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Abstract

A fiber-based Michelson interferometer is capable of measuring sub-micrometer

changes in its optical path difference, and can be utilized for sensing mechani-

cal perturbations in the environment. Such an interferometer can be modified

to a heterodyned phasemeter by placing an acousto-optical frequency shifter

in one of the interfering arms, which allows unambiguous measurements of

the directional displacements in the optical path difference.

This thesis describes the development and optimizations of such a fiber-based

heterodyne phasemeter operating at telecommunication wavelength (1550 nm).

In this phasemeter, the optical path differences between the two interfering

arms are encoded into the phase of a beatnote between two different opti-

cal frequencies. The phase information is extracted through a digital I/Q

demodulation scheme, which involves sampling the beat signal at a specific

frequency. This allows for an accurate reading of the length difference between

the two arms of the interferometer.
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Chapter 1

Introduction

1.1 Recent Developments in Underwater Seismology

71% of the Earth’s surface is covered by water, posing major logistical challenges for geophysical

research in the Earth Science community. As such, majority of seismic stations are located on

land, with limited numbers of temporary ocean-bottom seismometers[1, 2], and permanently

tethered observatories[3]. However, these systems are very costly and often unfeasible on large

scales.[4]

With the rise of the internet, most oceans are crossed by an extensive infrastructure of

telecommunication fibres.[5] In 2012, an international Joint Task Force was established to de-

sign “SMART” (Scientific Monitoring and Reliable Telecommunications) cables with environ-

mental sensors embedded in repeaters every ∼50 km.[6, 7] Since, there has been efforts to turn

these optical fibres into seismo-acoustic sensors. A breakthrough is shown in Marra et al. [4],

coincidental detection of earthquakes via analyzing the phase stability of the metrology-grade

lasers has shown this method to be successful with optical fibres with lengths on the order of

1000 km. However, the author acknowledges that in the case of a single optical fibre, there is

ambiguity in determining the location of seismic events, which can only be resolved with the

use of a second optical fibre located elsewhere.

An alternative method known as Distributed Acoustic Sensing (DAS)[8–11], analyses backscat-

tered laser light with phase-based optical time domain-reflectometry[12] to resolve seismic activ-

ity detected to within the fibre[8, 9]. This method has been successful at mapping out previously

unmapped fault zones with a single optical fibre.[8] However, DAS as a method is only feasible

with much shorter optical cables, on the order of 20 km due to attenuation.[12–14]

With these considerations, this thesis proposes the development and improvement of a fibre-

based interferometric system that can detect mechanical perturbations.
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2 CHAPTER 1. INTRODUCTION

1.2 Thesis Outline

The thesis aims to describe the development and optimisations of a digital fibre-based interfer-

ometric system, called the heterodyne phasemeter [15].

In Chapter 2, the well-known Michelson interferometer[15] is first introduced, before high-

lighting on its limitations. This gives rise to the modification of the interferometer to produce

a heterodyned phasemeter in Chapter 3. However, the signal from heterodyned phasemeter is

modulated unlike the Michelson interferometer, and a demodulation scheme—I/Q demodulation

is introduced in theory.

Chapter 4 discusses some experimental results that follows from using I/Q demodulation,

and complications that arises in such an experimental setup. Chapter 5 then experiments with

a different demodulation scheme, and describes some of the results.



Chapter 2

Michelson Interferometer Setup

2.1 Fibre-based Michelson Interferometer

 sensing fiber
(~130 meters)

Lab Building

 50:50 
coupler

    Laser
(1550nm)

Faraday Mirrors

Environmental 
  disturbance

Interference 
Signal Recorded PhotodiodeA sample event, waveform logged at 25-Nov-2020 11:59:26

Figure 2.1: Fibre-based Michelson Interferometer

Figure 2.1 is a schematic diagram of a fibre-based Michelson interferometer. We begin with

the use of a coherent light source—a laser. Denote the electric field into the interferometer by

Ein, with power Pin, with a wavelength λ0 = 1550 nm. The optical index of the optical fibre

core has value n = 1.52, and the wavenumber of the light within the circuit is k = nk0 = n2π
λ0
.

To avoid back reflection into the laser, the light is passed through an optical isolator.

The laser light is then passed through a 50:50 coupler. Here, the coupler acts as a beam

splitter, and the laser light passes through both fibre-arms of the interferometer, with lengths

Lx and Ly = Lx +∆L.

Due to birefringence [16, 17], the state of polarization is altered as it travels through an

optical fibre. If the light was simply reflected off a regular mirror, the light that exits each arm

of the Michelson interferometer could be in sufficiently distinct polarization states such that the

interference may not produce a distinct interference pattern. This can be compensated with the

use of a Faraday mirror at the end of each arm of the Michelson interferometer. In a Faraday

Mirror, the electric field gains a π/4 rad rotation in polarization state as it passes between the

Bismuth Iron Garnet (BIG) Faraday Rotating element, before being reflected off the mirror, and

another π/4 rad as it passes through the BIG magnets once more. As such, light that reflects

off a Faraday mirror has a effective π/2 rad rotation in its state of polarization with respect to

the input state. Any perturbation that is picked up by the laser light from the birefringence

in the optical fibre will therefore be reversed during the return trip. As such, the laser light

3



4 CHAPTER 2. MICHELSON INTERFEROMETER SETUP

that is emitted from both arms of the interferometer has polarization state that is orthogonal

to the the light that had entered each arm. This allows for a strong interference between the

laser light from both arms of the interferometer.

Here, the light would have traveled down 2Lx in one arm, and 2Lx+2∆Lx in the other arm.

They superpose together at the 50:50 coupler, and exits the interferometer to be detected by

the photodiode. The electric field at the output of the interferometer is given by

Eout =
1

2
Ein

(
ei2kLx + ei2kLy

)
.

At this point, it is convenient to define the optical phase difference

ϕd = 2k∆L, (2.1)

which allows us to rewrite the outgoing electric field and measurable power as[18]

Eout =
1

2
Eine

i2kLx

(
1 + eiϕd

)
, (2.2)

Pout =
Pin

4

[
4 cos2

(
ϕd

2

)]
=

Pin

2
[1 + cosϕd] . (2.3)

The output optical power from the interferometer is therefore proportional to the laser power

into the interferometer, and is a sinusoidal of the optical phase difference ϕd.

Ambiguous Relative Length Changes A direct observation of Equation (2.3) shows that

the power measured by the photodiode is periodic with respect to the optical phase difference

ϕd, and consequentially, periodic with respect to the relative length difference between the 2

arms of the interferometer. A graphical interpretation is as given in Figure 2.2.

Figure 2.2: Visual representation of power against optical phase difference

If the power fluctuation due to the length changes is small, there is no issue with such an

experimental setup to detect relative length changes, provided the intial outgoing power is far

from the extrema points as circled within Figure 2.2.

However, at the extrema of the cosine function, such as those circled within Figure 2.2, any

change (both increase and decrease) in ∆L, produces the same change in Pout. As such, there

an is ambiguity in the increase or decrease in ∆L for a given change in Pout from its extrema.

With extended measurement, there is greater ambiguity in the relative length changes ∆L of

the fibre if the output optical power from the interferometer is near an extrema point.



Chapter 3

Heterodyned Phasemeter and

Demodulation

This section will first describe my experimental setup to modulate the optical phase difference

into a carrier signal, followed by 2 different methods to demodulate the phase information from

the carrier signal.

3.1 Heterodyne Phasemeter Setup

While a conventional Fibre-based Michelson interferometer is able to measure sub-micrometer

changes in optical fibre length, it is ambiguous at measuring the displacement near the extrema

in output power. The heterodyned phasemeter is able to solve this issue. An unambiguous

optical phase ϕd (equivalently, displacement ∆L) is made possible by interfering electric fields

with two different frequencies within the interferometer. A different optical frequency from the

input laser can be provided through a frequency shifter, based on an acousto-optic modulator

(AOM). Figure 3.1 shows a schematic of my experimental setup.

