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Abstract

Quantum entanglement provides sources of randomness that can be certified as being
uncorrelated with any outside process or variable. Certified private randomness can
be extracted by a system that shows a violation of a Bell inequality. The randomness
extraction rate depends on the observed violation and on the repetition rate of the
Bell test. Photonic systems generally show a small violation, but thanks to their high
repetition rate it is possible to obtain a high randomness generation rate.

In this thesis, polarization-entangled photon pairs generated by spontaneous para-
metric down conversion (SPDC), together with near-unit detection efficiency transition-
edge sensors are used to demonstrate a detection loophole-free Bell violation. The
setups presented in this thesis reach more than 82% detection efficiency for each
measurement party of the Bell test.

We use a continuous wave source and organize detection events in uniform time
bins to define a measurement round for the Bell test. A relatively high violation for a
Bell test using photon pairs without detection loophole is observed with our system.
The measurement outcome also shows that the observed violation and randomness
generation rates depend on the time bin length. Using an extractor secure against a
quantum adversary with quantum side information, we calculate an asymptotic rate
of ≈ 1300 random bits/s. With an experimental run of 43 minutes, the extractor
generated 617 920 random bits, corresponding to ≈ 240 random bits/s
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Introduction

Randomness is an essential resource for many applications in modern science and
technologies [1–5]. For example, Monte Carlo simulations require uniformly distributed
random numbers as an input [5]. Some applications, such as quantum cryptography,
require random numbers to be not only uniformly distributed, but also unpredictable [1,
2].

Most applications today rely on pseudo-random number generators, which are
deterministic algorithms that generate sequences of statically random numbers from
initial seeds [3, 6–9]. This type of random number generator is cheap and fast, but
its output is completely determined by the input seed, making it not suitable for
cryptography applications [1, 2].

Alternatively, a sequence of random numbers can be derived from a physical process
(physical random number generator). Many existing physical random number generators
are based on measuring properties of chaotic physical systems, such as fluctuation in
atmospheric parameters, which are well described by classical mechanics [10]. These
systems are deterministic, but the precision and computation resources necessary to
measure the initial states and predict the measurement outcomes is outside of our
current capacity. However, there is no way to ensure the quality and independence of
the randomness generated.

Quantum random number generators belong to a special class of physical random
number generators. They are based on one of the fundamental ideas of quantum
mechanics: the outcome of a measurement on a quantum system is probabilistic. It
is possible then to build a random number generator adopting a convenient choice of
state and measurement. A simple example of quantum random number generator is
the detection of single photons impinging on a 50-50 beam splitter. A binary random
sequence is obtained by labeling the outcome of the photon transmitted or reflected
as 1 and 0 [11]. The problem with this type of quantum random number generator
is that it relies on the unverifiable assumption that the system is indeed governed by
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a non-classical process. For example, how can we be sure that we are considering a
single photon state [12]?

In 1964, John Bell proposed a test to check if the experimental system can be
described by classical physics [13]. The Bell test takes the form of an inequality, and a
violation of the Bell inequality means that the outcome from the measurement device
can not be can not predetermined by local variables. Therefore, it is possible to use the
violation of a Bell inequality to certify the generation of randomness [14, 12]. To date,
several experimental realizations of Bell test have already been demonstrated [15–22].

In 2010, Pironio et al. first reported a randomness extraction experiment based
on a Bell test using an atomic system (Yb+ ions) [14]. However, limited by the low
repetition rate, the random number generation rate is only ≈ 10−5 s−1, making it
impractical for most applications. Photonic systems can have a much higher repetition
rates compared with atomic systems, but photons are easily lost during transmission,
and single photon detectors typically have low detection efficiencies. Most Bell tests
using photons assume that the detected photons represent the whole system (fair
sampling assumption). Conventionally, if a Bell violation is under this assumption, one
attributes a detection loophole to this Bell test.

Advances in high-efficiency infrared single photon-detectors [23, 24], combined with
high coupling-efficiency photon pair sources, allowed the demonstration of detection-
loophole free Bell tests with entangled photons [17, 18, 20, 25]. The random bit
generation rates for these setups are on the order of tens per second [26], where the
main limitation is the fixed repetition rate of the experimental setup, combined with
the small violation observed.

This thesis presents a polarization-entangled photon pair source based on continuous
type-II spontaneous parametric down-conversion (SPDC) in Sagnac configuration [27,
28]. The source is designed and optimized to achieve high photon pair collection
efficiency. However, an efficient source is not enough to close the detection loophole.
Thus, it is necessary to couple the source to highly efficient superconducting detectors,
transition-edge sensors (TESs) [29, 30]. Sae Woo Nam’s research group from NIST
manufactured the TESs for this work, and my lab partner Lee Jianwei installed and
operated these detectors.

Most reported detection loophole-free Bell tests using photon pairs were performed
with pulsed pumped SPDC sources, in which one measurement round of a Bell test
can be naturally defined as one pump pulse [18, 20, 25, 26, 31]. For the continuous
wave source presented in this thesis, the measurement rounds are defined by organizing
the detection events into uniform time bins. For a fixed overall detection efficiency and
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photon pair generation rate, the observed violation and random bit generation rate are
functions of the time bin width.

0.1 Thesis outline

The goal of this thesis is to extract certified randomness from a detection loophole-free
Bell violation with a continuous wave source. Chapter 1 discusses the concept of
randomness and introduces different types of random number generators. It then
explains the basic idea behind the Bell test, together with the concept of the detection
loophole and remaining loopholes not addressed in this work. Chapter 1 also reports
on state-of-the-art experiments generating certified randomness based on the Bell test.

Chapter 2 describes the process of designing and setting up the polarization-
entangled photon pair source. This chapter also explains the method of optimizing
the coupling efficiency and improving the signal-to-noise ratio. To close the detection
loophole, the source is coupled to a pair of transition-edge sensors, which exhibits
high quantum efficiency for single-photon [29, 30]. We show that the measured overall
system efficiency is more than 82%, which is sufficient to close the detection loophole.

Chapter 3 explains the time binning method used to define measurement rounds of
a Bell test with a continuous wave source. Based on the binning method, this chapter
introduces a model used to estimate the maximal violation and optimal entanglement
state. The procedures to experimentally prepare the optimal state is also described.
This chapter closes with the experimental results of Bell violations for different time
bin widths.

Chapter 4 briefly describes the randomness extraction protocol and random number
extractor used in this work. The extractor extracted 617 920 certified random bits from
the data used to demonstrate the violation.





Chapter 1

Theory and background

1.1 Randomness

1.1.1 The concept of randomness

This section answears two questions: “what is randomness?” and “is there intrinsic
randomness in our nature?”

For the first question, let us look at this example [32]: there are two strings of
numbers (a) and (b)

11111111111111111111111111111111 (a)
10101100101000101101010101011110 (b)

If one ask which string is random, perhaps most of the people will choose (b). This
is because there is no obvious pattern in the string (b). But now if one say that these
two strings are generated from the same process (for example consecutively toss a coin)
and ask this question again, what is the answer?

Indeed, there are two types of randomness definition: process randomness and
product randomness. Product randomness refers to a series of events which lack a
pattern and process randomness refers to a process generating unpredictable series of
events [33].

Although product randomness and process randomness are not the same, an unpre-
dictable process will most likely produce a sequence that lacks a pattern. Yao’s theorem
also proved that process randomness will almost always imply product randomness [34].

This thesis studies the process randomness. In addition, this thesis also demonstrates
a product randomness generation from our system.
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Fig. 1.1 The bean machine, also known as the Galton Board, invented by Sir Francis
Galton [35]. The copyright of the image belong to [36]. Beans are dropped from the
top. For an individual bean, when it hits the pegs, it either bounces left or right.
Finally it will end at one bin at the bottom.

Now, it is time to answer the second question. By the definition of process
randomness, generating randomness from scratch is impossible [12]. The hypothesis of
super-deterministic model claims that everything, including the entire history of our
universe, was predetermined in advance and known by an external observer. To the
external observer, there is no random process in this universe. Therefore, any random
generation protocol is based on some assumptions, and fundamentally a better random
number generator is the one which has fewer assumptions. Since nothing is random
to the external observer, one may ask the question: random for whom [33]? In an
extreme case, if a random number generator is predictable to its user but not for any
of adversaries (the external observers who may destroy the user’s application seeded
with the randomness input from the random number generator), it is still considered
as a good random number generator.

1.1.2 Classical random number generator

There are few types of random number generators. A pseudo-random number generator
is a deterministic algorithm that generates sequences of statically random numbers.



1.1 Randomness 7

It will not be detailed in this thesis, since it belongs to the field of computer science,
and the output of a pseudo-random number generator is completely determined by
a seed. Another type of widely used random number generator is a physical random
number generator, which generates random numbers from physical processes. For a
physical system that can be described by classical mechanics, the randomness arises
from the difficulty of predicting the classical system, making it practically unpredictable.
However, classical mechanics is deterministic. In other words, in the classical theory,
one can deterministically compute the measurement outcome of a classical system
with all the initial conditions and infinite computation power. To clarify more on
the classical mechanics’ deterministic property, one can refer to the statement in the
famous L. D. Landau and E. M. Lifshitz classical mechanics textbook [37]: "if all the
coordinates and velocities are simultaneously specified, it is known from experience
that the state of the system is completely determined and that its subsequent motion
can, in principle, be calculated. Mathematically, this means that, if all the coordinates
q and velocities q̇ are given at some instant, the accelerations q̈ at that instant are
uniquely defined". Thus, randomness from classical physics is based on the complexity
of the system. If a system is chaotic, it is difficult to have the full detail of initial
conditions and there is not enough computing power to predict where the system will
end up.

Figure 1.1 exhibits a bean machine, which is used to demonstrate the central limit
theorem [35, 36]. Nevertheless, it can also work as a classical random number generator.
If I drop a bean from the top, it will hit the pegs and bounce to the left or right. Finally,
the bean will end in one bin at the bottom. It is difficult to predict the destination
of each beam. But in principle, it is possible to calculate the destination with all the
initial conditions.

1.1.3 Quantum random number generator

Unlike classical mechanics, quantum mechanics is a probabilistic theory. For a general
measurement, one cannot predict the outcome even if the state of the system is pure
and well known. Figure 1.2 displays a simple example of a quantum random number
generator by using single photons [11, 38, 39]. The user of the random number generator
directs a photon to a 50-50 beam splitter. According to quantum theory, the photon
has 50% chance to transmit through or be reflected by the beam splitter. If the detector
at the transmission port (reflection port) of the beam splitter fire, the user labels the
events with 1 (0). The interaction process between the single photon and the beam
splitter is intrinsic random only if quantum mechanics can completely describe the
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User’s single photon

Eve

1

0

Fig. 1.2 A quantum random number generator using single photon. A photon is
directed to a 50-50 beam splitter. Two single-photon detectors are placed at two
out-ports of the beam splitter. If the detector at the transmission port (reflection port)
of the beam splitter fires, the user labels it with 1 (0). Although this quantum random
number generator is intrinsic random according to quantum theory, one can not rule
out that the system is coupled with an adversary (Eve).

process. Moreover, the imperfection of the devices may bias the random outcome in
an uncontrolled way. It is also impossible to prove that the single photons uncouples
with an adversary’s system. Therefore, the output may be random to the user, but not
to an adversary.

Statistical tests are the only way to certify the outcome from a quantum random
number generator using single photons. But as discussed in the previous section,
product randomness does not necessitate process randomness. In an extreme case, one
can copy the random numbers, passed all the statistical tests, to many memory-sticks.
Each copy of the random numbers will pass the tests again, but they may be predictable
to the adversary.

Consequently, it is important to build a random number generator producing device-
independent certified private randomness. The random number generator should not
rely on any modeling of the device. Fortunately, the Bell test offers a solution to it.
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1.2 The Bell test

1.2.1 Background of the Bell test

In 1935, Einstein, Podolsky, and Rosen questioned in their famous paper [40]: is
quantum mechanics a complete theory? In quantum mechanics, the measurement
result on one particle of an entangled quantum system can be correlated to that of the
other particles, regardless of the distance of the particles. However, this phenomenon is
at odds with our everyday experience of the world, which happens to be local-realistic.
Locality means that the information transfer speed is limited by the speed of light in
vacuum. Realism is the assumption that a measurement outcome is predetermined
before measurement. Thus, either the quantum mechanics theory is incomplete or
nature itself is non-local-realistic.

In 1964, John Bell published the famous Bell theorem [13]. In that paper, he
proposed an experimental method to check if the world is local-realistic. Even though
he believed nature to be local-realistic, different experimental results of Bell tests have
indicated that nature behaves differently. These experiments are implemented with
different physical systems: ions [21], solid-state qubits [22], electron spins [19], and
photons [15, 41, 17, 18, 20, 42–45].

