix

Ûλ/2 =

(

1 0
0 −1

)

(4.11)

Similarly, it is straightforward to consider the effect of a λ/2 plate rotated
with respect to the computational basis by an angle ϕ (Fig. 4.1, right side) by
concatenating rotation matrices and the retardation matrix:

Ûλ/2(ϕ) = R̂(−ϕ) · Ûλ/2 · R̂(ϕ) with R̂(ϕ) =

(

cos ϕ sin ϕ
− sin ϕ cos ϕ

)

(4.12)

One can show that a combination of λ/2, λ/4 and λ/2 plates which can be
rotated individually is enough to transform any pure polarization into any other
pure polarization.

An important component in qubit manipulation is also the detection or mea-
surement process. We know how to detect a single photon already, but we do
not yet have a way of measuring the qubit. Figure 4.2 shows how such a mea-
surement is done for polarizations: the spatial mode carrying the photon with
its two polarization components is sent on a polarization beam splitter (PBS),
which transmits one and reflects the other polarization component. Both outputs
of he PBS are now covered with single photon detectors. We will receive a binary
answer (detector H or detector V) if there is a photon present, corresponding to
measurement results seen in a Stern-Gerlach experiment.

Which-way qubits

Let’s go back to the beam splitter shown in Fig. 4.3. There are two input ports, a
and b, and two output ports, c and d. We can describe a photon passing through
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PBS
detector H

detector V

Figure 4.2: Measurement scheme for a polarization qubit, based on a polarizing
beam splitter and two photodetectors.

this beam splitter from the input ports to output ports by artificially introducing
an internal degree of freedom related to the ports of the beam splitter than the
photon passes, together with an external degree of freedom associated with the
propagation of a wave packet describing the extent of the non-vanishing field in
the main propagation direction z:

Similarly to what we did with polarizations, we can represent the state of
“internal” degree of freedom by column vectors. For example, a photon that
enters the beam splitter through input port a can be represented by an internal
state |Ψi〉 =

(

1
0

)

.
In this image, we view the action of a beam splitter as a unitary operation

acting on the states:

ÛBS =
1√
2

(

1 1
−1 1

)

. (4.13)

for an ideal symmetric beam splitter with a power transmission coefficient T =
1/2.

So, a photon in the initial state |Ψi〉 =
(

1
0

)

will pass through the beam splitter
and “evolve” into the state

|Ψ′
i〉 = Û |Ψi〉 =

1√
2

(

1

−1

)

. (4.14)

Ψi

mode d

mode cmode b

mode a

z

Figure 4.3: Two spatial modes can be used to represent a qubit, and transforma-
tions can be established using beam splitters.
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Figure 4.4: A balanced Mach-Zehnder interferometer can be used to create an
arbitrary qubit state by controlling the splitting ratio of the beam splitters and
the phase between the two possible paths.

The internal degree of freedom in this picture is just a combination of different
propagation path possibilities, which could be implemented in a variety of ways.
This method is not restricted to two-valued possibilities, equivalents to higher
spin equivalents (or, in the language of quantum information, qunits, can be
implemented using a larger base of possible propagation paths.

Typical elements to implement arbitrary unitary transformations in such a
internal Hilbert space always involve beam splitters (to combine two modes) and
phase shifters; a concatenation of such elements is e.g. a Mach-Zehnder inter-
ferometer. We can write the complete action of a Mach-Zehnder interferometer
as:

|ψ〉f = ÛMZ |ψ〉i (4.15)
(

c

d

)

=
1√
2

(

1 1
−1 1

)(

eiφ 0
0 1

)

1√
2

(

1 1
−1 1

)(

a

b

)

(4.16)

(

c

d

)

=
1

2

(

eiφ − 1 eiφ + 1
−eiφ − 1 −eiφ + 1

)

=

(

a

b

)

(4.17)

For detailed explanations on how to efficiently manipulate polarization and which-
way degrees of freedom, have a look at the classic textbook from Hecht [19], or
the very detailed matrix-centric [20].

Time-bin qubits

Time bin qubits exploit the time degree of freedom to implement a discrete basis
[21]. The state of the photon is distributed into several distinguishable time
of arrival “bins”. These can be labeled as “early” and “late” or “long” and
”short”. The amplitude in each bin and the phase between the bins provide the
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Figure 4.5: An unbalanced Mach-Zehnder interferometer can be used to create
an arbitrary qubit state as the superposition of two time bins corresponding to
propagation along either the long or the short path.

full Hilbert space for a qubit, and the scheme can in principle be extended to
higher dimensional qunits.