Frequency
Reference

 sensing fiber
(~130 meters)

Lab Building

AOM

ω

ω+2Ω

 50:50 
coupler

   Laser
(1550nm)

Faraday Mirrors

I/Q demodulation
Ω2Ω

Environmental 
  disturbance

Phase fluctuation
      recorded

Photodiode

ω+Ω

Figure 3.1: Heterodyne Phasemeter

In contrast to the fibre-based interferometer, this experimental setup includes the use of an

AOM in the control arm of the ‘interferometer’, giving a phasemeter. This phasemeter is said

to be ‘heterodyne’, as it utilises 2 frequencies to determine the phase of the interference signal.

Similar to the previous chapter, the laser light entering the interferometer is first split into

5



6 CHAPTER 3. HETERODYNED PHASEMETER AND DEMODULATION

both arms of the interferometer by the 50:50 coupler. Along the control arm, the AOM is

connected to a frequency reference, which is set to some frequency fAOM. The light in the

control arm, before passing through the AOM, has some angular frequency ω = kc. The first

order diffraction through the AOM gains the angular frequency Ω = 2πfAOM to then have a

total angular frequency of ω + Ω, before traveling further down the optical fibre and reflected

off the Faraday mirror. The same process is repeated once more as it passes down the AOM a

second time on its way to the 50:50 coupler, giving rise to a total angular frequency of ω + 2Ω

in the light outgoing from the control arm of the interferometer.

The light from the control arm then interferes with light from the sensing arm at the 50:50

coupler, which creates an optical beat signal.

Expected Signal By considering the linear superposition of the outgoing light from each

interferometer arm, the expected electric field as a function of time is given by

Eout(t) =
1

2
Ein

(
ei(ωt−ϕd/2) + ei(ωt+2Ωt+ϕd/2)

)
.

Utilising the optical phase difference definition in Equation (2.1), the equation is simplified

to[18]

Eout(t) =
1

2
Eine

i(ωt−ϕd/2)
(
1 + ei(2Ωt+ϕd)

)
. (3.1)

Therefore, the power Pout that exits the phasemeter is given by

Pout(t) =
Pin

2
[1 + cos (2Ωt+ ϕd)] . (3.2)

As such, for fixed optical phase difference ϕd, the output power from the phasemeter is an

optical beat signal with frequency f = 2Ω/2π.

Physical Devices Used The laser source used in this project is a Thorlabs SFL1550S laser.

This laser is based on an external cavity configuration, with a lasing wavelength of 1550 nm. In

the given configuration, the laser generates a power output approximately 5 mW. The power

that exits the interferometer is approximately 2 mW. The laser linewidth was measured utilising

the self-heterodyne method. This method involves optically beating the laser with a delayed

portion of itself in an incoherent manner. The provided delay needs to be larger than the

estimated coherence time of the laser itself.

In this case, we set the interferometer to an imbalanced configuration, with one arm con-

nected to 1 km long fibre spool, and the other arm to a 6m fibre patch-cord. The power spectrum

of the optical beatnote was measured with a spectrum analyzer, and is shown in Figure 3.2.

When the light interferes with itself incoherently, the measured linewidth of the optical

beatnote is twice of the natural linewidth of the laser itself. In Figure 3.2, the spectrum was

fitted with a lorentzian profile, and the full width at half maximum (FWHM) was found to

be about 490 kHz. As such, we deduce that the laser linewidth is about 245.1(9.2) kHz, which

corresponds to a coherence length of about 389 m.

The AOM used in this setup is from Brimrose (AMF-80-20-1550). At different driving

frequencies, the first order diffraction efficiency of the AOM is shown in Figure 3.3. In this
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Figure 3.2: The measured power spectrum (with resolution bandwidth of 31 kHz) is fitted to a
Lorentzian distribution. The corresponding FWHM of the fit is found to be about 490 kHz.

The optical linewidth of the laser is therefore about 245.1(9.2) kHz.

Figure 3.3: The first order diffraction efficiency is measured as the ratio
between the first order output power and the input power into the AOM.

The AOM is found to be most efficient around 70MHz.

experiment, the AOM driving frequency fAOM was therefore chosen to be around 70MHz,

unless otherwise stated.

The output optical beatnote is detected with a fast InGaAs (Indium gallium arsenide)

photodiode (GAP100FC from GPD optoelectronics).

3.2 I/Q Demodulation by Analogue Circuit

In the previous section, it has been shown that phase information (optical phase difference

ϕd) has been encoded as the phase of the optical beatnote. In this section, a scheme that

demodulates this optical beat signal to obtain the phase information will be described.

This demodulation process is commonly known as I/Q demodulation, and an I/Q demod-

ulator can be constructed using analogue components, such as mixers and low pass filters. An
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Interferometer

Detector

Cosine
Mixer

Oscilliscope

Sine
Mixer

Local
Oscillator

Low Pass
Filter

Low Pass
Filter

Figure 3.4: Schematic diagram of demodulator circuit.

example of such a demodulator is shown in Figure 3.4. A direct digital synthesizer (DDS)

generates a strong sinusoidal signal at twice of the AOM driving frequency (f = 2fAOM ≈
140MHz). This signal, also known as the local oscillator, is split into two via a power splitter.

The two split signals are directed into two RF mixers, with one signal being phase delayed by

π/2 rad relative to the other signal. In the meantime, the optical beat signal measured from

the photodiode is also split and sent into the two mixers. The mixer performs a multiplication

between the two inputs.

For the first mixer (cosine mixer in Figure 3.4), the output signal is given by[18]

Pout(t) · cos 2Ωt =
Pin

2
[2 cos 2Ωt+ cos(4Ωt+ ϕd) + cosϕd] ,

where 2Ω = 2πf = 4πfAOM. In the other mixer (sine mixer in Figure 3.4), the output signal is

given by

Pout(t) · sin 2Ωt =
Pin

2
[2 sin 2Ωt+ sin(4Ωt+ ϕd)− sinϕd] .

We can easily observe that the output signal in the previous expressions from both mixers

contain not only the sine/cosine value of the optical phase difference ϕd, but also the local

oscillator frequency 2Ω and its higher harmonic. The high frequency terms (2Ω, 4Ω) can be

easily removed with an appropriate low pass filter, leaving only the cosϕd,− sinϕd terms. This

gives the I,Q components to be

I =
Pin

2
cosϕd, Q = −Pin

2
sinϕd, (3.3)

and optical phase difference calculated to be

ϕd = tan−1

(
−Q

I

)
. (3.4)
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From the previous section, note that measuring the phase allows one to determine the length

changes within the interferometer.

I

Q

-Q-I

(a)

(a) A phasor rotating over time.

A

I

Q

(b)

(b) The I and Q component of a phasor.

Figure 3.5: A sinusoidal wave can be represented by a rotating vector of amplitude A, with
phase ϕ.

With reference to Figure 3.5, a sinusoidal wave can be represented by a rotating vector,

with its amplitude being the length of the vector A, and its phase being the argument of the

vector ϕ. The I,Q components are merely projections of this vector onto the x, y axes. This

representation is commonly known as a phasor diagram.

3.3 Digital I/Q Demodulation

While such a circuit as described in Section 3.2 is capable of demodulating the signal, the setup

requires an assembly of passive components and a physical RF source as the local oscillator.

While this physical setup can be made compact, there exists a digital alternative which signif-

icantly simplifies the demodulation procedure. For this section, a general observation is made

on sinusoidal functions, before explaining its implication on our experimental setup, and hence,

the choice of sampling scheme.