1.2.2 The CHSH type Bell test

Today, there are a few different versions of the Bell test. Most of them take the form of
an inequality. If one violates the inequality, the system under test is non-local-realistic.
In this thesis, I focus on the CHSH-type Bell test, which was proposed by John Clauser,
Michael Horne, Abner Shimony and Richard Holt in 1969 [46].

The CHSH scheme is a system with two parties conventionally named as Alice
and Bob, who are space-like separated (shown in Fig. 1.3). Alice and Bob each
have a measurement device with two measurement settings labeled with x, y ∈ {0, 1},
respectively. Alice and Bob perform the Bell test in successive rounds. In each round,
each party independently chooses a measurement setting and records the measurement
outcome. They label the outcomes with a, b ∈ {+1,−1}. The Clauser-Horne-Shimony-
Holt expression can be defined as follows

S = E00 + E01 + E10 − E11 , (1.1)
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Outcome
+1

−1

Setting 0
1

+1
−1
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1Alice’s device Bob’s device

Setting

Outcome

Fig. 1.3 A simplified CHSH Scheme. Alice and Bob each have a measurement device
with two settings x, y ∈ {0, 1} and two outputs a, b ∈ {−1, 1}. Bell tests are carried
out in successions of rounds. Each party chooses a measurement setting and records
the measurement outcome in every round.

where the correlators are defined by conditional probabilities Pr(A|B):

Exy := Pr(a = b|x, y) − Pr(a ̸= b|x, y) . (1.2)

Using the labeling a, b ∈ {+1,−1}, one can rewrite the Exy as

Exy = Pr(ab = 1|x, y) − Pr(ab = −1|x, y) (1.3)
= ⟨(ab)xy⟩ (1.4)
= ⟨axby⟩ (1.5)

The last step of the derivation assumes the independence between the measurement
setting of Bob (y) and the measurement outcomes at Alice (a), and also between Alice’s
setting (x) and Bob’s outcomes (b). Thus, Eq.1.1 becomes:

S = ⟨a0b0⟩ + ⟨a0b1⟩ + ⟨a1b0⟩ − ⟨a1b1⟩ (1.6)

If nature is local-realistic, the measurement outcome of Alice and Bob should be
independent; ⟨axby⟩ = ⟨ax⟩ × ⟨by⟩. Therefore the absolute value of S can be written as:

|S| = |⟨a0⟩⟨b0⟩ + ⟨a0⟩⟨b1⟩ + ⟨a1⟩⟨b0⟩ − ⟨a1⟩⟨b1⟩| (1.7)
= |⟨a0⟩(⟨b0⟩ + ⟨b1⟩) + ⟨a1⟩(⟨b0⟩ − ⟨b1⟩)| (1.8)
≤ |⟨a0⟩||⟨b0⟩ + ⟨b1⟩| + |⟨a1⟩||⟨b0⟩ − ⟨b1⟩| (1.9)
≤ max{|⟨a0⟩|, |⟨a1⟩|}(|⟨b0⟩ + ⟨b1⟩| + |⟨b0⟩ − ⟨b1⟩|) (1.10)
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αx βy

Alice Bob

cos θ |HV ⟩ − eiϕ sin θ |V H⟩

Fig. 1.4 A CHSH-type Bell test with photon pairs. A photon pair source distributes
polarization-entangled photons to Alice and Bob. A half-wave plate (HWP) plate and
a polarization beam splitter (PBS) define the measurement basis for Alice and Bob.
Alice (Bob) has two measurement bases α0,α1 (β0,β1) corresponding to different HWP
angles. In every measurement round, each party independently chooses a measurement
basis. If the "+" ("−") detector fires, the output labeled as +1 (−1).

If (⟨b0⟩+⟨b1⟩)(⟨b0⟩−⟨b1⟩) ≥ 0, then |S| ≤ max{|⟨a0⟩|, |⟨a1⟩|}|2⟨b0⟩|. Since max{|⟨a0⟩|, |⟨a1⟩|} ≤
1, and |2⟨b0⟩| ≤ 2, it is not difficult to see |S| ≤ 2. Else |S| ≤ max{|⟨a0⟩|, |⟨a1⟩|}|2⟨b1⟩|,
similarly, |S| ≤ 2.

The above derivation proves that the |S| ≤ 2 assuming local-realistic and one can
write the CHSH inequality as

|E00 + E01 + E10 − E11| ≤ 2 , (1.11)

However, in quantum theory, if one performs a measurement on an entangled state
with a smart choice of measurement basis, one can obtain a value of S more than 2. In
other words, one can violate Bell inequality with an entangled state.

Here we take the polarization-entangled photon system as an example. In Fig. 1.4,
a photon pair source distributes photons to Alice and Bob. The photon pair are in one
of the maximally entangled

|ψ⟩ = 1√
2

|HV ⟩ − 1√
2

|V H⟩ , (1.12)

where H represents horizontal polarization, and V represents vertical polarization.
A half-wave plate (HWP) plate and a polarization beam splitter (PBS) define the
measurement basis for Alice and Bob. They can choose their measurement bases
independently by rotating the HWPs. To be consistent with the CHSH inequality
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introduced before, the "+" ("−") detectors correspond to the output values +1 (−1). If
the four measurement bases are set as α0 = 45◦, α1 = 0◦, β0 = 22.5◦, and β1 = 67.5◦,
quantum mechanics predicts

E00 = − 1√
2
, E01 = − 1√

2
,

E10 = − 1√
2
, E11 = 1√

2
.

Via Eq.1.1, it is not difficult to find that |S| value is equal to 2
√

2, which violates the
Bell inequality.

1.3 Loopholes in Bell test

Although the first experimental Bell test was done in 1972 [47], experimental violating
the Bell inequality still draw a lot of interest. This is because the reported experimental
Bell tests are under certain assumptions [48], which leave the experimental result open
to local-realistic interpretations. This class of interpretations is called Local Hidden
Variable (LHV) theories. If a Bell violation is observed under assumptions, this
experimental Bell test so-called has loopholes. There are three main loopholes: locality,
detection, and freedom of choice loopholes. In 2015, three independent groups reported
that they completed a loophole-free Bell test [18–20], which closes the three main
loopholes at the same time.

1.3.1 Detection loophole

In a real experimental system, not all the photon are registered due to the finite
transmission and detection efficiency. The detection loophole can be explained as
follows: the result of the Bell test can be explained as that the LHV selectively induces
losses in the experiment in such a way that artificially violate the Bell inequality [50, 51].
Thus, the fraction of detected particles should be sufficiently large to represent the
system.

Fortunately, closing the detection loophole does not require 100% detection efficiency
(the probability that a generated particle pair is detected as a pair). While the minimum
efficiency required for closing the loophole with a maximally entangled state is around
83% [52, 53], Eberhard showed that this threshold can be reduced to 66.7% by using
non-maximally entangled state [49]. In his paper, he considered a photon pair system
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Fig. 1.5 Minimum-efficiency η required to close the detection loophole with different
background counts level ζ according to Eberhard’s model [49]. Here, Nζ is the number
of the background counts, for N pairs generated.

similar to the Fig. 1.4 and derived an inequality

J ideal = n+−(α1, β2) + n+u(α1, β2) + n−+(α2, β1)
+ nu+(α2, β1) + n++(α2, β2) − n++(α1, β1) ≥ 0 ,

(1.13)

where n is the coincidence counts with the subscripts +, −, u in which + labels for
the "+" detector fire, − labels for the "−" detector fire, and u labels for undetected
measurement outcomes. He constructed the quantum operator B for the value J ideal

and

J ideal = ⟨ψ|B |ψ⟩ , (1.14)

where

|ψ⟩ = 1√
1 + r2

(|HV ⟩ − r |V H⟩) . (1.15)

The value J ideal is negative only if the operator B has a negative eigenvalue. By
computing the corresponding eigenvector for the negative eigenvalue, he derived the r
value of |ψ⟩.
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However, every real detector has dark counts even without any incident particles.
Moreover, background particles from the environment may leak into the detection
system and trigger the detector. All these contribute as background noise to the Bell
test. The 66.7 % efficiency is only sufficient to close the detection loophole if there
is zero background noise. Otherwise, a Bell test requires higher efficiency to become
detection loophole-free.

Therefore, in Eberhard paper, he rewrote the J value as J ideal + 2Nζ , where Nζ is
the number of the background counts. By reconstructing the B operator and applying
the same procedures discussed above, he calculated the minimal required efficiency for
closing the detection loophole as a function of background counts (shown in Fig. 1.5).

One can rewrite the Eberhard inequality [17] in Eq. 1.13 as

J ideal = SAlice
+ (α1, β2) − n++(α1, β2) + SBob

+ (α2, β1)
− n++(α2, β1) + n++(α2, β2) − n++(α1, β1) ≥ 0 ,

(1.16)

where S
Alice (Bob)
+ (αx, βy) are events registered at Alice’s(Bob’s) "+" detector with

measurement settings αx, βy. Equation 1.16 also shows that two detectors sufficient
to perform a detection loophole-free Bell test [17]. The equivalence of the Eberhard
inequality with the CHSH inequality was shown several times [54–56].

In 2001, Rowe et al. [21] first performed a detection loophole-free Bell test using
9Be+ ions. They were able to detect ions with more than 90% efficiency. However,
their two ions were only 3µm separated from each other, and thus closing the locality
loopholes (introduced in next section) was difficult. This work was also the first time a
violation the Bell inequality has been observed without photons. In 2009, Ansmann et
al. demonstrate a detection loophole-free Bell test with superconducting Josephson
phase qubits [22]. This was the first experimental Bell test with solid-state qubits,
but the distance between the two qubits was only a few mm. In 2013, two different
groups closed the detection loophole with photon pairs [17, 25]. In this thesis, I will
also demonstrate a detection loophole-free Bell test with a photon pair source. The
method to define a measurement round in this work is different from others, and I will
introduce that in Chapter 4.

1.3.2 Locality and freedom of choice loophole

In a Bell test, Alice and Bob are assumed to choose their measurement basis indepen-
dently. To ensure that, there are can be no communication (no signaling) between the



1.4 State-of-the-art on randomness extraction from Bell test 15

0

1

0 2 2
√

2

Ex
tr

ac
ta

bl
e

bi
t/

ro
un

d

|S| value of CHSH inequality

0

1

0 2 2
√

2

Fig. 1.6 Lower bound for extractable random bits per measurement round as a function
of the S value [14]. In this figure, S is assumed to be collected from an experiment
with an arbitrarily large number of measurement rounds.

measurement parties. Otherwise, a local hidden variable (LHV) could relay Alice’s
measurement setting to Bob’s measurement device. However, any LHV is limited by
the speed of light in vacuum. Thus, one can close the locality loophole if the experiment
components are space-like separated. Aspect et al. first closed the locality loophole [15].
In a follow-up locality loophole-free Bell experiment, the separation between Alice’s
and Bob’s measurement devices was more than 10 km [44].

Besides implementing the measurement choice fast enough to prevent signaling, Alice
and Bob also have to choose their measurement settings randomly in each measurement
round. Any pattern in the choice of measurement basis allows the LHV to influence the
measurement outcome. This is called freedom of choice loophole [57]. In 2015, three
individual groups closed the three main loopholes simultaneously with photons [20, 18]
and electron spins [19]. There are also other loopholes such as coincidence-time loophole
and memory loophole [58, 59], which I will not be elaborating in this thesis.
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1.4 State-of-the-art on randomness extraction from
Bell test

A violation of Bell inequality proves that the system is not local-realistic and the
measurement outcome is not predetermined before the measurement. Moreover, the
observation of a Bell violation ensures a certain purity of the distributed state. The
purity of the quantum state certifies that the measurement devices of the two parties
are not too correlated with the external observer [12]. Thus, it is possible to extract
certified private randomness from the system violating the Bell inequality.

The extractable randomness from the Bell violation is computed without considering
the modeling of experimental devices and is only based on the observed statistics
P (a, b|x, y), or the observed S value. Thus, the randomness is device-independent.

In 2010, Pironio et al. [14] first reported a proof-of-principle demonstration of
device-independent randomness extraction based on a detection loophole-free Bell test
in a Yb+ ions system. They obtained a very high S value (2.414). However, limited
by the low repetition rates (3016 events measured in one month), the random bit
generation rate was about 1.5×10−5 s−1. They also showed that, if the Bell’s inequality
is calculated from an arbitrarily large number of measurement rounds, the extractable
random bits per round is at least

r∞ ≥ 1 − log2

1 +
√

2 − S2

4

 . (1.17)

Figure 1.6 shows the correlation between the extractable randomness r∞ per round
and the observed S value.