The simplest implementation uses all passive elements in an asymmetric
Mach-Zehnder interferometer as shown in Fig. 4.5. We can label the arms as
long and short. If the beam splitters are balanced, a photon entering through
path a and after passing through the interferometer and exiting through c will
be described as

ψ =
1√
2

(

|s〉 + eiφ|l〉
)

, (4.18)

giving a photon which is in an equal superposition of arriving “early” or “late”. To
create a photon with different amplitudes in the two bins one can use a different
splitting ratio in the first beam splitter. To measure the state in the |s〉 and |l〉
bases it is enough to record their times of arrival. To measure in the superposition
basis it is necessary to use another interferometer and “reverse” the operation (See
Fig. 4.6). On exit from the analysis interferometer, the photon will be distributed
among three time bins. The first time bin clearly corresponds to a photon that
has taken a short-short path. The last time bin equally clearly corresponds to a
long-long path. However, the middle time bin has two contributions, that of a
long-short path and that of a short-long path, and the two are indistinguishable,
thus providing a projection onto the basis where the photon is in a superposition
of the two time bins.

One disadvantage of this measurement scheme is that we only project onto the
superposition basis with 50% probability. This could in principle be addressed by
using active switches instead of the passive interferometers. In such a scenario,
the early pulse would be directed towards the long path, and the late pulse
through the short path. Both of them would arrive at the exit beam splitter
simultaneously thus eliminating the satellite peaks.
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Figure 4.6: An unbalanced Mach-Zehnder interferometer with path differences
that correspond exactly to the time bin encoding can be used as an analyzer to
project the state into superpositions of different time bins.

4.1.4 Qubit tomography and the good old Stokes param-

eters

It has been known for a long time [22] that the state of polarization of light is
fully characterized by four quantities, the Stokes parameters. These are defined in
relation to the measured quantities used to estimate them and are often grouped
together into a vector form.

S0 = It (4.19)

S1 = IH − IV (4.20)

S2 = I45◦ − I−45◦ (4.21)

S3 = IC+ − IC− (4.22)

The first parameter is just the total intensity of the light. The others are re-
spectively the difference in intensities in three orthogonal polarization basis. For
example S1 would be determined by the measuring the intensity of H and V
polarized light and taking the difference. Equivalently for the S2 and S3 in the
45◦ and circular polarization basis. These four parameters form a complete ba-
sis of the space of all possible polarization states. It is also common to use a
reduced normalized representation such that ~Sr = 1

S0
(S1, S2, S3). Using the re-

duced Stokes vector, any state of light can be visualized as a point in the Poincaré
sphere.

The Stokes parameters are convenient because they take easily measurable
quantities and reduce them to a minimal set that completely describes the light
polarization; a corresponding experimental scheme is shown in Fig. 4.7, where
a fraction of the original light is sent onto various measurement branches, each
corresponding to one of the three Stokes parameters. These parameters are useful
and conveniently based on a physical measurement, however, there is nothing



92 CHAPTER 4. QUANTUM INFORMATION WITH PHOTONS

I−

I+ IC+

IC−

IV

IH

1:2 1:1

λ / 2 λ / 4
@45° @45°

Figure 4.7: A simple setup to measure the Stokes parameters.

fundamental about them. It is possible to chose a different set of measurements
and come up with an equally good equivalent representation.

Going back to qubits, consider now an arbitrary state of polarization written
as a density matrix,

ρ =

(

ρHH ρHV

ρV H ρV V

)

with trρ = 1 (4.23)

Quantum tomography tries to completely determine all the entries in the ma-
trix so as to completely describe the quantum state. A not too deep examination
shows that the number of independent parameters in the density matrix is the
same as for the Stokes representation. Not surprisingly, the two representations
are equivalent and related simply by a linear transformation. In this sense, clas-
sical polarimetry is equivalent to the state estimation of a single qubit. In the
case of qubits encoded in polarization of single photons, this equivalence is exact.

An uncomfortable point about the measurement scheme in 4.7 is that we
record six quantities that get instantaneously reduced to four independent pa-
rameters; we should be able to do better than that [23] and end up with a leaner
alternative [24].

When considering tomography schemes it is useful to keep some conditions in
mind. The measurement should be universal and unbiased; that is, it should be
able to characterize any possible input state, and do so with equal accuracy, or
nearly so, for all of them. Additionally, when working with photons, we should
remember that measurements are destructive, and that, given the efficiency limi-
tations of detectors, we cannot use the failure of a photon to arrive as a projective
measurement.