Mathematical Description We begin with a different interpretation of the I/Q components

of a signal. Assume we have an arbitrary sinusoidal signal y(t) with an angular frequency

ω = 2πf , and an amplitude A. One can express y(t) as

y(t) = A sin(ωt+ φ0) (3.5a)

= A cosφ0︸ ︷︷ ︸
I

sinωt+A sinφ0︸ ︷︷ ︸
Q

cosωt, (3.5b)

= I sinωt+Q sin(ωt− π/2). (3.5c)

Here, we see that the quadrature-phase term Q lags the in-phase term I by π/2.
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I
I I

-I

Q Q

-Q

-I

-Q

Figure 3.6: Reading of I,Q components directly off a sinusoidal wave.

If one measures this signal y(t) at times t such that ωt is a multiple of π/2, one can easily

extract the I,Q components, as exemplified in Figure 3.6, where[19]

ωt0 = 0, y(t0) = I;

ωt1 = π/2, y(t1) = Q;

ωt2 = π, y(t2) = −I;

ωt3 = 3π/2, y(t3) = −Q.

There is an implicit assumption that the amplitude A and phase φ of the signal does not

change abruptly between consecutive samples.

With some observation of Figure 3.6, (or perhaps the 2π periodicity of ωt → ωt + 2π on

Equation (3.5)), one would be able to make the justified remark that the Q value as read off y(t1)

where ωt1 = 0.25 · 2π to be no different from the Q value as read off y(t5) where ωt5 = 1.25 · 2π.
Explicitly, for any sampled value at time ti, the next value can be sampled at time ti+1 with

ω (ti+1 − ti) = (m+ 1/4) ·2π, where m is a natural number. As such, the sampling frequency fs

no longer needs to be 4 times the frequency of the sinusoidal, but any frequency fs that satisfies

fs =
N

M
f,

with rational N/M , such that N = 4.[19]

Regardless of the time ti where ωti is some multiple of π/2 when the sinusoidal was measured,

the phase offset φ0 is always given by

φ0 = tan−1

(
Q

I

)
(3.6)

in this convention.

Digital I/Q Demodulation with Lower Sampling Frequencies With reference to the

mathematical description, the experimental setup demands that the output optical beat needs

to have a stable amplitude, and the change in optical path difference in the interferometer has

to happen at a much lower frequency than the AOM and sampling frequency.

In our experimental setup, the shift in optical frequency is f = 2fAOM ≈ 140MHz. This
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translates to a high sampling frequency fs = 4f ≈ 560MHz, by constraint of ∆t = ti+1 − ti =

π/2ω in the initial description. Such a high sampling frequency which will generate an excessive

amount of data. As such, we wish to reduce the sampling frequency, which the mathematical

description permits by choice of fs =
4
M f , where M is an integer one is free to choose.

Sampling Scheme This gives rise to our choice of sampling scheme. With reference to

Equation (3.2), we expect the measurement on the power emitted from the interferometer to be

a sinusoidal with frequency f ≈ 140MHz. As prior established, while it is possible to choose a

sampling frequency fs to be 4f ≈ 560MHz, at this high frequency the setup generates a dense

data set. We can instead choose a more conservative lower sampling frequency, such as on the

order of MHz. In the case of sampling frequency fs = 1.0MHz, we therefore detune the driving

frequency of the AOM to fAOM = 70.125MHz. Here, N = 4, and M = 561. Experimental

justification for such a choice of sampling frequency is provided in Section 4.1, where the scheme

was shown to have been successful.

The sampling can be done by any analogue to digital converter (ADC), at a sampling

frequency fs =
4
M fAOM attached to it.

3.4 From Phase to Relative Length Changes

At this point, the discussion for obtaining the optical phase difference ϕd under the scheme of

I/Q demodulation is in principle complete. However, the definition of optical phase difference,

as given in Equation (2.1), may falsely elude that the problem of determining the relative length

changes ∆L is also in principle well-determined, when it is not. A hint as to why this is the

case is also found in the reason to the choice of sampling scheme, where phase is a 2π periodic

quantity. Specifically, Equation (3.6) yields only the principle value. Formally, the arctangent

function tan−1 maps the reals R to the interval (−π, π].1 In other words, the optical phase

difference ϕd as provided in

ϕd = 2k∆L ∈ R, (2.1 modified)

ϕd = tan−1

(
Q

I

)
∈ (−π, π], (3.6 modified)

are not the same.

Therefore, we have to “unwrap” the measured phase to obtain the relative length changes

∆L, which is certainly a quantity much larger than π/k.

As prior asserted in Chapter 2, we expect some change in the optical phase difference ϕd

over time. Hence, it is sensible to view the complex phasor as having I,Q coordinate at time ti

as given by (Ii, Qi) = (yi, yi+1). However, this would mean that we are measuring the absolute

phase as the phasor walks along the complex circle, instead of the “phase offset” φ0 associated

with “t = 0”, which slightly differs from the previous section. This view of the I,Q components

as coordinates is introduced here to be consistent with Chapter 5.

1This convention is chosen to be in line with ISO/IEC 9899:1999.
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When viewing the phasor as having coordinate (Ii, Qi), by this sampling scheme, we expect

a π/2 walk along the complex circle of identical radius after each sample. This gives successive

absolute phase ϕ measurements ϕ0, ϕ1, ϕ2, · · · ∈ (−π, π] associated with time t0, t1, t2, · · · , where
we expect

ϕi+1 − ϕi ≈
π

2
(3.7)

if the measured phase was not constrained to the interval (−π, π]. However, since the measured

phase is constrained, we can make an educated guess that

ϕi+1 −
(
ϕi +

π

2

)
≈

−2π if ϕi+1 “crosses above” π,

0 if ϕi+1 does not “cross above” π.

Pictorially, we express this intuition as the Figure 3.7.

i1 2 3

ϕ

π

1
2
π

− 1
2
π

−π

0

ϕ1

Expected ϕ2

Measured ϕ2

Expected ϕ3

Measured ϕ3

Figure 3.7: Pictorial demonstration of unwrapping 2π periodicity. Blue dots represent phase if
there is no relative length changes, while red dots show the phase obtained from tan−1.

Accounting for relative length changes ∆Li between time ti and time ti+1 that leads to

phase difference ∆ϕi, one can explicitly write as

(ϕi+1 −∆ϕi)−
(
ϕi +

π

2

)
=

−2π if ϕi+1 “crosses above” π,

0 if ϕi+1 does not “cross above” π.
(3.8)

Rewriting ∆ϕi as the subject, we can say that a relative length change (as measured through

∆ϕi) between time ti and ti+1 to be

∆ϕi =

ϕi+1 − ϕi − π
2 if

∣∣ϕi+1 − ϕi − π
2

∣∣ < ∣∣ϕi+1 − ϕi − π
2 + 2π

∣∣,
ϕi+1 − ϕi − π

2 + 2π else.
(3.9)
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Combining everything together, we get the phase differential over time to be

ϕd (ti+1) = ϕ0 +
i∑

n=0

∆ϕn, (3.10)

and the issue in measuring relative length changes, as presented with the Fibre-base Michelson

Interferometer is in principle nullified.

Choice of fs Nonetheless, it remains clear that the choice of sampling frequency fs still needs

to be frequent enough, such that ϕi+1−ϕi is reasonably small. By the sampling scheme, it is also

clear that the setup cannot distinguish very large length changes such that ϕi+1−ϕi ≳ 2π from

small length changes; and the choice of sampling frequency should account for perturbations

one would expect.

Optimisations Due to the nature of computer code, the use of conditional operators (i.e.:

if ... else ...) severely slows down the rate of processing. A derivation by observation is

done in Appendix A.1, and Equation (3.9) can instead be written as

∆ϕi =
(
ϕi+1 − ϕi −

π

2

)
+ 2πH

(
π + ϕi+1 − ϕi −

π

2

)
. (A.1)
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Chapter 4

I/Q Demodulation Results

With a scheme laid out in the previous chapter to obtain the optical phase difference ϕd from

the power that exits the phasemeter

Pout(t) =
Pin

2
[1 + cos (2Ωt+ ϕd)] , (3.2)

we proceed to test if the proposed scheme is able to perform as expected.