In 2013, Christensen et al. [25] performed a detection loophole-free Bell test using
pulsed Spontaneous Parametric Down-Conversion photon source. Due to the relatively
high repetition rates compared to an atomic system, their source was capable of
generating secure private quantum random numbers at a rate of 0.4 s−1. This number
is about four orders of magnitude higher than the number reported in Pironio’s work,
but still not high enough to use in most of the real-world applications. In 2018, parallel
to our experiment, Liu et al. [60] published their work on quantum random number
generation from Bell test in which the random bits generation speed is 114 bits per
second. They also used a pulsed photon system and closed the detection loophole. In
order to achieve the reported generation rates, they needed to collect more than 100
hours of data. A few months later, their team performed a follow-up experiment [31],
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simultaneously closing the detection loophole and locality loophole, resulting in a
rate of 181 bits per second. In the same year, Bierhorst et al. [26] demonstrated
the experimental randomness generation from a loophole-free Bell test; their random
number generation rate is more than 1 s−1.





Chapter 2

Efficient polarization-entangled
photon pairs

Photons are appealing fundamental particles for such are easily transmitted, interact
little with the environment, and are easily manipulated in their polarization degree
of freedom. Moreover, photon pairs are an essential resource in quantum communi-
cation [39], computation [61], and clock synchronization [62]. As introduced in the
previous chapter, one of the most challenging technical problems for an experimen-
tal loophole-free Bell test with photons is the detection loophole [17, 25]. Thus, it
is important to build polarization-entangled photon pair source with high coupling
efficiency, and detect the photon pairs with efficient single-photon detectors.

UV beams pump a periodically poled Potassium Titanyl Phosphate (PPKTP) [63–
67] crystal to generate the photon pairs used in this work [28, 68]. With a large
Gaussian pump beam, the generated photons’ beam profile from PPKTP crystal is
close to a Gaussian beam, resulting in an efficient collection by fiber optics. Section 2.1
shows the experimental setup used to generate and entangle photon pairs. We build
a bulk source because the coupling efficiency of an integrated source is relatively
low [69, 70]. Section 2.2 demonstrates how to optimize the heralding efficiency of the
source. After the optimization, more than 43% heralding efficiency is obtained with
two Silicon Avalanche Photo-Diodes [71]. Apart from the down-converted photons
pairs, the UV pump beams also generate some uncorrelated wide-band fluorescence
photons [72]. These fluorescence photons are recorded as background events. As a
consequence, higher efficiency is required to close the detection loophole. Section 2.2.4
describes the method used to reduce the fluorescence.

Besides the high coupling-efficiency source, this chapter also introduces a type of
high-efficiency single-photon detector, superconducting transition edge sensor (TES),
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optimized for detection at 810 nm [23]. The TESs used in this work are manufactured
by Sae woo Nam’s research group at NIST and calibrated by my lab partner Jianwei.
Section 2.3 also shows the connection between the source and the detectors with low
transmission loss.

The last section of this chapter is dedicated to a detection efficiency measurement
of the photon pair source together with the TESs.

2.1 Experimental setup of the Sagnac source

2.1.1 Generation and detection of photon pairs

Burnham and Weinberg observed the spontaneous parameter down-conversion process
for the first time after the invention of laser [73]. In a SPDC process, a single pump
photon has a low chance to split into two daughter photons, usually refereed as signal
and idler. This process obeys both energy and momentum conservation rules. There
are three different types of SPDC processes depending on the polarization of the down-
converted photons. In this study, the two down-converted photons have orthogonal
polarizations (type-II).

The PPKTP crystal used in this work is designed for a degenerate collinear process.
In order to apply the timing coincidence method to detect the photon pairs [73],
a polarization beam splitter (PBS) separates the photon pairs generated from the
collinear down-conversion process into two spatial modes. The two modes are then
coupled into two single-mode fibers connected to single-photon detectors.

Here, S1 and S2 denote the singles rate for each detector, which correspond to the
number of events registered by each detector per unit time. If the two detectors fire
within a specific coincidence time window τc, one records it as a pair detected. The
rate of detected pair events is denoted as p, and the heralding efficiency η of the photon
pair is defined as the pair to singles ratio

η = p√
S1 × S2

. (2.1)

Intuitively, the heralding efficiency is the probability of detecting the second photon,
conditioned on the first photon of the same pair being registered. There are three
main methods to improve heralding efficiency: reducing the transmission losses caused
by optical elements, improving the fiber coupling efficiency, and using high-efficiency
single-photon detectors. The following sections will detail all of them.
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Fig. 2.1 Simplified layout of the Sagnac-style source for polarization-entangled photon
pairs. UV light pumps the PPKTP crystal from opposite directions to generate
polarization-entangled photon pairs. The collinear 810 nm down-converted photon
pairs are emitted in mode 1 or 2 depending on the pump direction. A pair of mirrors
direct the two infrared light modes to overlap on a polarization beam splitter (PBS)
for the down-converted pairs. The two-photon state between modes 3 and 4 is then
polarization-entangled [27].

2.1.2 Entangling the photon pairs

The type-II SPDC process can generate photon pairs with orthogonal polarization, but
the generated photon pairs are not entangled. In 1995, Kwiat et al. first demonstrated
entanglement generation using the SPDC process in a single crystal [74]. They used a
BBO crystal and collected photons pairs at the cross-section of the two down-converted
light cones [74, 75]. In this study, the entanglement is generated from a different
geometry.

Figure 2.1 shows a simplified layout of the polarization entangled photon pair
source. A PPTKP crystal is placed at the middle of a Sagnac interferometer, which
is named after France physicist Georges Sagnac who first built the interferometer
in 1913 to test the existence of aether [76]. In 2003, two different research groups
demonstrated the polarization-entanglement generation based on this geometry [27, 77].
The interferometer includes a PBS (labeled as PBSDS), which entangles the down-



22 Efficient polarization-entangled photon pairs

converted photon pairs, and two dichroic mirrors, forming an isosceles triangle. After
overlapping the two down-converted modes onto the PBSDS, photon pairs generated in
the two counter-propagating paths with different polarizations are in the same spatial
mode.

In Fig. 2.1, each pump beam enters the Sagnac triangle through a dichroic mirror
and pump the PPKTP crystal. The second dichroic mirror reflects the down-converted
photon pairs and removes the pump beam out of the Sagnac interferometer. We
label the mode propagating clockwise inside the interferometer as "1", and the other
down-converted mode as "2". The output modes of the PBSDS are denoted as "3"
and "4", corresponding to the two collection arms. Each SPDC process generates
two daughter photons Hs and Vi, which represent the horizontally polarized signal
photon and the vertically polarized idler photon. First, the photon pairs (|Hs⟩1, |Vi⟩1)
generated by the left side pump beam in Fig. 2.1 pass through a HWPDS oriented at
45 degrees to the vertical axis, which rotates the polarization of the photon pair to
(|Vs⟩1, |Hi⟩1). The PBSDS then separates the photon pair into (|Vs⟩3, |Hi⟩4) . The
photon pair (|Hs⟩2, |Vi⟩2) generated by the right side pump beam also travel to the
PBSDS, resulting in (|Hs⟩3, |Vi⟩4). If the two pump beams have the same power, one
can write the photon state in modes 3 and 4 as

|ψ⟩ = 1√
2
(

|Hs⟩3 |Vi⟩4 − eiϕ |Vs⟩3 |Hi⟩4

)
, (2.2)

where the phase ϕ conserves the phase difference between the two pump beams. Details
of a phase control procedure will be introduced later.

It is important to note that the entanglement does not emerge from the interference
of two photon pairs generated from different pump directions. Generating two photon
pairs within the coherence time is rarely happening due to the low down-conversion
probability of a single pump photon. Instead, the indistinguishability of the measured
photon pair generated from each pump direction leads to the entangled state.

The reason of rotating the polarization of the photon pair (|Hs⟩1, |Vi⟩1) is that
the vertically polarized signal photon and the horizontally polarized idler photon have
different group velocities inside the PPKTP crystal. If HWPDS is not present in the
Sagnac loop, distinguishing the photon pair from which pump direction is possible by
comparing the arrival times of photons in different collection modes.

Most reported Sagnac-style entangled sources have a geometry that the pump beams
and down-converted modes overlap inside the Sagnac interferometer [17, 18, 77, 78].
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The advantage of the overlapped scheme is that slow fluctuations inside the Sagnac
triangle are canceled out for both the pump and down-converted modes. In our scheme,
the pump beam only overlaps with the converted mode at the base of the Sagnac
triangle (see Fig. 2.1). This fully decouples alignment degrees of freedom between the
pump beam and down-converted modes, making it easy to align the source to obtain
high heralding efficiency. However, this geometry requires a phase stabilization process
to lock the generated entanglement state.

2.1.3 Characterization of the source

This section provides a detailed description of the source designed for this work based on
the described working principle. Figure 2.2 shows a schematic figure and a photograph
of the experimental setup. A PPKTP crystal (size: 1 × 2 × 10 mm), cut and poled
for type-II spontaneous parametric down-conversion from 405 nm to 810 nm, is placed
at the waist of a Sagnac interferometer and pumped from both sides. The pump
light is generated by a grating-stabilized laser diode centering at 405 nm (Ondax)
with a bandwidth of 160 MHz [79], and coupled into a polarization maintaining (PM)
single-mode fiber suitable for 405 nm. The PM fiber not only filters the spatial mode
but also stabilizes the pump polarization. A telescope placed after the PM fiber
focuses the pump beams at the center of the crystal with variable waists. A PBS,
anti-reflection coated for 405 nm, splits the pump beam into two. Each pump beam
is independently directed to the crystal in opposite directions by two mirrors. As
mentioned in the previous section, the 810 nm light from the two SPDC processes
in each direction overlaps at the polarization beam splitter (PBSDS), generating a
non-maximally entangled state

|ψ⟩ = cos θ |HV ⟩ − eiϕ sin θ |V H⟩ . (2.3)

The rotation of the HWP before the 405 nm PBS controls the relative power between
the two pump arms, which determines the angle θ in Eq. 2.3. The phase ϕ is controlled
by tiling a thin glass plate in one of the pump modes.

In each collection arm, a combination of a HWP and a PBS defines the polarization
measurement basis for our experimental Bell test. Another dichroic mirror placed
after PBS directs the down-converted photons to a fiber single-mode for 810 nm light
(SMF@810), which further filters out the UV photons. An aspheric lens (f = 11 mm
from Thorlabs) focuses the 810 nm light into the SMF@810. The single mode fiber
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Fig. 2.2 Complete layout of our Sagnac-style entangled photon pair source for the
presented experiment. To generate polarization-entangled photon pairs, UV beams
pump the PPKTP crystal from opposite directions in a Sagnac configuration. The pump
light is generated by a grating-stabilized 405 nm laser diode with narrow bandwidth
and coupled into a PM 405 nm single mode fiber. A PBS splits the UV laser beam
into two, and two separate mirror sets direct them to the crystal. A thin glass plate
inside one pump mode controls their relative phase ϕ, and a half-wave plate before
the splitting PBS sets the angle θ. A combination of a HWP and a PBS defines the
polarization measurement basis before the down-converted photons coupled into the
single mode fiber for 810 nm light.
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is mounted on a z-translation stage used to fine-adjust the distance between the lens
and the fiber for optimizing the coupling efficiency. An interference filter with a center
wavelength of 810 nm and bandwidth of 10 nm is placed before the aspheric fiber
coupling lens to suppress wide-band uncorrelated fluorescence photons from the crystal
pumped with UV light. Section 2.2.4 will detail more about the fluorescence reduction.

For source calibration, we detect the photon pairs using "Geiger" mode Silicon
Avalanche Photodiodes (APDs) detectors [71, 80, 81]. Such APDs are one of the most
popular single-photon detector used in quantum optics experiments. The quantum
efficiency of APDs at near-infrared wavelength (≈50%) is not sufficient to close the
detection loophole. However, after more than 40 years of development, APDs have
very reliable performance without a cryogenic cooling system, making them easy to
use and fast to install.

2.2 Source optimization

2.2.1 Mode matching

Most of the high-efficiency and low dark-count single-photon detectors are fiber coupled.
Thus, it is important to efficiently couple the generated down-converted light into
fibers. This is performed through overlapping the optical modes of the collection optics
with that of the pump. The optimal pump and collection modes for a high heralding
efficiency ηc with collection optics have been well studied in [82, 83].