A measurement that fulfills these conditions is made up of four detector read-
ings corresponding to the overlap of the unknown Stokes vector with four non-
coplanar vectors bj that define a tetrahedron in the Poincaré sphere (see fig. 4.8).
Each measurement operator Bj can be written as

Bj =
1

4
(~bj · ~σ), (4.24)
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Figure 4.8: Efficient polarimetry. (a) Polarization measurements are carried out

corresponding to four measurement states ~bj, which form a tetrahedron on the
Poincaré sphere. (b) Experimentally, four photon counting detectors are used,
each associated with the outcome of one of the measurements. The light is divided
between the four detectors by a partially polarizing beam splitter (PPBS), half
(HWP)- and quarter (QWP) wave plates, and polarizing beam splitters (PBS).

where ~σ = (σ0, σ1, σ2, σ3), σ0 being the unit matrix and σ1,2,3 the Pauli matrices.
Figure 4.8 shows a possible experimental realization of these measurement oper-
ators. The average intensity falling on detector bj is denoted as Ij. Expectation
values of the tetrahedron operators are related to detected intensities as

Ij

It

= 〈Bj〉 =
1

4
(~bj · ~S) with It =

4
∑

j=1

Ij. (4.25)

A bit of manipulation allows to relate the fractional intensities ~I directly to the
components of the density matrix written in a vector form,

~ρ =
1

2
Γ1Π

−1 · ~I = T · ~I. (4.26)

Where ~I = Π · ~S and Γ1 = ( ~σ0, ~σ1, ~σ2, ~σ3). The matrix Π is sometimes referred
to as the instrument matrix, as its exact values depend on the details of the
experimental setup and will be adjusted during calibration. The relation between
the fractional intensities and the entries in the density matrix is summarized in
the so-called tomography matrix T .

4.2 Multi photon stuff

Photons as single qubits are only of moderate interest, the description is mostly
a reformulation of phenomena that have been known in optics for more than
100 years into the language of quantum mechanics. The really fascinating effects



94 CHAPTER 4. QUANTUM INFORMATION WITH PHOTONS

σ +−σ

σ + −σ

1
1

4s4p P

S0
14s2

4p S0
12

551.3nm581nm

406nm 422.7nm
path B

J=1

path A

J=0

J=0

Figure 4.9: The relevant energy levels of calcium atom used to generate polar-
ization entangled pairs of photons from an atomic cascade in Ca, and the two
indistinguishable paths for a radiative decay of the upper excited state.

present themselves when considering multiphoton states. In particular those that
arise from superpositions of multiphotons states, i.e. entangled states. Quantum
physics allows the existence of states that cannot be described completely just in
terms of their constituent parts. It was realized early on [25] that the existence
of these states challenged the way we understood physical phenomena and the
underlying physical theories accounting for them.

4.2.1 Entangled photon pairs

The theoretical implications of the existence of entangled states did not result in
an experimental push to produce them until the formulation of Bell inequalities
[26]. Until that point, it was understood that entanglement brought up philo-
sophical questions about the underlying properties of our theories, but there was
no experimentally relevant measurement that could discriminate between the op-
tions presented. With the formulation of Bell’s theorem this changed radically.
There was now an experiment that could be used to resolve the issues in the
EPR paradox. The first step in any experiment of this type was to prepare a
pure entangled state of two particles - photons seemed very promising, since the
measurements could be carried out independently, and even in space-like sepa-
rated settings.

4.2.2 Atomic cascades

In this subsection, we illustrate how we can produce pairs of entangled photons
using atomic cascades. First of all, let us consider the following three energy
levels in the calcium atom used in the experiment by Aspect [27].

First, photon pairs were generated by a cascade decay from an excited atomic
state as shown in Fig. 4.9. Similarly to the single photon sources discussed earlier,
this leads to photons which are well localized in time. The cascade decay ensures
that there is a strong temporal correlation between the two photons as well.
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Figure 4.10: Hong-Ou-Mandel experiment on the indistinguishability of photons
generated in parametric down conversion. Down-converted photons are super-
imposed on a beam splitter BS with an adjustable delay ∆x, and photon pair
coincidences between the two output ports are recorded.

The main idea to prepare an entangled state between this photon pair in a po-
larization degree of freedom is to consider the conservation of angular momentum
for the complete decay process. As shown in Fig. 4.9, there are two possible paths
for the decay to proceed, each involving different magnetic orientation states in
the intermediate level. Each partial emission process conserves the angular mo-
mentum, so decay via path A leads first to emission of a σ−-polarized photon
for the first stage, and a σ+-polarized one for the second decay. For path B, the
polarizations change accordingly.

The atom is initially and after the cascade in a J = 0 level, which does not
allow to store any angular momentum information about the decay path. Since it
is therefore impossible in principle to know which path the decay process actually
has taken, the two photons are in an entangled state

|ψ−〉 =
1√
2
(|σ+〉1|σ−〉2 − |σ−〉1|σ+〉2). (4.27)

In a practical experiment, a fraction of the emitted photons was captured into
two opposite directions, and photon pairs were identified by a coincidence mea-
surement with polarization analyzers under various angles.