4.1 Initial Proof of Concept

An immediately obvious test one can perform, is to ‘knock’ near the phasemeter setup gently.

The phasemeter output was connected to a photodiode. The photodiode output signal is then

connected to an oscilloscope sampling at 100 kS/s. Meanwhile, the AOM is driven with a

frequency fAOM = 80.0125 MHz.

Figure 4.1: A plot of ϕd over time, from a period of relative quiet to signal picked up
from tapping the table. A distinct ringdown and an envelope can be seen.

After the oscilloscope was set to record, I tapped the table which the phasemeter setup was

on, and processed the data in accordance with the scheme described in the previous chapter.

The result is shown in Figure 4.1. The strength of the tap is approximately comparable to

typing on a keyboard.

15
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The distinct ringdown and fairly clear resolution of the demodulated signal by the scheme

presented in Section 3.3 is an indication that the scheme is successful. Furthermore, the

relatively low sampling frequency fs = 100 kS/s in contrast to the carrier signal frequency

f = 2fAOM = 160.025MHz, is indicative that the proposal for a lower sampling frequency in

Section 3.3 is valid.

4.2 Linearity of Response

The Riesz-Fischer theorem [20, 21] states that any finite time signal can be represented by

a Fourier series. As such, if the phasemeter, along with the demodulation scheme, is able to

accurately determine any sinusoidal relative length changes ∆L, it is reasonable to claim that

the setup is able to detect all such signals.

Oscillating Mirror

AOM

ω

ω+2Ω

 50:50 
coupler

    Laser
(1550nm)

Faraday Mirrors

I/Q demodulation Frequency 
Reference

Ω2Ω

Phase fluctuation
      recorded

Photodiode

ω+Ω

Figure 4.2: Phasemeter was modified with a mirror on a piezoelectric stack to vary ∆L.

(a) The piezoelectric stack was set to oscillate at
fmirror = 143Hz, and sampling frequency fs = 1.0MS/s,
with carrier frequency f = 2fAOM = 160.25MHz, N = 4.

(b) Linearity of amplitude A of ϕd

with respect to increased Vpp
applied to piezoelectric stack.

Figure 4.3: Figure (a) shows the optical phase difference ϕd measured with a
peak to peak voltage of 2.5V applied to the piezoelectric stack. Figure (b)
shows the linear regression of obtained amplitudes A for measured ϕd with

different peak to peak driving voltages to the piezoelectric stack.

To do so, a mirror attached to a piezoelectric stack was placed in the path of one arm of the
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phasemeter, as shown in Figure 4.2. This allows us to modulate the relative length differences

∆L in the two arms of the phasemeter in a controlled manner.

A relatively low oscillation frequency was then set, and the resulting ϕd was obtained and

regressed against a sinusoidal function. The obtained ϕd was then compared against the input

into the piezoelectric.

In Figure 4.3, an example of obtained ϕd over 200ms is shown in Figure 4.3a for the specified

setting. A sinusoidal voltage with 2.5 peak to peak voltage at 143Hz was applied to the

piezoelectric stack. A sinusoidal regression was then performed against ϕd, and the amplitude

A was recorded. The regression of A against the various peak to peak voltages were then

performed, as shown in Figure 4.3b. The error bars are too small to be seen in the figure. The

linearity is therefore observed.

The same measurement was then repeated with different oscillation frequencies, and all were

also found to be linear. However, the gradients m in the regression were found to decrease with

increased frequency of oscillation, but this was likely due to a decreasing responsiveness of the

piezoelectric stack.

4.3 Complications

In the previous cases, a peculiar phenomenon was increasingly observed that could not be

attributed to merely a fluke of data collection.

Figure 4.4: A plot of (a) ϕd, and (b) its corresponding radius r in the I/Q-plane. This
mirror oscillation was set at 1.02V and 4.0Hz. fs =1.0MHz, fAOM = 80.125MHz.

Figure 4.4a is a typically observed ϕd collected when using a short optical fibre. Looking

closer, it is clear that the optical phase ϕd obtained was not natural; where the envelope of the

optical phase appears to have ‘jumped’ by approximately 2π rad.
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Figure 4.5: A closer look into the increasing 2π jump of Figure 4.4. Figure (a) and (b)
provides the recorded voltage and unwrapped ϕd around the 2π jump. Figure (c)

provides a plot of the individual (I,Q) coordinates around the occurrence of the 2π
jump. Looking at points 5 and 6, it is clear that the expected phase advance of π/2 did

not occur, therefore contributing to a jump.

Error Correction Whilst investigating the reason for these jumps, a fast1 algorithm was

created to correct them.

Figure 4.6: The error correction algorithm as described in Appendix B as applied to Figure
4.4a. The envelope appears fairly continuous, which indicates that it is indeed a jump.

The outcome of the algorithm had definitively shown that these were indeed 2π jumps,

and that the envelope was indeed continuous after utilising the algorithm. As the algorithm

detracts from the discussion here, it has been left for in the Appendix B. Figure 4.6 shows that

the envelope is indeed continuous, and that it is therefore accurate to call these a jump.

However, we take special note that identifying the hyperparameters necessary to perform

1The algorithm runs in O(n) time, where n is the number of ϕd points sampled
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the algorithm ideally is not a trivial matter, and that further investigation into the physical

source of these jumps were necessary.

Physical Sources of 2π jumps Diving deeper into the data that was collected that had

produced ϕd in Figure 4.4a, was the start of investigating the source of these jumps. Initially, I

had made a plot of the (I,Q) coordinates around the jump as given in Figure 4.5c. Figure 4.5a,

and b, are the plots of the sampled voltage V and optical phase differences ϕd around the jump.

With the (I,Q) coordinates plotted, it immediately became apparent that studying just the

phase, and not the radius does not paint a complete picture. This is further exemplified in Figure

4.4b, which was made with hindsight. Here, the collected data shows that the assumptions in

the scheme that

1. Radius of (I,Q) coordinates is fairly constant, and

2. Expected phase ‘advancement’ between consecutive points being π/2

were not necessarily true. As such, Figure 4.4b was made in hindsight, and it can be seen

that the radius component of (I,Q), i.e.: r =
√

I2 +Q2 oscillates regularly, with values almost

approaching zero.

Furthermore, using a spectrum analyzer at the photodiode signal did not reveal much that

was unusual either.

The most probable explanation is that the radius approaching 0 is the source for jumps, but

it still remains unclear why this would be the case.

Increasing sampling frequency One might consider that increasing the sampling frequency

means that the difference between two consecutive optical phase difference ϕi and ϕi+1 might

be smaller, and therefore, the chance of a 2π jump occurring is less.

Figure 4.7: Histogram of consecutive optical phase
difference ∆ϕd for fs = 1.0MHz, over 50 seconds.

fs / MHz Std. Dev.

0.10 0.283

0.25 0.234

0.50 0.235

1.00 0.216

2.50 0.202

10.0 0.191

Table 4.1: Standard deviation of the
distributions of ∆ϕd obtained for

each sampled frequency fs.

Using a 130 m optical fibre, and several sampling frequencies, the histogram of difference in

optical phase difference ∆ϕi = ϕi+1 − ϕi was identified. An example for the case of 1MHz is as

shown in Figure 4.7. The results of the standard deviation for the various sampling frequencies

is as shown in the corresponding table. The optical phase difference ϕd to Figure 4.7 is shown

in Figure 4.9.
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While the standard deviation does decrease with increased sampling frequency, the number

of samples per unit time does increase with sampling frequency. Another important point to

note is that there is a sizeable number of ∆ϕi that is almost at ±π, which indicates numerous

2π jumps. This persists even at 10MHz sampling frequency.

Uncertainty evaluation One may consider thinking of the (I,Q) coordinates as having some

associated uncertainty, thereby instead allowing us to think of the coordinate as a distribution

centered at some point with the average radius. The measured coordinates (I,Q) is then some

randomly chosen point in the distribution.