The pump and the collection modes are difficult to overlap if the focus is tight,
which makes the down-converted modes hard to be coupled into single mode fibers.
Too tight focusing also leads to a very short Raleigh range; this makes it difficult to
position the collection waist at the middle of the crystal. Theoretically, the larger the
pump waist, the better the coupling efficiency. However, a large pump beam waist
reduces brightness of the source. Moreover, if a pump beam waist is too large, the
modes of the down-converted photons could be coupled at the edges of the PPKTP
crystal due to the limited clear aperture of our crystal (1 mm×2 mm). It is also
essential to ensure that both the pump mode and collection mode are centered in the
middle of the crystal, which is also the waist location of the Sagnac-style interferometer,
such that the modes are symmetric for both pump directions.

Figure 2.3 depicts the numerically calculated correlations between the heralding
efficiency ηc and collection waist ωc according to the theory in [82] for various pump
waist ωp. The figure shows that it is possible to achieve over 99% heralding efficiency if
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Fig. 2.3 Numerically calculated correlations between the heralding efficiency ηc and
collection waist ωc according to the theory in [82]. This simulation assumes that both
the pump and collection modes are focused in the middle of the crystal. Each line
represents a different pump waist ωp. The horizontal axis is collection beam waist
ωc for both signal and idler modes. The simulation takes into account the length of
our crystal (10 mm), but ignores the effect of the limited clear aperture of the crystal
(1 mm × 2 mm) for a large ωc.

ωp is larger than 200µm, while the corresponding optimal ωc is more than 80µm. This
figure also indicates that for a pump waist larger than 400µm beam, there is a large
tolerance range (more than 100µm) for the collection waist to obtain high heralding
efficiency.

In order to focus different waists in the middle of the PPKTP crystal, at least two
lenses are needed to control the two degrees of freedom of a Gaussian beam: waist
and position. Both of them have to be capable of moving along the beam propagation
direction independently. However, each anti-reflection coated lens contributes approx-
imately 0.5% transmission loss. Moreover, if a beam is not perpendicular to and at
the center of a lens, the profile of the beam will be distorted. Thus, it is necessary to
minimize the number of lenses, especially in the collection arms.
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A variable optical beam expander (BE052-A from Thorlabs), anti-reflection coated
at 405 nm, focuses the pump waist at the center of the crystal (around 1.2 m away from
the beam expander) with variable pump beam waists (see Fig. 2.2). Only one aspheric
lens (C220-B, Thorlabs, f=11 mm) is placed in each collection arm to focus the 810 nm
light into a single mode fiber. In comparison to the pump arms, the transmission loss
in the collection arms is more important since it reduces the heralding efficiency. Thus,
the number of lenses inside the collection arm is less than that in the pump mode.
However, this means that only one specific collection waist can be obtained in the
middle of the crystal.

The distance from the collection couplers to the waist of the Sagnac interferometer
is around 65 cm. The estimated collection waist at the crystal with a f=11 mm lens
and 810 nm single mode fiber is around 130µm; this collection waist is optimal for
more than 500µm pump waist according to the numerical simulation (see Fig. 2.3).
To achieve high coupling efficiency, we need to ensure that the collection mode is
focused at the waist of the Sagnac interferometer with the design beam waist. Thus,
the waist of the beam sent from the collection fiber is verified with a a knife-edge
measurement [84]. Under paraxial approximation, the transverse electric field intensity
of a collection beam is well approximated by a Gaussian function as

I(r, z) = I0

(
ω0

ω(z)

)2

e

(
−2r2
ω2(z)

)
, (2.4)

where I0 = I(0, 0) is the intensity at the center of the beam waist ω0, and ω(z) is the
spot size at the specific longitudinal position z. For each spot size measurement, a
knife edge blocks the beam at location z; then the knife moves in steps of 20µm in
the direction perpendicular to the beam. The intensity of the unblocked portion of
the beam changes with the movement of the knife edge, and is recorded by a photo-
diode. We can obtain the corresponding ω(z) by fitting the data to a error function.
After obtaining one spot size, the knife moves in the z-direction for 2 mm for another
knife-edge measurement. For one measurement round, the knife travels along the beam
propagation direction for 25 mm.

Figure 2.4 (a) shows a knife-edge measurement for an 810 nm beam sent from one
collection coupler (left side of the Sagnac interferometer in Fig. 2.1). The obtained
spot sizes at different z are fitted to the expression for the beam parameter ω(z) for a
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Fig. 2.4 The collection and pump beam profile measurement. Figure (a) and (b) are
measurements on a collection beam. Each point in Fig. (a) corresponds to a beam spot
size from a knife-edge measurement; we repeat this measurement at different positions
in the beam propagation direction. Where, 12.5 mm of the z-axis is the waist of the
Sagnac interferometer. The fitted beam waist ω0 is 127.57±0.32µm. The position
of the beam waist z0 is 11.04±1.47 mm. Figure (b) Shows a camera image of this
beam fitted with an elliptical Gaussian model. The two fitted waists ωa and ωbare
127.57±0.01µm and 124.78±0.01µm. Figure (c) and (d) are measurements on a pump
beam. Different from the Fig. (a), −30 mm of the z-axis is the waist of the Sagnac
interferometer. The fitted result are ω0= 357.41±0.66µm and z0 = 0.1±126.9 mm.
The fitted result for Fig. (d) are ωa = 371.90±0.02µm and ωb = 356.55±0.02µm.
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paraxial Gaussian beam

ω(z) = ω0

√
1 +

(
z − z0

zR

)2
, (2.5)

where z0 is the position of the beam waist, ω0 is the beam waist, and zR the so-called
the Rayleigh range given by

zR = πω2
0

λ
(2.6)

for a wavelength λ wavelength of the beam. The fit leads to ω0 = 127.57±0.32µm, and
z0 = 11.04±1.47 mm, where the waist of the Sagnac interferometer is at z = 12.5 mm.
These values are similar to the calculated result with the input of the properties and
positions of the given optical elements. The Rayleigh range of the beam computed by
the measured waist is around 63 mm, which is much larger than the fitting uncertainty.
The beam thus is focused not far away from the waist of the Sagnac interferometer.
For the beam sent from the other collection coupler, we obtain ω0 = 129.16±0.31µm
and z0 = 10.05±1.87 mm, respectively.

We use a camera to capture an image of the 810 nm beam at the waist of the
Sagnac interferometer to further check the quality of the Gaussian beam profile.
Figure 2.4 (b) shows an image of a beam sent from one coupler. The image is fitted
with a two-dimensional elliptical Gaussian model, leading to ωa = 127.57±0.31µm and
ωb= 124.78±0.31µm for the profile shown in Fig. 2.4 (b). The similarity between the
two fitted waist values confirms that the beam profile is round. Both ωa and ωb are
comparable to the waist measured by the knife-edge measurement.

After obtaining good collection modes, we insert a PPKTP crystal mounted on a
five-axis translation stage in the setup and optimize the pump waist for high heralding
efficiency. Here, the crystal is only pumped from one direction, and the heralding
efficiency is measured using APDs. Figure 2.5 shows the measured heralding efficiency
and theoretical calculated efficiency based on Bennink’s model [82] with a fixed collection
waist (128µm) obtained from the previous measurement. The efficiency values have
been corrected for all optical losses and the detectors’ efficiency, but not for the lens
aberration. The large uncertainty of each data point is mainly caused by the efficiency
uncertainty of the detectors due to the calibration setup. Each data point in Fig. 2.5
represents an efficiency measurement over 100 seconds with the same detectors, the
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Fig. 2.5 Measured heralding efficiency versus pump beam waist with a fixed collection
waist (ωc = 128µm). The red line represents the numerically calculated heralding
efficiency ηc according to the theory in [82]. The green dots label the experimentally
measured heralding efficiency for different ωp, corrected for optical losses and the detec-
tor efficiency, but not for the lens aberration. Each point represents a efficiency value
measurement over 100 seconds with same detectors. The corresponding uncertainty
from Poisson short noise is ≈ 0.1%. The high uncertainty of each data point is mainly
caused by the efficiency uncertainty of the detectors.

corresponding uncertainty due to Poisson short noise is around 0.1%. Thus, the figure
can clearly show how the measured efficiency values change with different pump waists.
Finally, the pump waist is chosen as 357µm. The measured efficiency with this pump
waist is not too different from the efficiency with the optimal waist (See Fig. 2.5).
However, the generated pair rate is two times higher. A high pair rate is beneficial for
extracting more randomness for a given acquisition. This will be discussed in Chapter
4. Figure 2.4 (c) and (d) show a knife-edge measurement and a fitted camera image
of a pump beam. When we perform the knife-edge measurement on the pump beam,
the crystal is already placed in the Sagnac interferometer. To preserve the alignment
of the crystal, the knife-edge measurement is performed slightly away from the waist
of the Sagnac interferometer. In Fig. 2.4(c), the origin of the horizontal axis is about
30 mm away from the center of the crystal. In other words, the waist of the Sagnac
interferometer is located at z = -30 mm. The fitted waist resulting from Fig. 2.4 (c) is
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Fig. 2.6 Sagnac interferometer alignment. Figure (a) shows a Sagnac interferometer
beam alignment diagram with PBS free of wedge error. First, one sends light from
the right corner and set the polarization to diagonal with PBS1 and HWP1, then
aligns the Sagnac PBS to overlap the H and V polarization beam inside the Sagnac
loop, and at the output of the interferometer. An interference pattern can be observed
on the screen by setting HWP2 to 67.5◦. The detail of the alignment procedure is
described in the main text. Figure (b) illustrates why good interference pattern can
not be observed if the PBS exhibits a wedge error, even if the beams perfectly overlap
inside the Sagnac loop.

357.41±0.66µm, and the fitted position of of the beam waist is close the crystal, with a
fitting uncertainty about 100 mm. However, the Rayleigh range of a 405 nm beam with
such a waist is more than 1 meter. Thus, the high uncertainty is still acceptable. The
two fitted waists for Fig. 2.4 (d) are ωa = 371.90±0.02µm and ωb= 356.55±0.02µm,
The image is taken 30 mm after the waist of the Sagnac interferometer. For the other
pump direction, the measured beam waist and position are very similar.

2.2.2 Alignment of the Sagnac interferometer

The mode matching method introduced in the previous section only helps to obtain
high heralding efficiency for a single pass source. To obtain polarization-entangled
states, however, it is critical to build a well-aligned Sagnac interferometer to obtain
high efficiency as defined in section 2.2 for both pump directions.
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Figure 2.6 (a) explains the alignment procedure for the Sagnac interferometer. In
this work, we design the Sagnac interferometer with an isosceles right triangle geometry.
The base of the triangle (triangle base in this section) is used as a reference. The
alignment procedure for our Sagnac interferometer can be divided into a few steps:

1. Send 810 nm light from the right upper corner and align it along the line 45◦

against the triangle base with a pinhole (150µm diameter) at fixed height (100.5
mm) above the optical table.

2. Insert PBS1 and HWP1 @22.5◦ and adjust them to make sure that the beam
still travels along the line 45◦ against the bottom edge.

3. Put the two mirrors, each of them sat on a translation stage, at the bottom of
the triangle. Adjust the mirror mount and use the same pinhole to ensure the
beam parallel to the bottom edge after the first mirror and propagate along the
other 45◦ line after the second mirror.

4. Put the Sagnac PBS (at the center of the Fig. 2.6) into the setup. By adjusting
the position and three rotation axes of the PBS, the H polarization and V

polarized beam could overlap inside the Sagnac loop with the accuracy of the
150µm pinhole.

5. Now, an interference pattern should be visible on the screen in Fig 2.6 (a). Fine
adjust the Sagnac PBS to improve on the visibility of the interference.

One can evaluate the quality of the interference by measuring the polarization
visibility at the place of the screen in Fig. 2.6. The intensity with HWP2@67.5◦

(HWP2@22.5◦) is labeled as m (M). The definition of a visibility V is

V = M −m

M +m
. (2.7)

With this method, a visibility over 99.5% has been achieved.
However, even with this high visibility, we still could not obtain a symmetrical

high efficiency for both pump directions. To verify the suspicion that the asymmetric
efficiency is caused by the wedge error of the Sagnac PBS, which is the deviation
between the two prisms, we checked if the beams are overlapped well inside the Sagnac
loop after obtaining high visibility. A 150µm pinhole at the crystal position worked
as a marker. Since a PBS does not significantly affect the horizontal polarization
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beam (H) but reflects the vertical polarization beam (V ), the H beam still has similar
transmission though the pinhole if the Sagnac PBS is absent. However, the transmission
of the V beam was one order of magnitude lower. Figure. 2.6 (b) shows that with a
PBS with a wedge error, even if the beams with different polarizations perfectly overlap
inside the Sagnac loop, they will still separate at the output of the Sagnac PBS.