After many hours of measurement time, the observed polarization correlations
between the photon pairs violated the Bell inequality by 5 standard deviations.

4.2.3 Hong–Ou–Mandel interference in parametric down

conversion

The observation of correlated photon pairs by parametric down conversion by [18]
suggested that this process is able to deliver correlated photon pairs as well. In
order to prepare this photon pair in an entangled state, it was also necessary to
have two completely indistinguishable photon pair generation processes, similar
to the different orientation paths for the atomic cascade decay.
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An important step to demonstrate this indistinguishability was presented in
a paper in 1987 [28] with a deceptive title: ”Measurement of sub-picosecond time
intervals between two photons by interference”. The paper considered a scenario
in which two photons enter the two input ports (a and b) of a 50:50 beam splitter
(see Fig. 4.10). Classically we would expect a binomial distribution of the possible
outcomes. That is we expect that 25% of the time both photons exit through
port c, 25% through port d and 50% of the time the photons are distributed to
different ports. However, the quantum behavior is very different.

In terms of operators for generating/removing photons from the vacuum, we
can write the action of the beam splitter as

â =
1√
2

(

ĉ + d̂
)

, b̂ =
1√
2

(

ĉ − d̂
)

(4.28)

This implies that the two photons will never exit through different ports. A very
simple way to see this is to express a two-photon state in modes a, b in terms
of creation operators acting on the vacuum, and then reformulate the state in
terms of creation operators on modes c, d using the operator transformation rule
eqn (4.28):

|1a; 1b〉 = â†b̂†|0〉

=
1

2

(

ĉ†2 − d̂†2
)

|0〉 =
1√
2

(|2c; 0d〉 − |0c; 2d〉) (4.29)

This can be interpreted such that two photon interference effect gives complete
cancellation of an outcome of a contribution |1c; 1d〉 leading to coincidence de-
tection events. This simple description in terms of single modes needs to be
completed to describe real systems: Each photon is a wave packet, e.g. described
in a form of eqn (2.90). If the wave packets in the input modes do not perfectly
overlap, the transfer relation eqn (4.28) for the input/output modes needs to be

modified e.g. to include creation operators â′
†

which can take care of the part
of wave packet mode a which does not overlap with the wave packet mode in b
after superposition in the beam splitter. The overlap of the two wave packets
that determines the degree of cancellation.

The right part of Fig. 4.10 a sketch and a corresponding experimental trace of
this so-called Hong-Ou-Mandel dip. The H-O-M dips allow to judge the degree of
indistinguishability of two photon wave packets and has become a common tool
in photonic quantum information.

4.3 Entangled photon pairs from spontaneous

parametric down conversion

The indistinguishability of the photons localized in time that originate from para-
metric down conversion as demonstrated in the Hong-Ou-Mandel experiments
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Figure 4.11: Observation of photon pairs which are entangled in time bin qubits.
The detection post-selects on coincidences between the two detectors for a time
difference ∆t = 0, where both short/long path combinations become indistin-
guishable.

opened the path to generate entangled photon pairs via this process. The ad-
ditional element needed to arrive at a photon pair were two indistinguishable
processes. In the following, we highlight a few approaches to this problem.

4.3.1 “Energy-time” entanglement

Apart from the polarization entangled photon pairs generated in cascade decays,
one of the early suggestions was related to what is now referred to as time-bin
qubits, and was proposed still with an atomic cascade as a photon pair source
[29]. The indistinguishability of two photon pair generation processes there comes
from the fact that it is not known when a particular pair creation process takes
place assuming the coherence length of the excitation light initiating the photon
pair is long enough to not allow to infer when it happened.

A SPDC-based version of the original proposal is shown in Fig. 4.11. Each
of two modes of target photons emanating from the nonlinear optical crystal are
sent into asymmetric Mach-Zehnder interferometers with a path length differ-
ence corresponding to a time delay which can be resolved electronically (typi-
cally a few nsec) - such a configuration is referred to as “Franson interferometer”.
When looking for coincidences between the photodetectors at the output ports of
the loops, the corresponding pair correlation function g(2)(∆t) has three distinct
peaks, corresponding to the path combinations s1l2, s1s2 or l1l2, and l1s2. If the
path length differences of the two asymmetric MZI is the same within the coher-
ence length of the down-converted light (typically a few 100µm for common down
conversion sources), and if there is no possible indication of the pair generation
time, then the possibilities s1s2 and l1l2 are indistinguishable. The necessary long
coherence time for the pump mode implies a very narrow frequency distribution
of the pump, or equivalently a well-defined energy of the pump photons - which
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probably is the reason for the otherwise not so obvious choice of the common
term “energy-time entanglement” for this idea.