However, the radius oscillating with such regularity as exemplified in Figure 4.4b, is not a

behaviour of noise, and such a consideration is to be ruled out.

Figure 4.8: Using a 130 m optical fibre instead, the demodulated optical phase difference ϕd

starts to exhibit a random walk instead. fs = 1.0MHz, fAOM = 70.125MHz.

Necessity for better methods of extracting phase Repeating the same process to obtain

ϕd, but now for a much longer optical fibre of 130m in the absence of the oscillating mirror,

the result is as shown in Figure 4.8 and 4.9. Here, we can see the extent of 2π jumps resemble

a form of random walk, which one might have wrongly assumed as a walk in the optical fibre

length, if not for the backdrop of information established up to this point.

Tuning the algorithm as described in Appendix B to correct such a random walk is unfeasible,

and that a better physical sampling scheme is preferential. A better method is instead proposed

in the next chapter, Chapter 5.

The next section is an attempt to try further explain the source of these jumps through the

use of a mathematical model.
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Figure 4.9: A more extreme example of an experimentally observed random walk.
fs = 1.0MHz, fAOM = 70.125MHz.

4.4 Mathematical Modeling

Consider the voltage that is emitted from the photodiode (as in Figure 4.2) to be of the form

V (t) = V0 sin(2Ωt+ ϕ1 +A sin(2πfMirrort+ ϕ2) + L) +D. (4.1)

Here, L,D denote noise terms in the length of the optical fibre, and ‘detector’ respectively.

As a toy model, consider that the fibre length noise and detector noise are that of a Gaussian

noise at every time step sampled, i.e.: L = LN
(
0, σ1

2
)
, and D = DN

(
0, σ2

2
)
; where L,D are

coupling strengths, and N
(
0, σi

2
)
is the normal (Gaussian) random variable with some variance

σi
2 centered at 0.

In an attempt to replicate Figure 4.4 and the signal V (t) that was sampled to create it, V0

was set to 0.092, and L was arbitrarily set to a relatively small value of 0.020, with σ2 = 0.3.

Then, the value of L, σ1 was slowly increased from 0, and the corresponding ϕd(t) was then

observed as shown in Figure 4.10.

If we treat the oscillating mirror A sin(2πfMirrort) as the deterministic component of changes

in the fibre length, and L as the noise component of changes in the fibre length; it was found

that for fixed small L, σ1, a small value in A (i.e.: some deterministic change in the fibre length)

was also necessary for 2π jumps to occur.

This toy model has therefore shown that deterministic changes in fibre length over time

∆L(t), together with sufficiently noisy changes in the fibre length L, along with a small amount

of detector noise would have created 2π jumps.

Possible Improvements We first introduce the concept of power spectral density. The

spectral density function[17] S of frequency f (in Hertz) for a stationary signal x(t) measured
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Figure 4.10: 2π jumps observed using the toy model. V0 = 0.092, A = 0.8, fMirror = 0.5Hz,
L = 1, σ1 = 0.48, D = 0.020, σ = 0.3, fs = 1.0MHz, fAOM = 70.125MHz

over a finite time T , is given by

S(f) =
2

T

∣∣∣∣∣
∫ T/2

−T/2
x(t)e−i2πft dt

∣∣∣∣∣
2

(4.2)

Figure 4.11: Figure (a) is the power spectrum density (PSD) of the signal V (t) as
provided in the toy model to Figure 4.10. Figure (b) is the power spectrum density

of the signal V (t) that was sampled to have produced Figure 4.4.

Experimentally, the power spectral density of the signal that produced Figure 4.4 is shown

in Figure 4.11b with a distinct peak at 250 kHz. This peak of 250 kHz is expected, as it is

identically 2fAOM mod fs, which is the frequency at which the phase advance π/4 is expected

to evolve. Note that the toy model demonstrates a distinctly white noise spectrum, whilst
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the real signal deviates from a white noise spectrum, and therefore, likely to have different

properties from which the toy model does not exhibit.

We however note that, the goal of this mathematical toy model is not to completely replicate

the experimental data, but to give insight as to its reason for occurrence.

For the situation of the random walk as presented in Figure 4.9, one might instead consider

a different noise model, such as the Weiner process [22] to model the noise terms L. The

corresponding power spectrum density for the modeled V (t) will be different, but does not

come anywhere close to the power spectrum density of the real data.
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Chapter 5

Non-I/Q Demodulation

Having no good physical reason as to the source of 2π jumps as discussed in Section 4.3, a

different approach is required.

In this chapter, we will rework some of the machinery that has been discussed in Section

3.3 but using points along the sinusoidal that are not π/2 rad apart, but with any arbitary

value. This still allows for the identification of phase information of the carrier signal. This

is termed as “Non-I/Q demodulation”.[19] Thereafter, this chapter will discussed the optical

phase difference ϕd obtained by non-I/Q demodulation, in contrast to the results of Chapter 4.

5.1 Digital Non-I/Q Demodulation

In Section 3.3, we stated that

y = A cosφ0︸ ︷︷ ︸
I

sinωt+A sinφ0︸ ︷︷ ︸
Q

cosωt. (3.5)

Let us instead now consider measuring at times t such that ωt is multiples of some θ that is

a rational fraction of 2π. This gives successive samples yj measured to be[19]

j ∈ {0, 1, · · · , N − 1}, yj = I · sin(jθ) +Q · cos(jθ). (5.1)

The value of N will be further elaborated later. In the case of ideal sampling without noise,

(I,Q)

(y1,y0)

(y2,y1)
(y3,y2)

(y4,y3)

θ
θ

θθ

Figure 5.1: Phasor in I/Q plane advancing by arbitary angle θ.
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any 2 equations from Equation (5.1) would give a solution to I,Q; but a different method is

required in the presence of real conditions.

Regression To obtain the appropriate values of I,Q, one can apply an unbiased estimator

for the least mean squares algorithm.[23] We aim to minimize the function[19]

f(I,Q) =
N−1∑
j=0

[I · sin(jθ) +Q · cos(jθ)− yj ] , (5.2)

where yj is the jth sampled value along the sinusoidal y(tj). The minimization is given by[19]

∂f

∂I
= 0,

∂f

∂Q
= 0. (5.3)

Solving these would then give[19]

I =
2

N

N−1∑
j=0

yj · sin(jθ), (5.4a)

Q =
2

N

N−1∑
j=0

yj · cos(jθ), (5.4b)

which are the (I,Q) coordinates of the 0th sampled point y0. We can repeat the same for the

next data point y1, getting a different (I,Q) coordinate, with an expected phase advance of

θ.[19]

5.2 Sampling and Carrier Frequency

This section clarifies on the values N and θ from the previous section.

Similar to Section 3.3, consider any sampling frequency fs and carrier frequency f = ω/2π,

fs =
N

M
f, (5.5)

but now only with requirement that N/M is positive rational Q>0.[19] Interpreting in the time

domain, this means that N samples are taken in M consecutive carrier periods, such that the

phasor returns to its initial position, modulo 2π. This gives the phase advance to be

θ =
M

N
· 2π mod 2π. (5.6)

We take care to note that while we might not care too much for the value of M , as discussed

in Section 3.3, it is a logical fallacy to deduce the value of θ directly from the value N . For

example, N = 8 does not imply that θ = π/4, as θ = 3π/4, 5π/4, 7π/4 are equally valid as a

solution.
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For integer fs and f , the values of N,M are given very simply by

N =
1

gcd (fs, f)
fs, (5.7a)

M =
1

gcd (fs, f)
f, (5.7b)

where gcd (·, ·) is the greatest common divisor operator.