An optically contacted PBS not only has smaller wedge error, but also preserves a
better beam profile when compared with glued PBS because of the absence of non-
uniform glue between the two prisms. However, the supplier for optically contacted
PBS used in the alignment procedure described above could only specify a wedge error
< 8’. Therefore, we had to order post-selected optically contacted PBSs with prismatic
deviation < 30”.

To identify the PBS with the smallest wedge error, we first rebuild the Sagnac
interferometer with these new PBSs and optimized it for high visibility, then checked
the transmission of the reference pinhole for both the H and the V beams at the waist
of the Sagnac interferometer. For the best PBS in the new batch, the transmission of
the V beam was close to 90% of the H beam.

The Sagnac interferometer with the post-selected PBS now shows a similarly high
heralding efficiency for both pump directions. The measured efficiency using two APDs
were 43.36±0.09% and 43.15±0.09%. After correcting for the optical losses and the
detector’s efficiency, the efficiency of the source reached become 94.07±2.51% and
93.65±2.50% for the two pump directions.

2.2.3 Visibility of the maximally entangled state

After obtaining a high efficiency for both pump direction, we checked the quality of the
maximally entangled state emerying from the source through a polarization correlation
visibility measurement [85]. By choosing the amplitude-mixing angle θ = 45◦ and the
phase ϕ = 2π, Eq. 2.3 reduces to a maximally entangled singlet state

|ψ⟩ = 1√
2

|HV ⟩ − 1√
2

|V H⟩ . (2.8)

As introduced before, a HWP and a PBS define the measurement basis in each collection
arm. Any linear polarization basis can be implemented by rotating the HWP with a
motor. During a visibility measurement, we fix Alice’s HWP angle (θAlice), and count
the number of coincidences as a function of Bob’s HWP angle (θBob). The definition of
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Fig. 2.7 Polarization correlation for a maximally entangled state. The source is set to
prepare a maximally entangled state. Red and blue dots refer to normalized measured
coincidence number in ±45◦ and H/V basis. The visibility extracted from a sinusoidal
fit is 99.1±0.3% in the ±45◦ basis, and 99.9±0.3% in the H/V basis. The vertical axis
is normalized coincidence counts. The integration time to obtain each data point is 1
second.

a visibility V is the contrast of the maximum (M) and minimum (m) values of the
coincidences (see Eq. 2.7).

Equation 2.8 describes a state where the polarization of the photon pairs is anti-
correlated. Hence, if θAlice = 0◦, then the minimum (maximum) coincidences will
occur at θBob = 0◦ (θBob = 45◦), and the corresponding visibility is refereed to as VH/V

(V±45◦).
The high visibility measured in H/V basis is expected since there is always one H

polarized photon and one V polarized photon in each down-converted pair in our scheme.
Therefore, evaluating the quality of entanglement requires visibility measurement in
another basis, which should be orthogonal to the H/V basis on the Bloch sphere. The
other basis used here is the ± 45 ◦ basis.
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Fig. 2.8 Fluorescence of the PPKTP crystal recorded by a camera. Two 810 nm±10 nm
interference filters (FF01-810/10-25) from Semrock filter block the pump photons.
The transmission of these filters is more than 98% in the transmission window. We
illuminate the crystal with a beam of ≈ 5 mW from a UV laser and integrate over
30 ms for this image.

Figure 2.7 shows the visibility measurement in both the H/V and the ±45◦ basis.
The polarization visibility in the ±45◦ (H/V ) basis, computed by fitting the coincidence
number to a sin2 function, is 99.1±0.3% (99.9±0.3%).

2.2.4 Background events reduction

Background events not only reduce the heralding efficiency, but also increase the
efficiency requirement to close the detection loophole [49]. There are three main
background events sources: fluorescence photons from the source, ambient light from
the environment, and electronic noise of the photon detectors (dark counts). Optical
shielding the source and the single-photon detectors can remove most of the ambient
photons. We first focus on studying the fluorescence from the source. The next section
will briefly discuss the dark counts of the used single-photon detectors.
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Fig. 2.9 Modified source setup to quantify the fluorescence. UV beam only pumps the
PPKTP crystal from one direction and the down-converted pairs are blocked after the
crystal. Both measurement bases are set optimal for collecting the backward direction
fluorescence photons. We measure the photons coupled into the single mode fibers by
two APDs.

UV light generates fluorescence in different materials. Despite many research efforts,
the mechanism of the fluorescence generated by UV-pumped KTP crystals is not very
clear yet [72]. Figure 2.8 shows an image of a PPKTP crystal illuminated with 5 mW
of 405 nm laser light. We took this image through two interference band pass filters
(center wavelength 810 nm, bandwidth 10 nm, Semrock) to suppress the light at 405 nm
with 10−8 transmission. The brightness of the image does not significantly change with
one or two filters: this indicates that the most intense scattering region in Fig. 2.8 is
caused by fluorescence photons near 810 nm, and not by residual UV light scattered
into the camera. Figure 2.8 was took with two filters and 30 ms integration time.

Figure 2.9 shows a modified source setup to quantify the fluorescence photons
coupled into the collection fibers. The PPKTP crystal under investigation is only
illuminated from one direction, and down-converted photons are blocked inside the
Sagnac interferometer after the crystal. Only the photons emitted in the backward
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(a) (b)

Fig. 2.10 Images of an oven with the crystal. Image (a) shows the oven with the crystal
before putting in the source. There is a heating resistor under the crystal used to heat
the crystal, and a thermistor besides the crystal used to measure the temperature. A
feedback loop limits the heat speed under 1 degree/minute. Image (b) is the oven
inside the source. The oven is insulated with rock wool to reduce the heat to influence
the mechanical stability of the source. There is a metal case used to cover the oven.

direction can reach the PBS of the Sagnac interferometer. Both of the measurement
bases are set for collecting the backward photons. The fluorescence photons are then
coupled into the SMF@810 connected with APDs. The events registered at each
detector (minus its dark-counts) constitute a measurement of the fluorescence, labeled
as F1 and F2 respect to the detectors. The detected fluorescence on both detectors are
similar, which suggests that fluorescence photons of the PPKTP crystal are unpolarized.
We then remove the beam blocker and optimize the measurement basis for collecting
down-converted photons at each detectors resulting in rates S1 and S2. By assuming the
emission of the fluorescence is uniform in all spatial direction, the rate of fluorescence
in the backward direction is equal to that of the direction co-propagating with the
down-converted light. The fluorescence to signal ratio in each measurement party then
can be defined as Fi / Si, where i= 1 or 2.

The PPKTP crystal with 10µm polling period (Raicol) is designed for 405 nm →
810 nm, degenerate type-II SPDC at room temperature [86]. The measured fluorescence
to signal ratio for this crystal is around 5%. The supplier claimed that baking the
crystal at high temperature could help to reduce the fluorescence. They believed that
using the crystal in a high-humidity environment could degrade it.
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We baked the crystal at 100 degree Celsius in a vacuum chamber for 120 hours.
However, the fluorescence level of the crystal remained approximately the same after
this baking. The baking temperature was further increased to 175 degree Celsius for
another 120 hours. The measured fluorescence reduced from 5% to about 3.5%. Since
baking at even higher temperature could damage the anti-reflection coating of the
crystal, we could only increase the baking time. However, the measured fluorescence
to signal ratio after the long time baking (2 weeks) almost remained the same.

With more than 3% noise photons, the required heralding efficiency to violate the
Bell inequality without detection loophole is more than 85% according to Eberhard’s
theory [49]; this is almost impossible to achieve with current technology. It is necessary
to find a method to reduce the fluorescence.

One popular theory about crystal fluorescence under UV light is that defects in
the crystal may work as emission centers, and the spectrum of the fluorescence may
change with the temperature [87–91]. To explore this option, PPKTP crystal with a
9.55µm poling period were tried. This poling period is designed for 405 nm → 810 nm
degenerated type-II SPDC process at 165 degree Celsius.

Figure 2.10 shows a simple oven used in this work to heat this crystal. A 9 Ω resistor
under the crystal works as a heating source. A 1.46 MΩ@25◦ thermistor integrated
inside the oven serves to measure the temperature. A feedback loop limits the heating
speed to 1 degree/minutes. According to the manufacturer the anti-reflection coating
of the crystal would peel off if the heating rate exceeds this rate. To reduce the overall
heat generated by the oven, which may affect mechanical stability of the source, we
insulate the oven with rock wool and cover it with a metal case. Figure 2.10 (b) shows
a photo of the oven inside the source.

With the new high-temperature crystal, the fluorescence to signal ratio measured
at both Alice’s and Bob’s sides are reduce to less than 0.2%.

2.3 High-efficiency photon detector

2.3.1 Transition edge sensor

In the above sections, the measurements and calibrations were carried out using APDs.
However, to close the detection loophole, the required minimum efficiency is 66.7% [49].
The two APDs used in the calibration stage have 47.6% and 51.5% quantum efficiency.
They had to be replaced by more efficient detectors.
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Fig. 2.11 Conceptual diagram of the change of TES resistance with temperature. By
applying a voltage bias across the device, the TES could self-regulate at its operating
point [92]. The temperature of the superconductor increases after receiving the thermal
energy from a single photon. This causes the resistance of the superconductor to
increase along the red path.

There are two types of photon detectors used in recently reported detection loophole-
free Bell test [17, 18, 20, 26, 45, 60]: Superconducting Nanowire Single-Photon Detectors
(SNSPD), and Transition-Edge Sensors(TES). Both of them are superconducting photon
detectors. The highest measured detection efficiency for TES is more than 98% [29, 30].
However, there is no report on SNSPD shows more than 93% efficiency [24]. Although
the SPSPD have a much smaller jitter time compared with TES, TES is better candidate
for this work since the efficiency is more important in the detection loophole-free Bell
test.

A TES consists of a superconducting film maintained near its critical temperature Tc

such that the energy of a photon is enough to take it partly along the superconducting
to normal phase transition [86] (see Fig. 2.14). The sudden increase in resistance can
be detected electronically since the slope of the phase transition is very steep.

Sae Woo Nam’s research group from NIST manufactured our TES for this work.
A Bragg stack optimized for 810 nm allows the detector to have near-unit detection
efficiency [29]. The energy of an infrared photon could only drive the TES to move
along the transition edge in Fig. 2.14. If two photons arrive at the same time, they will
drive the detector further along the transition phase. This means that the TES does not
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have any intrinsic dead-time, and can resolve the number of monochromatic incident
photons. The TES’s photon number resolution property (up to thousands of photons)
has been published on NIST’s website [93]. My lab partner Jianwei demonstrated an
approach to assign detection times to overlapping detection events in the regime of low
signal-to-noise ratio by fitting to a heuristic model [94]. Jianwei also calibrated the
TESs for this work.

We use an Adiabatic Demagnetization Refrigerator (ADR) cryostat [95, 96] to
cool the detectors. There are two main cooling steps: (I) cooling the temperature to
2.5 K by a pulse tube cooler. (II) Using the adiabatic demagnetization of strongly
paramagnetic salts brings the temperature of a cold finger (a copper rod supporting
the detectors in their housing) to a minimum of 30 mK. This step only reduces the
temperature once and slowly warms up after the cooling. It takes more than ten hours
to warm up to more than 80 mK; this is called the hold time of our ADR. The critical
temperature (Tc) of our TES is around 140 mK. The operating temperature of our TES
is between 70-100 mK. Since the minimum temperature is 30 mK, a small magnetic
field is applied to the salt pills (paramagnetic material thermal contact with cold finger)
to increase the temperature of the TES. To maintain the operating temperature, a
software PID control loop gradually decreases this magnetic field.

The optimal operating temperature with the best signal to noise ratio varies for
each adiabatic demagnetization cooling process. Thus we have to find the optimal
temperature after every cooling process.

Figure 2.12 shows the schematic of the TES readout circuit. We use a shunt resistor
Rshunt to convert the constant current ITES into a constant voltage bias across the TES.
ITES was supplied and controlled from outside the cryostat. After the TES absorbs
a photon’s energy, the increase of the TES’s resistance causes more current flowing
through the coil Lin.

We use a Superconducting Quantum Interference Device (SQUID) amplifier [97–99]
to detect the small change in this current flow. The current flowing through the coil
affects the magnetic field in the SQUID, and thereby the voltage drop across it. The
signal is further amplified outside of the cryostat.