By restricting the observation to photon pairs to a time difference ∆T = 0,
simply by carrying out a coincidence selection with a narrow time window, the
observed pairs can be thought of having been in a time-bin entangled state. The
entanglement, i.e., coherent superposition of the two early/late photon genera-
tion processes, can be verified by modulating the phases in both Mach-Zehnder
interferometers. The detected coincidence pair rate c0 then varies sinusoidally
only according to the difference of the two phase shifts φ1 and φ2,and could be
used to test a Bell inequality.

An experiment with almost the same scheme has been published by the
Geneva group [21], but with a pulsed source. This pulsed source has a very
short coherence time; in order to ensure the indistinguishability of the two pho-
ton pair generation processes – otherwise the to options s1s2 and l1l2 could be
distinguished by looking at the detection time – the source path also had to in-
clude a Franson interferometer, preparing a coherent superposition of two pump
pulses.

While preparing photons in a time-bin entangled state is not very demanding
to the photon pair generation process, the asymmetric Mach-Zehnder interferom-
eters can be a substantial technical challenge, as they have to kept stable within
a fraction of the optical wavelength for a path length difference on the order
of one meter to ensure proper electronic selection of the corresponding paths.
Such a stability usually can only be maintained with relative elaborate active
stabilization schemes.

4.3.2 Polarization entanglement from type-II non-collinear

SPDC

Technically much less demanding than time bin qubits is the encoding into po-
larization states. An entangled photon generation scheme utilizing this degree
of freedom was suggested and experimentally demonstrated [30]. For a long
time, this was probably one of the most widely used schemes for generation of
polarization- entangled photon pairs.

The basic idea there explores the angular dispersion properties in the bire-
fringent conversion materials, and uses a non-collinear arrangement of pump-
and target modes in a type-II phase-matching configuration. The geometry of
pump- and target directions and polarizations is shown in Fig. 4.12(a). For a
pump mode with a fixed wave vector kp, there is a wide spectrum wave vectors
of signal and idler to meet phase matching conditions and energy conservation.
For a fixed target frequency, the possible combinations of signal- and idler modes
form two cones, which – for type-II phase matching – have different main axes.
For a proper choice of crystal orientations, these two cones intersect for two di-
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Figure 4.12: Type-II non-collinear parametric down conversion following (Kwiat
et al. 1995).

rections (labeled 1 and 2). Parametric down conversion light collected into these
two directions cannot clearly identified as being either the signal (ordinary polar-
ization) or idler (extraordinary polarization. Transverse momentum conservation
now requires that if a e-polarized photon is present in direction 1, the o-polarized
twin photon from the same conversion process must be present in direction 2,
and vice versa.

To make sure that the two corresponding down conversion possibilities lead-
ing to a photon pair in modes 1 and 2 are really indistinguishable, a residual
distinguishability due to the birefringence in the conversion crystal needs to be
removed, which would allow to infer the ordinary/extraordinary information from
the delay between the two photons. This “longitudinal walk-off” can be compen-
sated by birefringent media with half of the total retardation than the conversion
crystal; often crystals made from the same material are used, preceeded by half
wave plates to rotate the polarization before the modes enter the compensators
as shown in Fig. 4.12 (b). This also partly reduces the effect of a transverse
wall-off, which is present since the crystals are typically used in a critical phase
matching scenario.

Such a source geometry allows to collect the down converted light efficiently
into single mode optical fibers, which for a proper mode matching to the dis-
persion properties of the conversion crystal take care of the spectral filtering for
the target modes [31]. With such an arrangement, a reasonably high brightness
(around 1000 observed pairs per mW pump power for a 3 mm thick BBO crystal)
can be achieved. The pair collection efficiency, quoted as observed pair events
to single events (where one of the photons was not detected) for such a source is
commonly around 30%, which would translate into a collection efficiency of 60%
if a detector efficiency around 50% is assumed. For cw pumped source of this
type, the desired singlet state |Ψ−〉 = 1/

√
2(|H1V2〉 − |V1H2〉) can be prepared

with fidelities over 99.5%.

Such a geometry can also easily be used for generating pairs with ultrashort
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Figure 4.13: Polarization-entangled photon pair source based on two crystals
C1, C2 cut for type-I phase matching conditions, tilted by 90◦ with respect to
each other. The indistinguishable decay paths correspond to a pair generation in
the first or second conversion crystal. By adjusting the pump polarization with
the half wave plate λ/2, the balance between the two components |HH〉 and
|V V 〉 can be adjusted.

pump pulses, where the coherence length of the pump is on the order of the
coherence length of the target photons. Such a pumping scheme is used for a large
number of experiments where more than two photons needed to be generated.