Phase Unwrapping Generalising from Section 3.4, with more detail in Appendix A.1, the

relative length change (as measured through ∆ϕi) between time ti and ti+1 is then

∆ϕi =

 (ϕi+1 − ϕi − θ) + 2πH (π + ϕi+1 − ϕi − θ) , for θ ∈ (0, π) , (A.1)

(ϕi+1 − ϕi − θ)− 2πH (−π + ϕi+1 − ϕi − θ) , for θ ∈ (−π, 0) . (A.4)

Sampling Scheme For this chapter, we chose to work with N = 8, and θ = π/4. This is done

by setting the sampling frequency to 1.0MHz and Ω to 70.0625MHz, unless otherwise specified.

This is therefore, an advantage of this experimental setup, as one can very easily utilise such a

different sampling scheme.

In principle, one could choose any integer for N , such as N = 5. However, the produced the

optical phase difference ϕd was not sensible, and it was suspected that powers of 2 would only

work. This has however, not been verified for N = 16, 32, · · · .

5.3 Test of Concept and Resiliency Comparison

In the many repeated tests with the new scheme, no 2π jumps were initially noticed over the

case of sampling in 1 s intervals. This was a significant improvement over the N = 4 sampling

scheme. Figure 5.2 shows ϕd without deliberately generated noise, in direct comparison against

Figure 4.8.

Looking closer at Figure 5.2, the envelope to the optical phase difference ϕd appears to vary

much less than Figure 4.8. To further substantiate that the 2π jumps are correlated with the

radius approaching 0, we note that in Figure 5.2, the radius over the entire 20 s was measured

to be 0.114(14); whereas the radius over the 20 s in Figure 4.4 was measured to be 0.122(19).

The decrease in standard deviation from 0.019 to 0.014 under identical physical setup, in similar

noise conditions when taking N = 4 → 8 means that the likelihood that it is very near 0 is

much less. Both data sets were taken back to back. Therefore, jumps being related with low r

values is further substantiated. Furthermore, we show that increasing the value of N from 4 to

8 is better at providing physically sensible optical phase difference ϕd.

Taking a smaller time segment, the radius of Figure 4.8 and 5.2 is shown in Figure 5.3. One

can observe the extent of this difference in standard deviation, even if the numerical difference

is approximately 30%.
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Figure 5.2: A plot of (a) ϕd, and (b) its corresponding radius r in the I/Q-plane. This was
sampled without deliberate perturbation. fs = 1.0MHz, fAOM = 70.0625MHz.

Figure 5.3: A smaller time slice of the radius r in the I/Q-plane
from Figure 4.8 and Figure 5.2 respectively.
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5.4 Perturbation Sensing in the Lab

One would expect that the extent of human activity to be significantly less at night than in the

day. Due to the limitation of the existing setup, continuous recording of data is at present still

not feasible. As such, we opted for the next best option, to record the voltage V (t) as frequently

as possible. As an initial run, we settled for the sampling 1 s of data every 61 s.

Figure 5.4: Standard deviation σ of ϕd(t) over the course of one second, per 61
second interval. This was started on 24 February 2022, and was left to run for about

a day. This is a proxy for the measure of human activity within the lab.

After collecting the data for approximately a day, starting from 24th February 2022 15:57

pm, the optical phase difference ϕd for each time segment was then obtained, and the standard

deviation σ over the entire of ϕd(t) for the one-second interval, was obtained. The result is

shown in Figure 5.4.

Comparing day against night, it is clear that the noise observed during lab hours is larger

than that of at night, where people are not around in the lab, and the data conforms with our

expectations.

Figure 5.5: ϕd obtained at 5pm. This is one of the many samples
taken over the course of the day.
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5.5 Toy Model

With reference to Section 4.4, Figure 4.10, we can replicate the mathematical modelling under

identical noise conditions, but under the scheme of non-I/Q demodulation. With all values kept

constant except for fAOM = 70.0625MHz, the obtained ϕd is as shown in Figure 5.6.

Figure 5.6: 2π jumps observed using the toy model. V0 = 0.092, A = 0.8, fMirror = 0.5Hz,
L = 1, σ1 = 0.48, D = 0.020, σ = 0.3, fs = 1.0MHz, fAOM = 70.0625MHz

This further supports the robustness of N = 8 non-I/Q demodulation, in contrast to the

case of N = 4 for I/Q demodulation.



Chapter 6

Summary

This thesis, first demonstrates the modification of a typical fibre-based Michelson interferom-

eter into a heterodyned phasemeter. Several properties of our experimental setup was then

characterised, before the I/Q demodulation scheme was described. This I/Q demodulation

scheme allows for the digital sampling of data from the phasemeter to determine the directional

displacement in the optical path difference between the two arms of the interferometer.

With the I/Q demodulation scheme, experimental results were collected and analysed, but

an issue with jumps was soon found. Work was then placed into the correction, and identification

of the source of this jumps, but no good physical reason could be found.

As an advantage of the experimental setup, non-I/Q demodulation was explored, and the

results proved successful in contrast to I/Q demodulation.
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Appendix A

Optimisations

A.1 Phase “unfolding”

In Chapter 3.4, the “unfolding” of measured absolute phase ϕi ∈ (−π, π] to optical phase

difference ϕd ∈ R was shown. For ease of reference, the key equations are repeated here:

ϕi+1 − ϕi ≈
π

2
(3.7)

∆ϕi =

ϕi+1 − ϕi − π
2 if

∣∣ϕi+1 − ϕi − π
2

∣∣ < ∣∣ϕi+1 − ϕi − π
2 + 2π

∣∣,
ϕi+1 − ϕi − π

2 + 2π else.
(3.9)

which was said to required optimisation. As further shown in Chapter 5, Equation (3.7) could

have instead been any sensible value, such as between 0 and π.

Since ϕi ∈ (−π, π], consider a variable u defined by ϕi+1 − ϕi ∈ (−2π, 2π], and variable

θ ∈ (0, π], which plays the role of generalising the π/2 in Equation (3.7). Studying Equation

(3.7) closely, we notice that u and θ always come together, and therefore we define x = u− θ ∈
(−2π − θ, 2π − θ].

We utilise a concept in computer science known as branchless programming, where con-

ditional statements such as if, switch and other conditional statements translates to a mov

command in Assembly, among other inefficiencies. Removing avoidable branches is therefore a

good practice.

This encourages us to define a mathematical function that does not require the use of a

‘branch’, and with some experimentation, we get the function f defined by

∆ϕ = f(x) = f(u− θ) = x+ 2πH(π + x), (A.1)

where H(x) is the Heaviside function. Plotting for fixed values of θ, we get Figure A.1, which

behaves as we expect.

That said, while it has not been rigorously tested with the experimental setup, it is not

adviseable to choose values of θ too close to π.

The next part is written in context of Section 5.1, where the possible values of θ could

be much different. For choices of θ ∈ [π, 2π) (which is equivalent to θ ∈ [−π, 0) by the 2π

periodicity), note that the intuition that led to Equation 3.9 would differ slightly. The phase
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Figure A.1: A plot of expected ∆ϕi for various x, with θ fixed to 4 values.

advance would then have one expect that ∆ϕ < 0, and the jump as shown in Figure 3.7 would

instead be

(ϕi+1 −∆ϕi)− (ϕi + θ) =

2π if ϕi+1 “crosses below” − π,

0 if ϕi+1 does not “cross below” − π.
(A.2)

Rewriting ∆ϕi as the subject, we can say that a relative length change (as measured through

∆ϕi) between time ti and ti+1 to be

∆ϕi =

ϕi+1 − ϕi − θ if |ϕi+1 − ϕi − θ| < |ϕi+1 − ϕi − θ − 2π|,

ϕi+1 − ϕi − θ − 2π else.
(A.3)

The branchless function f is then written as

∆ϕ = f(x) = f(u− θ) = x− 2πH(−π + x) (A.4)

for θ ∈ [−π, 0).
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A.2 Discrete Convolution

Mathematical Definition For complex-valued functions f, g defined on the set Z of integers,

the discrete convolution of f and g is given by [20]

{f ∗ g}(n) =
∑
m∈Z

f(m)g(n−m) (A.5a)

or equivalently

{f ∗ g}(n) =
∑
m∈Z

f(n−m)g(m). (A.5b)

Example of Convolution Used in the Project With reference to Section 5.1, the following

equations are reproduced here.