As mentioned before, my lab partner Jianwei invented a newly developed fitting
method to identity TES pulse even if two successive TES signals traces are partially
overlapping. However, we did not apply the fitting method here. This is because a
long Bell measurement produces millions of TES traces. Post-processing these traces
consumes massive computing power. Instead, we use a traditional Schmitt trigger
mechanism [100], implemented by a simple two-level discriminator to measure the
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Fig. 2.12 Schematic of the TES readout circuit. The TES is voltage-biased by a
constant current source ITES through shunt resistor Rshunt ≪ RTES. The SQUID array
amplifier picks up changes in TES resistance from Lin. The signal is further amplified
outside of the cryostat. Signal feedback via Rfb and coil Lfb linearizes the SQUID
response.

arrival time information of each photon. Figure 2.13 shows an example of how the
discriminator works. A qualifier flag is raised when a signal exceeds a threshold Vset,
and lowered by the first subsequently crossing of threshold Vreset. A time-stamp card
records the time tset as the arrival time of the photons. If there is another photon arrival
between tset and treset (the time of the signal subsequently crossing of threshold Vreset),
Only the first event will be recorded. Thus, the two-level discriminator introduces
around 1µs artificial dead-time to the TES. The dead-time duration varies with the
two threshold levels.

The following steps are used to find the optimal Vset for the rising edge of the TES
signal. The reset threshold is fixed at a relatively low value. A counter records the
detected event rate for different Vset. The count rate should decrease very quickly with
the increase of the Vset at low voltage level due to the electronic noise of the TES. If
the signal-to-noise ratio is high, at a certain threshold range, the count rate should
stay approximately constant over a plateau.

Once Vset exceeds the minimal signal height caused by a real 810 nm photon, further
increase in the Vset will reduce the registered count rate quickly. Figure 2.14 shows a
sample of this relationship between the count rate and set threshold of the discriminator.
We first vary the Vset after a cooling process to find the optimal threshold range for
distinguishing n = 0 and n = 1 (grey area in Fig 2.14), then fine tune the Vset in this
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Fig. 2.13 Identification a photon in a trace with background noise by a traditional
Schmitt trigger mechanism [100]. The implemented discriminators have two levels: a
qualifier flag is raised when the signal passes threshold Vset, and lowered by the first
subsequently crossing of threshold Vreset. We record the time tset as the arrival time of
the photons.

area with the pair source to find the voltage threshold with the best efficiency and low
dark-count rate.

After the optimization, the highest efficiency is obtained with a dark count rate
about 10±3 s−1 for both detectors.

2.3.2 From source to detectors

This section introduces a few methods to couple the entangled photon pairs to the
detectors. The TES manufactured by the NIST team is coupled with a single-mode
fiber for 1550 nm (SMF-28e). However, the polarization-entangled photon pairs are
coupled into SMF@810, which is single-mode for 810 nm. There are few methods to
transfer photons between the two fibers. The simplest way is directly plugging the
fiber connectors into a mating sleeve. Although the core-size of SMF-28e is bigger than
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Fig. 2.14 Measured count rates as a function of the "set" voltage threshold Vset of the
discriminator. The reset voltage threshold Vreset is fixed at relative low level (around
0). The integration time to obtain each points is one second. The gery area is where
we fine tune the Vreset by measuring the pair source efficiency.

that of SMF@810, the measured transmission from SMF@810 to SMF-28e fiber with a
mating sleeve is close to 90%.

The second method is using a free space link to couple the light into the SMF-28e,
which is also the method used in this work. An aspheric lens (C230B, Thorlabs, f
= 4.51 mm) collimates the emitted photons from a SMF@810 fiber connected to the
source. Another aspheric lens is placed in front of the SMF-28e fiber to couple the
810 nm photons to TES. By carefully adjusting the pointing and the waist of the beam,
we can achieve more than 95% transmission.

Even higher transmission can be achieved by directly splicing a SMF@810 and a
SMF-28e fiber. The measured transmission by splicing is more than 96%. However,
direct splicing does not allow the installation of active polarization devices between
the source and the detectors, which helps to close to the locality loophole and may be
implemented in the future. Figure 2.15 shows the full diagram of the experiment setup.

2.4 Detection efficiency measurement

Finally, with the high efficient transition-edge sensor, we could measure the detection
efficiency of the pair source. Figure 2.16 (a) and (b) show the temporal cross correlation
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Fig. 2.15 Full Schematic of the experiment setup. The source is coupled with two
TESs detectors through a free space link. The photons’ time arrival information output
from the TESs is recorded by a 2 ns resolution time-stamp card.

G(2) of photon pairs generated from different pump directions of the pair source. This
function G(2)(∆t) is the probability that given the arrival time of one photon at one
detector, another photon arriving at the other detector after a time ∆t. A time-stamp
card with 2 ns resolution records the arrival time information of the two detectors, which
are labeled with t1 and t2. The number of coincidences p is identified by computing
G(2)(∆t = t1 - t2), and integrating G(2) within a coincidence time window τc. A long
cable is used to physically delay Bob’s signal, which leads to the peak of the G(2) at
774 ns. Different from the heralding efficiency defined in Eq. 2.1, we correct the number
of accidental coincidences nacc by integrating G(2) over an accidental coincidence window
τacc (in Fig. 2.16 τc = τacc =700 ns). Thus, the expression of the heralding efficiency η
becomes

η = p− nacc√
S1 × S2

, (2.9)
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Fig. 2.16 The G(2) measured between two TESs connected to the high-efficiency source.
Figure (a) and (b) are the G(2) of the photon pairs generated from different pump
directions. The number of photon pairs measured for plotting each figures are more
than 100 thousands. We calculate the coincidence rates p by integrating the data
points (red color) over the coincidence window τacc, and the accidental coincidence
pairs by integrating the data points (blue color) over the accidental coincidence window
τacc, where τacc = τc = 700 ns. The corrected heralding efficiency for Fig. (a) and (b)
are 83.01±0.30% and 82.04±0.31%.

where the S1 and S2 are registered number of detection counts from the respective
detectors. We find a efficiency of 83.01±0.30% for one pump direction, and 82.04±0.31%
for the other (Fig. 2.16).





Chapter 3

Detection loophole-free Bell test

This chapter shows an experimental violation of a Bell inequality without detection
loophole using the setups described in the previous chapter.

The first section introduces a method which bins measurement time to define a
round of an experimental Bell test using a continuous-wave (CW) pumped source.
Based on this method, Section 3.1.2 describes a model used to calculate the S parameter
of a CHSH-type Bell inequality [46].

We can optimize the violation with this model by varying the entanglement state,
the measurement bases, and the time bin width. Section 3.2 introduces how the optimal
entanglement state is experimentally prepared for the Bell test. The last section of
this chapter shows the observed violation without fair-sampling assumption using this
method.

3.1 Time binning method

3.1.1 Concept of the time binning

The Bell test is a statistical test that needs many repetitions. In each repetition, or so-
called round, every measurement party produces an outcome. Most reported detection
loophole-free Bell tests using photon pairs were performed with pulsed pumped SPDC
sources, in which one measurement round can be naturally defined as one pump pulse
duration [18, 20, 25, 26, 31]. However, the repetition rate of a pulsed SPDC source
is limited by the repetition rate of the used pulse laser, which limits the random bits
generation rate. Thus, we developed a new method to define a measurement round for
a continuous-wave pumped source [101, 102].
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Figure 3.1 shows an example of the photon-detection times recorded by Alice and
Bob. The dots represent the photon detection events on each measurement party. We
define measurement rounds by organizing the detection events into uniform time bins 1.
If a party’s detector does not fire in a given round, that party labels the output as
+1. On the contrary, when the detector fires, the outcome is labeled as −1. This
convention allows only one detector per measurement party to be used [49, 17, 105].

Figure 3.2 illustrates this time binning method with a data sample, where the
outcome +1 (−1) is simplified as + (−). For a two party system, there are four
different outcomes: "+1+1", "+1−1", "−1+1", and "−1−1". The S parameter of a
CHSH inequality is constructed by the correlation E of the different measurement bases
(see Eq. 1.1). In Eq. 1.2, the correlation E is defined as the probability of the firing
of detectors with the same label minus the probability of the firing of detectors with
different labels. In a finite rounds experiment with the binning method, the estimated
correlation Exy can be written as

Exy = N+1+1 +N−1−1 −N+1−1 −N−1+1

N
, (3.1)

where N±1±1 represents the number of measured events with results corresponding to
the respective sub-labels after N rounds of measurements. The index x and y refer to
the measurement basis.

Since the bin width τ is independent of the detection time, τ can be considered as
a degree of freedom in an experimental Bell test. Figure 3.3 illustrates that for a given
detection timing sample, the correlation E can change with the binning time width τ .
For τ = 20µs, one finds that E = −1

9 . For τ = 30µs, the correlation has a value of 2
3 .

The large τ reduces the contribution of a single pair to the correlation E.

3.1.2 Modeling the CHSH inequality with the binning method

This section presents a model based on the binning method to estimate the observed
CHSH parameter S for continuous-wave pumped sources.

If the time bin width τ is much longer than the coherence time of the generated
single photons, the average number of photon pairs per round, µ, of the CW-pumped
SPDC source can be considered as an emission of independent pairs, distributed

1The binning is set independently of the detection time, thus, avoiding the coincidence loophole [103,
104]
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Fig. 3.1 Schematic of the registered photons for a CW pumped down-conversion source.
Red (blue) dots represent Alice’s (Bob’s) detected photons.
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Fig. 3.2 Time-binning of the events into interval of length τ . For each detector, one
uses −1 to label the outcome of having detected one or more photons, and +1 to
label a round with on photodetection events. For a two measurement parties system,
there are four outcomes: "+1+1", "+1−1", "−1+1", and "−1−1". One can use that to
construct the correlation Exy according to Eq. 3.1, where x and y refer to the settings
of the measurement basis.
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Fig. 3.3 Correlation Exy of the same data sample changes with bin width. In Fig. (a),
by setting the bin width at 20µs, one finds that E = −1

9 . In Fig. (b), τ = 30µs, the
correlation has a value of 2

3 .
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according to Poissonian statistics. The mean number of detection events is µ= R·τ ,
where R represents the photon pairs generation rate of the source.

Since the down-converted photon pairs are emitted independently, we can estimate
the observed CHSH parameter S using the following steps. First, each pair is converted
into classical information (α, β) ∈ {+,−} with probability

PQ(α, β|x, y) = Tr(ρΠx
α ⊗ Πy

β) , (3.2)

where Π are measurement operators, and ρ is the density matrix of the measured
quantum state. In this calculation, perfect detection is assumed. If some of the events
have α = − (β = −), Alice’s (Bob’s) detector may be triggered, leading to the observed
outcome a = −1 (b = −1). On the contrary, α = + (β = +) results in the outcome
a = +1 (b = +1).

For the purpose of studying the violation of a CHSH-type Bell inequality, one can
expand Eq. 1.1 as

Exy = P (−1,−1|x, y) + P (+1,+1|x, y) − P (−1,+1|x, y) − P (+1,−1|x, y) . (3.3)

According to the Kolmogorov axioms, P (−1,−1|x, y)+P (+1,+1|x, y)+P (−1,+1|x, y)+
P (+1,−1|x, y) = 1 [106]. Thus, Exy can be rewritten as

Exy = 1 − 2P (−1,+1|x, y) − 2P (+1,−1|x, y) . (3.4)

With the convention of outcomes, P (−1,+1|x, y) is the probability associated with the
case where Alice’s detector fires and Bob’s does not. Thus, Bob’s detector should not be
triggered by any photon from the pair source. Assuming a perfect detection efficiency
for Alice, and Bob’s detection efficiency is ηB, each pair contributes to P (−1,+1|x, y)
with

PQ(−,+|x, y) + (1 − ηB)PQ(−,−|x, y) =: D(−) . (3.5)
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Similarly, each pair contributes to P (+1,+1|x, y) with

PQ(+,+|x, y) + (1 − ηB)PQ(+,−|x, y) =: D(+) . (3.6)

For a CW-pumped source, multiple pairs can fall into the same measurement round.
For these v pairs , at least one of the α’s must be − to fire the detector. Thus, a
configuration where k values of α are − leads to a = −1 with probability 1 − (1 − ηA)k

(i.e. at least one α = − must trigger a detection). There can be
(

v
k

)
such configurations.

Thus, the v pair events contribute to P (−1,+1|x, y)

Dv =
v∑

k=1

(
v

k

)
[1 − (1 − ηA)k]D(−)kD(+)v−k . (3.7)

Carrying out this summation leads to

P (−1,+1|x, y) =
∞∑

v=0
Pµ(v)Dv , (3.8)

where the Pµ(v) is the possibility of v pair events calculated from a Poissonian pair
distribution with an average of µ events per interval. The calculation of P (+1,−1|x, y)
is similar.