4.3.3 Polarization entanglement from type-I SPDC

A somewhat simpler geometry to generate polarization-entangled photon pairs
relies not on two different decay processes in one conversion crystal, but generates
the two components with different crystals [32]. A schematic of this configuration
is shown in Fig. 4.13.

By choosing crystals with type-I phase matching, down converted photon pairs
are generated with the same polarization. The second decay process necessary
to form an entangled state is provided by a second crystal located directly on
top of the first one, but rotated by 90◦. For collection into target modes 1,2
which are non-collinear with the pump beam, one needs to ensure that there
is no distinction in any degrees of freedom from which of the crystals the pair
emerged. Such a selection can either be done by spatial filtering, or by using
single mode optical fibers, which efficiently remove any spatial information. This
scheme is somewhat simpler than the type-II configuration discussed above, since
it does not need any birefringence compensation as long as the coherence length
of the pump field is larger than the physical extent of the two crystals. The
photon pair is generated in a state

|Ψ〉 = |H1H2〉 cos φ + |V1V2〉 sin φ , (4.30)

where φ indicates the orientation of the polarization of the pump with respect to
the extraordinary polarization for a given crystal. This pair state s different from
a singlet state, but can easily be converted into one by applying local operations,
i.e. , polarization transformations on one of the modes only. This scheme has
therefore the advantage to generate non-maximally entangled states, while the
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Figure 4.14: Type-II parametric down conversion in a Sagnac configuration. The
two decay paths correspond to photon pairs generated in both directions in a
collinear configuration; the pairs are combined via a beam splitter such that they
form a polarization-entangled state.

type-II source discussed before has by construction a fixed ratio between H and
V components.

Another advantage of this geometry is that for type-I phase matching in BBO,
the material commonly used for this process, a larger optical nonlinearity can be
used than in type-II phase matching. Since this enters in the source brightness
quadratically, these sources have a potential of being intrinsically brighter than
sources based on type-II phase matching.

Recently, a very bright source based on the same idea, but using a collinear
arrangement of pump- and target modes was reported [33]. In this collinear
configuration, the distinction between the two target modes is made by lifting
the commonly used frequency degeneracy between the two target modes, and the
photon pairs are separated with a wavelength division multiplexer. The collinear
conversion geometry allows also for a very good mode overlap, resulting not only
in a high brightness, but also into a pair/single ratio of up to 39%; correction
with the usual detector efficiency of around 50% suggests that this source has an
extremely high pair collection or single photon heralding efficiency, reaching up
to 80%.

4.3.4 Sagnac geometry

Another approach to prepare polarization-entangled photon pairs in a collinear
geometry makes use of a type-II phase matching process, but uses two differ-
ent emission directions as the source for indistinguishable photon pairs [34]. A
schematic of the experimental setup is shown in Fig. 4.14.

The conversion crystal has to be pumped from two directions, and to make the
two pair processes indistinguishable, the coherence length of the pump must be
longer than the path length difference; ideally it has a coherence length exceeding
the one of the crystal or a few crystal lengths.
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Each of the two pair generation processes leaves a H and a V polarized photon
propagating in the same direction. In order to arrive at a polarization entangled
state in two target modes 1 and 2, the polarization of pair photons from one
direction is rotated by 90◦, and then light from both conversion directions is
combined on a polarization beam splitter. This distributes the photons from
each conversion process onto the two output modes, resulting in a singled state
for the photon pair.

Such sources have been implemented with periodically poled potassium titanyl
phosphate (PPKTP), which leads to a very narrow spectral distribution of the
photon pairs. An extremely high brightness of 28000 detected pairs per mW
pump power for a 25 mm long crystal has been reported for such a source [35]
after coupling into optical fibers, together with a fidelity of the targeted state
comparable with the other bright sources described above. For this long crystal,
a spectral bandwidth of 0.4 nm has been reported.

Such down conversion sources have actually a high enough spectral brightness
that interactions with atoms have been observed.

4.4 Multiphoton Tomography

So far we have discussed the preparation of photonic qubit states - limited to sin-
gle and two-photon states, but using higher order conversion processes, entangled
states between up to 8 photons have been prepared.

Apart from techniques to prepare complex multiphoton states, we also need
some tools to analyze such states. In this last section, we will visit a few common
methods for state analysis if more than one photonic qubit is involved. While the
techniques can be mapped onto most implementations of photonic qubits, here
we focus on implementations with polarization.