I =
2

N

N−1∑
j=0

yj · sin(jθ), (5.4a)

Q =
2

N

N−1∑
j=0

yj · cos(jθ). (5.4b)

This is a strong example where convolution is used alot in the project. Utilising a for loop

in any high level, interpreted language such as Python would be very slow. Optimising this

step to utilise convolutions, which often has native or optimised open-source implementations,

would be ideal.

We recall that we wish to determine (Ii, Qi) for the sampled points yi, for which there are

alot of. Looking closely at the two equations, it looks similar to Equation A.5a with a scale

factor, and the domain Z has been constrained. Properly rewriting for all sampled points yi

and their corresponding (Ii, Qi) coordinate, we have

Ii =
2

N

N−1+i∑
m=i

ym · sin((m− i) θ), (A.7)

Qi =
2

N

N−1+i∑
m=i

ym · cos((m− i) θ). (A.8)

This can be easily be written as a convolution, by identifying f with y, and g by

i ∈ {0, 1, · · · , N − 1}, g(i) = sin((N − 1− i) θ),

or the cos equivalent to obtain Q. Note that if there are l sampled values of yi, then the last

N − 1 points do not have their coordinates known. In other words, only l + 1 −N points will

have I,Q coordinates known.
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Example in Python Using numpy np, we first define a sine and cosine “lookup table” by

from numpy import pi

N = 8 # Example

theta = 2*pi/N # Example

sines = np.sin([i * theta for i in range(N)])

cosines = np.cos([i * theta for i in range(N)])

which can then use for convolution. Defining the values of y by signal, we can get the I,Q

coordinates by

Is = (2/N) * np.convolve(signal , sines[::-1], mode= ’valid ’)

Qs = (2/N) * np.convolve(signal , cosines[::-1], mode= ’valid ’)

The use of [::-1] is by definition of the convolution operator (and likewise, the slightly ugly

definition of g).

This is many orders of magnitude faster than using the for loop within Python.

Example in GNU Octave We first define a sine and cosine “lookup table” by

sines = sin ([0:N-1] * theta)

cosines = cos ([0:N-1] * theta)

which can then be used for convolution. Defining the values of y by signal, we can get the

I,Q coordinates by

Is = (2/N)*conv(signal , fliplr(sines), "same")

Qs = (2/N)*conv(signal , fliplr(cosines), "same")

Example in Mathematica We first define a sine “lookup table” by

Nv = 8 (* Example *)

theta = 2*Pi/Nv (* Example *)

sines = Sin[( Range[Nv]-1)* theta]

cosines = Cos[( Range[Nv]-1)* theta]

which can then be used for convolution. Defining the values of y by signal, we can get the

I,Q coordinates by

Is = ListConvolve[Reverse[sines], signal]

Qs = ListConvolve[Reverse[cosines], signal]

For reference, I also note that another strong example of convolution used is in obtaining

∆ϕi in Equation (A.3).



Appendix B

2π Jumps Error Correction

Algorithm

This appendix is written to supplement a tangential discussion on work that was done in the

process of the project, as aforementioned in Section 4.3. In this section, we let ϕi be the

individual timesteps ti of the demodulated optical phase difference ϕd(ti), rather than the

argument of the I,Q coordinate, as given by tan−1(Q/I)—the measured phase.

Initial Attempt to Error Correction Algorithm When taking a closer look at the ϕd

data generated (such as in Figure 4.4a), a recurring pattern one quickly observes is that the

phase is likely to have a 2π jump when

|ϕi+1 − ϕi| ≫ 0,

where π/2 plays the role of expected phase change here, such in the case of N = 4, as presented

in the context of Section 4.3. In principle, this algorithm can also be extended to the case

of Chapter 5 if necessary, but will not be discussed here. To formalize the notion of ≫ 0 as

presented in the above equation, one can take a look at the distribution of ϕi+1−
(
ϕi +

π
2

)
; This

allows us to specify a choice of tolerance δ such that a phase advancement of ϕi to ϕi+1 with

|ϕi+1 − ϕi| > δ

is considered anomalous/‘large’. Successive anomalous phase advancement of the same sign are

then added up until the phase advancements returns to being non-anomalous. If the total sum

is approximately 2π, the algorithm can then shift the all subsequent ϕd by appropriate multiples

of 2π. We denote the number of consecutively anomalous phase increments (or decrements) by

n.

Issues with intial attempt This algorithm has several hyperparameters of arbitrary choice

to nail down.

First, there are two parameters ϵ± associated to the phrase “approximately 2π”. Next there

are 2 parameters to bound the expected values of n from below and above, which are also
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implicitly variable with δ. Very often, a strict choice (i.e. large) of δ would have meant that

a 2π jump might have occurred with just n = 2, which is a very low treshold for n, and also

required the parameters ϵ± to have been much larger.

Alternatively, one could relax the tolerance δ, but the value of n could have then even raised

to 5, and a stricter to choice of ϵ± would have been harder to have narrowed down on.

While it is entirely possible to perform some kind of machine learning (probably, a grid

search from gut instinct) to narrow down on the appropriate choice of parameters, such effort

would prove to be wasteful with just some thought, as the noise exhibited in ϕd has been shown

to vary with the environment, and even the length of fibre, where the choice of parameters

would likely need to change.

As such, this algorithm shall be left in this appendix in words, and no code is replicated

here. We now present a slightly wiser algorithm.

Second attempt to the Error Correction Algorithm In the case of N = 4, as prior

mentioned, one does not expect n ≥ 8 for reasonable choices of δ, even if small. As such, we

define a ‘difference window’ d = 8, and a cache of length 8d. The difference window is done

across the cache. In the difference window, a 2π jump has occurred if

1. Within any given window, there is indeed a jump of approximately 2π, i.e.:

|ϕi+d − ϕi| ≈ 2π,

2. Within the cache but outside the found window, the phase is relatively constant.

The second condition is necessary, as it is physically possible for consecutive 2π shift over all

windows within the cache. This removes away the arbitrary choice of δ, but the idea of when a

change is large enough to start accounting for consecutive sign difference is still useful.

The figure in the following flowchart gives a pictorial representation of what things look like

during a jump.

Data stream

Rolling average Difference
data[i]-data[i-8]

2π jump detection

Corrected signal

Figure B.1: Flowchart of idea to tackling 2π jumps.

Due to the constraint to keeping as minimal computations as possible, alot of the code is

done in a convoluted manner. The code as in python, is as follows.
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import numpy as np

from math import copysign

sign = lambda x: 0 if x == 0 else int(copysign(1,x))

class fix2pi ():

def __init__(self):

self.stream = []

self.shift = 0

self.shift_counter = 0

self.prevjump = 0

self.buflen = 0

self.cutoff = 64

self.rollen = 8

self.rolavg = []

self.counter = 0

self.tol = 1 # 2 * rms(noise) + a bit more

def process(self ,data):

# main loop that takes in

data += self.shift*2*pi

self.stream.append(data)

self.counter +=1

# when buffer is not filled , populate and terminate fn call

# move data from stream into rolavg

if self.buflen != self.cutoff:

self.buflen +=1

if self.buflen == self.rollen:

self.rolavg.append(sum(self.stream)/self.rollen)

elif self.buflen >= self.rollen:

self.rolavg.append( \

(self.stream[-1]-self.stream[-1-self.rollen])

/self.rollen+self.rolavg[-1] )

return None

# addition of 2 numbers to get rolling average

self.rolavg.append( \

(self.stream[-1]-self.stream[-1-self.rollen])

/self.rollen+self.rolavg[-1] )