The above derivations do not take into account the background events, which will
slightly modify each probability term in Eq. 3.4. Let us still consider P (−1,+1|x, y)
first. The background events that fall into Bob’s empty bin reduce P (−1,+1|x, y).
However, the background events that fall into Alice’s bins will not affect P (−1,+1|x, y),
since these time bins already contain detection events, and multiple detections still
will be labeled as −1. Thus, one can rewrite P (−1,+1|x, y) as

P (−1,+1|x, y) =
∞∑

v=0
Pµ(v)Dve

−µb , (3.9)

where e−µb is the probability of zero background event for each bin at Bob’s side,
calculated from the Poissonian distribution model with a expectation value µb.
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Using the described model, one can numerically find the optimal state and measure-
ment basis for the largest S value for a system with measured efficiency and background
events. The optimal state and basis are not exactly the same as the case considering
each round contains a photon pair [49]. However, these values are similar since the
violation is mostly contributed by the single-pair events.

3.2 Preparation for performing the Bell test

3.2.1 Optimal state and measurement basis for our system

The optimal state depends on the detection efficiency and background rates [49].
However, both of them may change for different measured datasets. In this chapter,
one dataset is used as an example to demonstrate a experimental Bell violation. The
result based on this dataset was also reported in [101].

The photon pair generation rate of this dataset is around 2.4×104 s−1. Alice and
Bob have system detection efficiencies of 82.42%±0.31% and 82.24%±0.30%, the
corresponding background rates are 45.7s±6.8 s−1 and 41.5±6.4 s−1. With these values
as inputs, we numerically found the optimal state and measurement bases for the
highest violation using the described model,

|ψ⟩ = 0.900 |HV ⟩ + 0.437 |V H⟩ . (3.10)

The corresponding phase ϕ, and the angle θ for preparing this state in the format of
Eq. 2.3 are 0◦ and -25.89◦. For this state, the ratio of |HV ⟩ to |V H⟩ photon pairs is
equal to cot2 θ = cot2(−25.89◦) = 4.246.

The optimal measurement bases calculated from our model are different from a
standard Bell test (See Section 1.3). The four bases are α0 = -7.2◦, α1 = 28.7◦, β0 =
82.7◦, and β1 =-61.5◦.

3.2.2 Optimizing and stabilizing the phase ϕ

For the source presented in this thesis, the tilt of a motorized thin glass placed in one
pump mode controls the phase ϕ. The procedure to optimize and stabilize the phase
ϕ can be described by the following steps.
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Fig. 3.4 Tilting the phase plate to minimize the phase ϕ. In this measurement, both
Alice and Bob’s set their HWPs at 22.5◦ (DD basis). We first move the phase plate in
coarse steps to find the approximate position of the minimum, and then in fine steps
near that position.

1. Balance the beam power of the two pump directions, and set both Alice’s and
Bob’s HWP at 22.5◦ (called DD basis)2.

2. Move the phase plate in coarse steps, and record the heralding efficiency values.
Then, find the approximate optimal position where the efficiency is the lowest
(blue points in Fig. 3.4).

3. Move the phase plate in fine steps near the position found in Step 2, and record the
heralding efficiency. Then fit the corresponding efficiency values into a quadratic
model to find the optimal phase plate position (red points in Fig. 3.4).

4. Measure the visibility in ±45◦ basis (see Fig. 2.7 ) with the optimal phase plate
position found in Step 3.

2If the pump power of the two pump directions is the same and ϕ = 0, the state generated by
the source is a one of the maximally entangled state described by Eq. 2.8, where the polarization of
the two photons should be anti-correlated in any measurement basis. Thus, the lower the efficiency
measured in the DD basis, the closer the phase ϕ is to 0.
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Fig. 3.5 Visibility measurement over time for testing the stability of the phase ϕ. We
measure the visibility in the ±45◦ basis every minute to find the data acquisition time
duration of the Bell test after optimizing the phase plate. The phase ϕ is adjusted
every 12 minutes.

5. If the measured visibility is more than 98.5%, start data acquisition for the Bell
test. Otherwise, repeat Step 3.

6. After 6 minutes of data acquisition, repeat Step 3 to ensure that the phase ϕ is
always close to 0.

Small drifts in the setup, e.g. temperature changes of the source leads to a slow
phase drift over time, which requires the Step 6 to be performed. Figure 3.5 shows a
visibility measurement in ±45◦ basis over a period of 12 minutes. A phase optimization
process is conducted before each period. This figure indicates that the phase stable
time varies between optimization processes. To ensure that the source always generates
a near optimal state, we repeat the optimization process every 6 minutes during the
data acquisition.

3.2.3 Optimizing the angle θ

After minimizing the phase ϕ, we also need to accurately set the angle θ, which is
determined by the relative pump power between the two pump directions. The rotation
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Fig. 3.6 Ratio of the number of detected photon pairs between different pump directions
versus the angle of the HWP θB. The angle θ of the generated entanglement state is
controlled by rotating the HWP after the 405 nm telescope. The value cot2 θ is equal
to the ratio of |HV ⟩ photon pairs rate to |V H⟩ photon pairs rate. The optimal θ for
our system is -25.89◦, corresponding to cot2 θ = 4.246.

of a HWP (labeled as blue HWP) before the PBS that splits the pump beam to
controls the relative power. We calibrated the angle of the blue HWP θB by measuring
the power at the transmission port of the blue PBS, where the θB with maximum
transmission is labeled as 0◦. The unbalanced transmission and reflection of the PBS,
together with the scattering loss of the thin glass phase plate causes a difference in the
value of cot2(2θHW P ) and the ratio of the beam power between the two pump modes.
Therefore, 2θB ̸= θ.

Equation 2.3 shows that the ratio of the |HV ⟩ photon pairs rate to the |V H⟩
photon pairs rate is equal to cot2 θ. For the calculated optimal state, θ = -25.89◦, and
cot2 θ = 4.246. Similar to the phase optimization process, we optimize the θB in coarse
and fine steps. Figure 3.6 shows the measurement result in 3 fine steps (within 0.4◦).

The source is only connected to two TESs measuring the photons at the transmission
port of the PBSs in the collection arms, which means that we cannot measure the
number of |HV ⟩ and |V H⟩ photon pairs at the same time. Since our pump power
fluctuates around 10% every few minutes, the value of cot2 θ measured by performing
a long measurement in |HV ⟩ basis, followed by a switch to the |V H⟩ basis, is not
accurate, unless an extra pump power measurement is used to normalize the measured
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Fig. 3.7 Tomography of the optimal non-maximally entangled state. The tomography
measurement is performed with four bases on the equator of the Bloch sphere (H, V, D,
A) on each party. Thus, the measurement result is mapped to a state only have really
part (assume the imaginary party is 0). Figure (a) is the theoretical optimal state for
our system, and Figure (b) shows the state diverted from tomography measurement.
The calculated fidelity is 99.15%.

photon pairs in different bases. Since the monitoring of the pump power requires extra
optics, which reduces the pump power and affects the beam profile, we use a more
direct method involving multiple measurements of the cot2 θ performed over short time
scales. In Fig. 3.4, each data point is derived from 15 measurements of cot2 θ. For each
measurement, both the number of |HV ⟩ and |V H⟩ photon pairs are recorded with 2
seconds of integration time. A simple linear model is applied to interpret the value of
the θopt

B leading to cot2 θ = 4.246. The estimated θopt
B for Fig. 3.4 is −12.45◦.

After optimizing θ and ϕ, we use a tomography measurement to verify that the
state generated by the source is close to the calculated optimal state [107–109]. To
perform a complete tomography measurement on a two qubits state, each measurement
party should have at least one HWP and one QWP. However, for the reported source,
there is no extra space to insert a QWP in each collection arm. For each party, the
tomography measurement thus is performed only on the four bases on the equator of
the Bloch sphere (H, V, D, A). Consequently, we reconstruct the measured result into
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Fig. 3.8 Measured CHSH violation as a function of bin width τ (blue circles). The con-
tinuous orange line represents the numerical output of the theoretical model described
in the previous section. Both the simulation and experimental data show a violation
for certain bin widths. The uncertainty on the measured value, calculated assuming
i.i.d., corresponding to one standard deviation due to a Poissonian distribution of the
events, is smaller than the symbols. At small bin widths (left corner), the detection
jitter (≈ 170 ns) of the used TESs is comparable with the time bin width, resulting in
a loss of observable correlation and a fast drop of the S value.

a density matrix where the elements are all real-values (see Fig. 3.7 (b)), then compare
the reconstructed state with the calculated optimal state, which is graphically shown
in Fig. 3.7 (a). The measured fidelity is 99.15±0.18% [110].

3.3 Experimental violation of Bell inequality

3.3.1 Experimental Bell violation with CW source

This section presents an experimental Bell violation using the binning method with
our continuous-wave pumped source.

Figure 3.8 shows that the result of processing the timestamped events for different
bin widths τ . The largest violation S = 2.01602(32) occurs at bin width τ = 13.150 µs,
which, with the cited pair generation rate of 24 × 103 s−1 and corresponds to an average
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Fig. 3.9 Measured CHSH violation as a function of bin width τ with extended bin
width range (blue circles). A theoretical model (orange continuous line) is described in
previous section. Both the simulation and experimental data only show a violation
at short bin width range. The S value continuously decreases with the increase of τ
after it drops below 2 as expected from the simulation. At a certain point, the S value
starts to increase with the bin width and ends up close to 2.

number of pairs per round µ ≈ 0.32. This number is very close to the theoretic
value µ = 0.322 calculated from our model. The uncertainty is calculated with the
assumption that the measurement results are independent and identically distributed
(i.i.d.) [111, 112].

The non-ideal visibility of the state generated by the photon pair source contributes
to a slight discrepancy between the experimental violation and the simulation. Fig-
ure 3.8 exhibits that there is no violation when the bin width is very small. This is
because that the detection events of pairs are assigned to different rounds when τ

is comparable to the detection jitter, decreasing the correlation. This feature is not
captured in the simulation, which does not include the jitter time as a parameter.

Figure 3.8 only displays a small range for bin width τ . For longer widths (see
Fig. 3.9), the CHSH parameter S continuously decreases with the increase of τ after
it drops below 2 as expected from the simulation. Forµ ≫ 1, almost every time
bin will be filled with registered photons, labeled as −1, leading to P (+1,−1|x, y),
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Fig. 3.10 (a) Measured maximal CHSH violation for each dataset versus their pair
rates (blue circles). A theoretical model is described by the orange line. A higher
pair generation rate results in a higher violation because of better signal to noise
ratio (constant detector’s intrinsic dark count). (b) Optimal bin width versus different
pair rates (blue circles). The orange continuous line represents the theoretical values
calculated based on our model. In general, a high pair rate requires a short bin width
to ensure that there are enough single-pair events to violate the Bell inequality.

P (−1,+1|x, y), and P (+1,+1|x, y) ≈ 0, but P (−1,−1|x, y) ≈ 1. Thus, E values in
all measurement bases are close to 1, and the S value increases to ≈ 2.

3.3.2 Violation with different rates

The largest violation that can be obtained from an experimental system is related to
both the heralding efficiency and signal to noise ratio. In the present experiment, the
detector’s intrinsic dark-count, ambient light, and fluorescence from the UV pumped
PPKTP crystal contribute to the noise. Although the ratio of the fluorescence photons
to down-converted photons is fixed for different pump powers, the detectors’ dark-count
and ambient photons are constant regardless of the rate of down-converted photons.
Therefore, the signal to noise ratio increases with the photon pair generation rate.
Figure 3.10 (a) shows the largest violation with different pair rates. The orange line
represents the numerical simulation result with a constant dark-count rate from the
detectors, assuming the ratio of the fluorescence photon to down-converted photon is
0.135%. As described in Chapter 2, the two-level discriminator, which identifies the
photon signal from the TESs’ traces, introduces an artificial dead-time to the detectors.
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Fig. 3.11 The largest CHSH violation as a function of the angular offset of Alice’s HWP
from the projection angle α0 (blue circles). The orange line represents the theoretical
value calculated by our model. During this measurement, the overall system efficiency
was about 81%. Thus, with zero offset, the S value is ≈ 2.012. This figure shows that
our experimental system is able to violate the Bell inequality with the HWP offset
of 4 degrees. The difference between the simulation and the experimental violation
measured at 4 degrees angular offset is mainly due to the efficiency drift of the source.

The higher the pair rate, the greater the fraction of photons that fall into the dead-time,
resulting in a slight reduction of the heralding efficiency. The simulation has not taken
into account this effect. Thus, in Fig.3.10, observed violations are closer to those of
the simulation when the pair rates are low.