4.4.1 Standard tomography

Following the same line of argument as in Subsection 4.1.4, we need to come up
with a set of measurable quantities that can be used to determine all independent
parameters necessary for a complete state description. A pure two-photon polar-
ization state can be written as a linear combination of four product polarization
states (we use H and V as our “computational basis”):

|Ψ12〉 = αHH |H1H2〉 + αHV |H1V2〉
+αV H |V1H2〉 + αV V |V1V2〉 , with

∑

i,j=H,V

α2
ij = 1 (4.31)

The density matrix of a two photon polarization state can consequently be written
as a 4×4 matrix in the same basis, and has 15 independent parameters (assuming
normalization). It is clear from this that it is not enough to do polarimetry on
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the individual photons and just combine those results (3 free normalized Stokes
parameters for each photon). This, in fact, is a reason why quantum information
promises to be a powerful tool with not very complex systems.

To arrive at a sensible state description, we need to perform joint polarization
measurements to fully account for the possible correlations present in the state.
One way of doing this is to take the same basic measurements that are used
for single photon tomography and combine them. The traditional measurement
scheme for the stokes parameters with a measurement device as shown in Fig. 4.7
would require the recording of 6 × 6 = 36 detector correlations. A more sophis-
ticated way of carrying out these measurements, and to reconstruct the photon
pair state from them is given in [36]

There are a few issues with this procedure. One problem with this is that it
does not estimate all states equally well. Another is that the estimation some-
times produces unphysical states. Additionally, the measurement is overdeter-
mined and therefore apparently inefficient.

4.4.2 Efficient tomography

Alternatively we can use on the minimal tomography setup based on tetrahedron
POVMs. What we would like to do is extend the concept of Stokes vector to
a multiphoton state and extend the formalism presented in section 4.1.4 to an
arbitrary number of photons.

The simplest multi-photon system is a photon pair identified by coincident
time of arrival. In this scheme, each component photon is passed through a four-
output polarimeter like the one described in 4.1.4. Given two polarimeters 1 and
2, each with four detectors bi1 and bi2 , respectively, (i1, i2 = 0, 1, 2, 3), there are
16 possible coincidence combinations. Each coincidence rate is governed by an
operator composed from the individual detectors’ measurement operators. If we
denote again the measurement operator of detectors bi1 and bi2 as Bi1 and Bi2 ,
and the coincidence count between them as ci1,i2 , we can express the coincidence
rates as a linear function of a 2-photon polarization state vector S2:

ci1,i2

ct

= 〈Bi1 ⊗ Bi2〉 = (
1

4
~bi1 ⊗

1

4
~bi2) · ~S2, (4.32)

with ct =
4

∑

i1,i2=1

ci1,i2

Here, ~S2 is the Stokes vector equivalent for a 2-photon system and ct is the total
number of observed coincidences. We now have the set of measurement operators
governing the coincidence pattern. The sixteen coincidences ci1,i2 can be written

in column vector format ~C2 =(c1,1, c1,2, ..., c4,4). If we define the 2-polarimeter
instrument matrix as Π2, we obtain an instrument response:

~C2 = Π2 · ~S2 ⇔ ~S2 = Π−1
2 · ~C2 (4.33)
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Thus the 2-photon density matrix is given by:

~ρ2 =
1

22
Γ2 · ~S2 = T2 · ~C2 (4.34)

Each column of Γ2 is the product of two Pauli operators σi1⊗σi2 (i1, i2 = 0, 1, 2, 3)
written in column vector format and T2 is the complete tomography matrix for
the 2-photon state.

Similarly, the procedure is generalized to states containing an arbitrary num-
ber of photons,

~SN = Π−1
N · ~CN , (4.35)

~ρN =
1

2N
ΓN · ~SN = TN · ~CN . (4.36)

Each row of the instrument matrix ΠN is given by (1
4
~bi1 ⊗ 1

4
~bi2 ...⊗ 1

4
~biN ) and each

column of ΓN is the product of N Pauli matrices σi1 ⊗ σi2 ... ⊗ σin (in = 0, 1, 2, 3
and n = 1, 2, ..., N).

A few more comments about multi-qubit tomography. The procedure just
described uses the minimal number of measurements and thus is efficient in an
experimental sense. It is also known to be optimal for single qubits, but it is an
open question whether this holds for multi-qubit states. We are only considering
here methods that are “simple” and efficient from an experimental point of view.
For example, we limit ourselves to individual measurements per photon rather
than the in principle more powerful global POVMs for the simple reason that
these are a by themselves a challenge to implement. We have however extended
our dictionary of available measurements beyond naive projective measurements,
and expanded into simple POVMs. It is interesting to note that the classical
optics community converged in very similar protocols for polarimetry [37].