# check if jump is centered around 2 pi

jump = self.rolavg[-1] - self.rolavg.pop(0)

jump_sub = abs(jump) - 2*np.pi

if abs(jump_sub) < self.tol: # check the signs are the same

if sign(jump) == self.prevjump:

self.shift_counter += 1

else:

self.shift_counter = max(0, self.shift_counter-1)

else:

self.shift_counter = max(0, self.shift_counter-1)

self.prevjump = sign(jump)
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# print(f"{jump_sub = }, {self.prevjump = }")

# with jump criteria satisfied , perform correction

if self.shift_counter >= self.cutoff - self.rollen -23:

print(f"jump detected at {self.counter:>10}")

self.shift_counter = 0

# implement shift

self.shift -= self.prevjump

# change rolling average

jump_arg = np.argmax( \

[abs(self.stream[i]-self.stream[i-1]) \

for i in range(1, self.buflen)] ) + 1

for i in range(jump_arg , self.buflen+1):

self.stream[i] -= self.prevjump * 2 * pi

for i in range(max(0,jump_arg-self.rollen), \

min(jump_arg ,self.cutoff-self.rollen+1)):

self.rolavg[i] -= self.prevjump

*(i-jump_arg)*2*pi/self.rollen

for i in range(jump_arg ,self.cutoff-self.rollen+1):

self.rolavg[i] -= self.prevjump*2*pi

return self.stream.pop(0)

The code is mostly self-explanatory.

The optimisations done are to utilise a rolling average to reduce the extent of noise in

the phases (denoted as stream). The rolling average is done this way to avoid the need to

recompute over all of rollen (“roll length”) each and every time a new phase is piped in. After

performing jump = self.rolavg[-1] - self.rolavg.pop(0), there exists a small spike into

2π with some widdth if there has been a 2π jump. If the correct number of consecutive sign

changes have occurred concurrently (i.e. the width is appropriate), as given by shift counter,

the 2π fix is invoked. The point within the array is manually pointed out for the rising and

falling edges.

However, there are still some parameters that are fairly arbitrary, such as the 23, and the

noise tolerance ϵ. As reiterated from the initial attempt, whilst it may be possible to converge

on the appropriate hyperparameters, it is likely to vary between various noise situations, and

therefore unlikely to be practical.
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6Bruce M. Howe, Brian K. Arbic, Jérome Aucan, Christopher R. Barnes, Nigel Bayliff, Nathan

Becker, Rhett Butler, Laurie Doyle, Shane Elipot, Gregory C. Johnson, Felix Landerer,

Stephen Lentz, Douglas S. Luther, Malte Müller, John Mariano, Kate Panayotou, Charlotte

Rowe, Hiroshi Ota, Y. Tony Song, Maik Thomas, Preston N. Thomas, Philip Thompson, Fred-

erik Tilmann, Tobias Weber, and Stuart Weinstein, “Smart cables for observing the global

ocean: science and implementation”, 6, 10.3389/fmars.2019.00424 (2019).

7CR Barnes, “Quantum leap in platforms of opportunity: telecommunication cables”, Chal-

lenges and innovations in ocean in-situ sensors: Measuring Inner Ocean Processes and Health

in the Digital Age, eds E. Delory and J. Pearlman (Amsterdam: Elsevier Science), 33–44

(2018).

8Nathaniel J Lindsey, T Craig Dawe, and Jonathan B Ajo-Franklin, “Illuminating seafloor

faults and ocean dynamics with dark fiber distributed acoustic sensing”, Science 366, 1103–

1107 (2019).

41

https://doi.org/10.1126/science.aat4458
https://doi.org/10.3389/fmars.2019.00424
https://doi.org/10.3389/fmars.2019.00424


42 BIBLIOGRAPHY

9Maria R Fernandez-Ruiz, Marcelo A Soto, Ethan F Williams, Sonia Martin-Lopez, Zhongwen

Zhan, Miguel Gonzalez-Herraez, and Hugo F Martins, “Distributed acoustic sensing for seismic

activity monitoring”, APL Photonics 5, 030901 (2020).

10Zhongwen Zhan, “Distributed acoustic sensing turns fiber-optic cables into sensitive seismic

antennas”, Seismological Research Letters 91, 1–15 (2020).

11Yuanyuan Shan, Wenbin Ji, Xinyong Dong, Lu Cao, Mohammadmasoud Zabihi, Qing Wang,

Yixin Zhang, and Xuping Zhang, “An enhanced distributed acoustic sensor based on uwfbg

and self-heterodyne detection”, Journal of Lightwave Technology 37, 2700–2705 (2019).

12Mulugeta C Fenta, David K Potter, and Janos Szanyi, “Fibre optic methods of prospecting: a

comprehensive and modern branch of geophysics”, Surveys in Geophysics 42, 551–584 (2021).

13Nathaniel J Lindsey, Eileen R Martin, Douglas S Dreger, Barry Freifeld, Stephen Cole,

Stephanie R James, Biondo L Biondi, and Jonathan B Ajo-Franklin, “Fiber-optic network

observations of earthquake wavefields”, Geophysical Research Letters 44, 11–792 (2017).

14Philippe Jousset, Thomas Reinsch, Trond Ryberg, Hanna Blanck, Andy Clarke, Rufat Aghayev,

Gylfi P Hersir, Jan Henninges, Michael Weber, and Charlotte M Krawczyk, “Dynamic strain

determination using fibre-optic cables allows imaging of seismological and structural features”,

Nature communications 9, 1–11 (2018).

15Lutang Wang and Nian Fang, “Applications of fiber-optic interferometry technology in sensor

fields”, Optical Interferometry (2017).

16Scott Rashleigh, “Origins and control of polarization effects in single-mode fibers”, Journal

of Lightwave Technology 1, 312–331 (1983).

17Eric Udd and William B Spillman Jr, Fiber optic sensors: an introduction for engineers and

scientists (John Wiley & Sons, 2011).

18Jennifer Watchi, Sam Cooper, Binlei Ding, Conor M. Mow-Lowry, and Christophe Collette,

“Contributed review: a review of compact interferometers”, Review of Scientific Instruments

89, 121501 (2018).

19T Schilcher, “RF applications in digital signal processing”, in Cas - cern accelerator school:

course on digital signal processing (2008), pages 249–283.

20Steven B Damelin and Willard Miller, The mathematics of signal processing, Cambridge texts

in applied mathematics, 48 (Cambridge University Press, 2011).

21Walter Rudin, Real and complex analysis: 3rd. ed. (McGraw-Hill, 1987).

22Kurt Jacobs, Stochastic processes for physicists: understanding noisy systems (Cambridge

University Press, 2010).

23Simon Haykin and Bernard Widrow, Least-mean-square adaptive filters, Vol. 31 (John Wiley

& Sons, 2003).

https://doi.org/10.1109/JLT.1983.1072121
https://doi.org/10.1109/JLT.1983.1072121
https://doi.org/10.1063/1.5052042
https://doi.org/10.1063/1.5052042
https://doi.org/10.5170/CERN-2008-003.249
https://doi.org/10.5170/CERN-2008-003.249

	Abstract
	Introduction
	Recent Developments in Underwater Seismology
	Thesis Outline

	Michelson Interferometer Setup
	Fibre-based Michelson Interferometer

	Heterodyned Phasemeter and Demodulation
	Heterodyne Phasemeter Setup
	I/Q Demodulation by Analogue Circuit
	Digital I/Q Demodulation
	From Phase to Relative Length Changes

	I/Q Demodulation Results
	Proof of Concept
	Linearity of Response
	Complications of 2pi jumps
	Mathematical Modeling

	Non-I/Q Demodulation
	Digital Non-I/Q Demodulation
	Number of Points Sampled about the Complex Circle
	Test of Concept and Resiliency Comparison
	Day-Long Measurement within the Lab
	Toy Model

	Summary
	Optimisations
	Phase ``unfolding''
	Discrete Convolution

	2pi Jumps Error Correction Algorithm