4.5 Bell state analysis

The four Bell states are a complete orthogonal basis of the state of two qubits:

|Ψ±〉 =
1√
2

(|H1V2〉 ± |V1H2〉) , |Ψ±〉 =
1√
2

(|H1H2〉 ± |V1V2〉) , (4.37)

They play a fundamental role in protocols such as teleportation, entanglement
swapping and many others. None of these states can be identified b simply
doing single qubit measurements; each of them would result in a completely
random result. A Bell state measurement is now defined as a measurement,
where an arbitrary two-photon state is projected onto the four Bell states, and
the measurement result is one out of four values, indicating one of the four states
in eqn 4.37.
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Figure 4.15: Simple partial Bell state analyzer, using the symmetry of photons
entering a symmetric beam splitter(a). For most physical beam splitters, the
photon pair gets distributed onto the two detectors A,B only for |Ψ12〉 = |Ψ+〉.
Another Bell state |Ψ−〉 can be identified if each output port is further analyzed
with polarizing beam splitter (b).

Being orthogonal states, in principle it should be possible to distinguish the
unambiguously. Unfortunately, it can be be shown that it is not possible to
distinguish all four Bell states using only linear optics. This problem is equivalent
to the difficulty of implementing a universal two-qubit gate with linear optics [38],
since a Bell state measurement can be implemented with a CNOT gate and a
(cheap) one qubit Hadamard gate.

4.5.1 Partial Bell state analysis

The basic idea behind a partial Bell state analysis makes use of the fact that both
photons of pair entering the input ports of a normal 50:50 beam splitter will leave
the beam splitter at different output ports if the photon pair is in a |Ψ+〉 state,
as shown in Fig. 4.15(a). This can be seen by extending the simple beam splitter
matrix eqn (4.13) to a 4 × 4 matrix for both polarization modes. One caveat
for most beam splitters is that they change the helicity of the polarization upon
reflection; this means that the transfer matrix has the phase shift between the
two reflections at the other ports. We leave it to the reader to generate the full
transfer matrix, and to work out its action on various Bell states.

Most of the proof of principle experiments implementing a Bell state analysis
only perform this relatively simple part by looking for coincidences at detectors
A and B behind beam splitter to identify |Ψ+〉 [39].

A simple extension of this method allows to identify one more Bell state if
the configuration shown in Fig. 4.15 is used, where each of the output ports of
the beam splitter is followed by a polarizing beam splitter, leading to a unique
detector pattern in case both a H and V polarized photon was present. The
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Figure 4.16: Setup to perform a complete Bell state measurement. This scheme
relies on the fact that a polarization-entangled photon pair generated in a cw-
pumped SPDC process exhibits also a time-bin entanglement. The larger Hilbert
space this pair is embedded in allows then to carry out a complete Bell state
analysis with linear optical elements.

identification of the Bell state can be obtained from the following lookup table:

detector coincidence state

A-C or B-D |Ψ+〉
A-B or C-D |Ψ−〉

There have been several attempts to get around this limitation. Some in-
voke non-linear optical effects (ref), probabilistic identification (ref) or heralded
detection (ref).

4.5.2 Complete Bell state analysis

Surprisingly there are ways to get around this limitation [40, 41] if one takes
advantage of additional entanglement which is present “for free” in the usual
PDC sources used to produce Bell states.

When preparing entangled states via PDC (see Section 4.2.1f), the photons
are not only in a polarization entangled state but also in an energy-time entangled
state, i.e. , they were generated at an unknown but identical time. This property,
sometimes called hyper-entanglement, can be exploited to implement a full and
deterministic Bell state analyzer using only the tools of linear optics. Consider
the setup in Fig. 4.16. A PDC source produces pairs which are then combined
into a beam splitter. At zero delay, H-O-M interference will result in the state
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|ψ+〉 split between the two output modes, thus can be uniquely identified. The
other three states will send the two photons together either through a′ or b′.
Of these, |ψ−〉 has its two photons in orthogonal polarizations. By sending this
state into a delay line based on a pair of PBSs the two photons will be split
deterministically with the V photon taking the long path (l) and the H photon
taking the short path (s). This state can be uniquely identified by the different
time of arrival given by the delay. Finally the |φ〉 states both have their photons
in superpositions of identical polarizations with only the phase differentiating
them. When going through the delay line the two photons will stick together and
take either the long or the short path depending on their polarization, resulting
in a state,

|φ±〉 =
1√
2
(|Hs, Hs〉 ± e2iφ|Vl, Vl〉). (4.38)

When φ = 0, these two states can be easily distinguished by analyzing in the 45◦

basis.

|φ+〉 =
1√
2
(|+45◦, +45◦〉 + |−45◦,−45◦〉) (4.39)

|φ−〉 =
1√
2
(|+45◦,−45◦〉 + |−45◦, +45◦〉) (4.40)
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