Figure 3.10 (b) shows the optimal bin width τ as a function of the pair rates. If there
is no background event, the optimal average number of pairs per roundµ is constant
(1/e) according to the model described in section 3.1.2. Therefore, the optimal bin
width τ should decrease with the increase of the pair rate. Although the background
events slightly modify the optimal µ, the optimal bin width τ still follows the similar
trend.

3.3.3 Violation with sub-optimal setting

This section report experimental violations with the sub-optimal setting to show the
robustness of our experimental system against a large angular offset on one measurement
basis. The x-axis of Fig. 3.11 represents the angular offset of Alice’s HWP from the
projection angle α0; the corresponding offset angle on the Bloch sphere is four times
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of this value. For this measurement, the overall system efficiency was about 81%.
Thus, the maximum violation S at zero offset is about 2.012. Even with that, the
experimental system presented in this thesis can still tolerate the HWP angle offset of
4 degrees. The violation with 4 degrees offset in Fig. 3.11 fails to match the simulation
curve, since the system efficiency drop at the end of the measurement. The effect of
the offset on other measurement bases is similar.

The robustness against a large angular offset indicates that our experimental setup
can violate the Bell inequality with faster polarization rotation apparatus, like Pockel
cells, which cannot set the measurement basis as accurately as a HWP connected to a
motor due to electric noise and acoustic ringing [113, 114].



Chapter 4

Device-Independent randomness
extraction

The experimental Bell violation shown in the previous chapter indicates that the
measurement outcome of our system is only determined at the time of measurement. It
is impossible for the adversary (Eve) to predict the outcome with complete confidence.
In another words, our system can be used to generate certified private randomness [12].

The amount of extractable certified private randomness depends on how accurately
Eve can guess the measurement outcome. Any extraction procedure, at most, preserves
the amount of randomness in the measurement outcome [33]. Thus, for N bits generated
from an experiment, the length m of the extracted binary string must be bounded by
the requirement that Pguess(N) ≤ Pguess(m), where the label Pguess represents the best
guessing probability of Eve. In the ideal case, one should have Pguess(m) = 2−m after
the extraction. Therefore,

m ≤ − log2 Pguess(N) =: Hmin(X|E), (4.1)

which is also the definition of the conditional min-entropy [33], where X represents
the measurement outcomes, and E stands for Eve and her knowledge about the
measurement.

For a device-independent randomness extraction, the guessing probability is only
related to the observed violation of the Bell test. The higher the violation, the lesser
information Eve has about the measurement outcome, which leads to a lower guessing
probability.
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4.1 Quantum random number expansion protocol

In order to turn the experimental outcomes into uniformly random bits, we need to
employ a randomness expansion protocol, and apply a randomness extractor [115, 116].
This section briefly introduces the protocol used in this work, and its security proof. The
details of the protocol and mathematical derivations can be found in [101, 115, 116]. Le
Phuc Thinh, Jean-Daniel Bancal, and Alessandro Cerè all have made huge contributions
towards choosing the protocol and implementing the extraction in this work [101].

It will be more convenient to adopt the notations and labels used in [115] to
explain the details since we follow the protocol presented in that paper. The outcomes
are labeled as a, b ∈ {0, 1} (instead of a, b ∈ {+1,−1} in the previous chapter),
and language of nonlocal games with winning condition is used. The game winning
probability w is then equal to 1/2 + S/8 in terms of the CHSH value, where

wCHSH(a, b, x, y) =

1 if a⊕ b = x · y ,

0 otherwise .
(4.2)

The maximal winning probability of a classical strategy is 0.75, while the optimal
quantum strategy can achieve a winning probability of (2 +

√
2)/4 ≈ 0.85.

A randomness expansion protocol is a procedure that consumes r bits of randomness,
and generates m bits of almost uniform randomness, formally, called a (ϵc, ϵs)-secure
r → m randomness expansion protocol. Both (ϵc, ϵs) are set by the user of the protocol,
where ϵs is the parameter for "soundness"; it controls the bounding randomness security.

In the ideal case, the state of the input ρUr and output ρUm should be completely
mixed on appropriate registers. They should also be completely uncorrelated to Eve’s
system ρE. Thus, one can write the ideal state of the combined system as a tensor
product:

ρideal = ρUm ⊗ ρUr ⊗ ρE. (4.3)
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The soundness is defined as follows: in the implementation, the user either aborts or
returns an m-bit string Z ∈ {0, 1}m with:

(1 − Pr[abort])∥ρZRE − ρideal∥1 ≤ ϵs , (4.4)

where the (1 − Pr[abort]) is the probability of returning the output random bits, and
∥ρZRE − ρideal∥1 is the distance between the real state ρZRE of the combined system
and the ideal state ρUm ⊗ ρUr ⊗ ρE. The user gains a chance to implement the protocol
only if the distance is close to the soundness parameter ϵs. Therefore, the smaller the
ϵs, the more secure the bounding randomness.

Another very important security parameter for a randomness protocol is complete-
ness ϵc, which ensures that the user makes an honest implementation. In other words,
the completeness parameter makes sure that the user not always abort the measurement
data for post-selection. The completeness parameter is defined as: there exists an
honest implementation with

Pr[abort] ≤ ϵc. (4.5)

The concept of the honest implementation can be understood more easily after the
procedure of implementing the protocol has been introduced.

The protocol used in this work takes a few parameters: expected fraction of test
rounds γ , expected winning probability for an honest implementation ωexp , width of the
statistical confidence interval for the estimation test δest, and the overall measurement
rounds or so-called block size of the protocol n. In an experimental realization, for
every round i ∈ {1, . . . , n}:

• Bob chooses a random bit Ti ∈ {0, 1} such that Pr(Ti = 1) = γ using the interval
algorithm [117].

• If Ti = 0 (randomness generation), Alice and Bob deterministically choose
(Xi, Yi) = (0, 0). Otherwise, when Ti = 1 (test round) they choose uniformly
random inputs (Xi, Yi).

• Alice and Bob use the physical devices with the inputs (Xi, Yi) and record their
outputs (Ai, Bi).
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• If Ti = 1, they compute

Ci = wCHSH(Ai, Bi, Xi, Yi) . (4.6)

The user aborts the protocol if ∑j Cj < (ωexpγ − δest)n, where j is the index of test
rounds, otherwise he/she returns Ext(AB,Z), where Ext is a randomness extractor,
AB = A1B1...AnBn, and Z represents uniformly random seeds. According to the
theory described in [115], the probability that the randomness expansion protocol
aborts for an honest implementation is

Pr[abort] ≤ exp
(
−2nδ2

est

)
=: ϵest . (4.7)

From the above derivation, it is not difficult to see that an honest implementation
ensures that the user does not overestimate the ωexp from the test rounds. Equation
4.7 also constitutes a definition of the error tolerance of the Bell violation estimation
ϵest. The distribution of the string Ti is not uniform unless γ = 1/2. Thus, an interval
algorithm [117] is used to produce the Ti from a uniformly distributed random number
source. According to [115], by consuming 6h(γ)n uniformly random bits (h is the
binary entropy function1), this algorithm either aborts with a probability of at most

ϵSA = exp
(
−18h(γ)3n/max{log γ−1, log(1 − γ)−1}

)
(4.8)

or outputs n bits T1, . . . , Tn; this random bits distribution is within statistical distance of
at most ϵSA to n i.i.d. Bernoulli(γ) random variables. This raises both the completeness
and soundness parameters of the final protocol by ϵSA. Therefore, ϵSA + ϵest bound the
total completeness.

The used protocol ensures that for any ϵEA, ϵ
′ ∈ (0, 1), where ϵEA is the soundness

of the protocol, and ϵ′ is called a smoothing parameter, either the protocol aborts with
1h(p) := −p log2 p − (1 − p) log2(1 − p)
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probability greater than (1 − ϵEA) or, output n bits with

Hϵ′

min(AB|XYTE)ρ|pass > n · ηopt(ϵ′, ϵEA) , (4.9)

where Hϵ′
min(AB|XYTE) is the smooth min-entropy of the experimental output AB

after this protocol is applied. This used protocol does not assume i.i.d..
The expression for ηopt(ϵ′, ϵEA) was worked out in [101, 115] and included2 here

for convenience. Equation 4.9 shows that the experiment outputs AB have at least
n · ηopt(ϵ′, ϵEA) entropy. Together with Eq. 4.1, one can roughly estimate the amount
of extractable random bits.

To analyze the soundness of the entire extraction procedure, one also needs to take
into account the effect of the used extractor, named the Trevisan extractor [116]; it is
a seed length efficient extractor, and secures against quantum adversary with quantum
side information. This extractor 3 takes 2n binary outcomes from the experimental
setup of the Bell test and d binary random bit seeds as inputs, then outputs m binary
random bits ({0, 1}2n × {0, 1}d → {0, 1}m), where d = a(2ℓ)2. If

Hmin(AB|E) ≥ 4 log 1
ϵ1

+ 6 +m, (4.10)

2

ηopt(ϵ′, ϵEA) = max
3
4 <

pt(1)
γ < 2+

√
2

4

η(ωexpγ − δest, pt, ϵ′, ϵEA) ,

η(p, pt, ϵ′, ϵEA) = fmin(p, pt) − 1√
n

2
(

log 13 + d
dp(1)g(p)|pt

)√
1 − 2 log(ϵ′ϵEA) ,

fmin(p, pt) =
{

g(p) if p(1) ≤ pt(1) ,
d

dp(1) g(p)|pt
· p(1) +

(
g(pt) − d

dp(1) g(p)|pt
· pt(1)

)
if p(1) > pt(1)

g(p) =

1 − h

(
1
2 + 1

2

√
16 p(1)

γ

(
p(1)

γ − 1
)

+ 3
)

if p(1)
γ ∈

[
0, 2+

√
2

4

]
1 if p(1)

γ ∈
[

2+
√

2
4 , 1

]
3

a =
⌈

log(m − 2e) − log(2ℓ − 2e)
log(2e) − log(2e − 1)

⌉
ℓ =

⌈
log 2n + 2 log 2

ϵ1

⌉
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then the extractor promises

1
2
∥∥∥ρExt(AB,Z)ZE − ρideal

∥∥∥
1

≤ mϵ1, (4.11)

where ϵ1 is the 1 bit extractor error tolerance.
Since the protocol promises that the entropy of the input to the extractor AB is

more than n · ηopt(ϵ′, ϵEA), by setting of the length m of the extricable random bits
satisfies

n · ηopt(ϵ′, ϵEA) = 4 log 1
ϵ1

+ 6 +m, (4.12)

one can obtained the soundness of the extractor is mϵ1. Combined with the input
sampling soundness ϵSA, the soundness ϵEA, and smoothing parameter ϵ′ of the protocol,
the total soundness is bounded by ϵSA + ϵEA + ϵ′/2 +mϵ1.

4.2 Extractable randomness from experimental Bell
test

4.2.1 Output randomness analysis

The previous section described our randomness expansion protocol. It is sufficient for
the purpose of obtaining a rough estimation of the randomness output, but further
optimization can be done. Since m ≤ 2n, we can let mϵ1 ≤ 2nϵ1 =: ϵEX and replace
the term mϵ1 in the overall soundness with ϵEX. The insertion of ϵ1 = ϵEX/(2n) back
into Eq. 4.12 gives us the number of random bits that can be extracted

m = n · ηopt(ϵ′, ϵEA) − 4 log n+ 4 log ϵEX − 10 . (4.13)
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The extractable random bit per round is then equal to

rn =
(
ηopt(ϵ′, ϵEA) − 4log n

n
+ 4log ϵEX

n
− 10

n

)
. (4.14)

For n → ∞, one obtains the asymptotic extractable number of random bits:

r∞ =
1 − h

1
2 + 1

2

√
S2

4 − 1
 . (4.15)

To calculate the output random bit rate in finite statistics, it is necessary to set all
the protocol parameters — γ, δest, n, and ϵ’s, which are constrained by the completeness
and soundness security parameters. Here, we take a simple approach without optimizing
over the variables γ, δest, ϵ’s. For each block size n, the γ value determines the ϵSA via
Eq. 4.8, which then fixes δest via ϵest = 10−10 − ϵSA. The remaining ϵ’s are chosen in a
1 : 2 : 1 ratio of ϵEA : ϵ′ : ϵEX, which is guaranteed to add up to the specified level of
completeness and soundness.

4.2.2 Extractable randomness with observed violation

The extractable random bit rate is a more important parameter for the users of most
applications requiring random numbers as input. Figure 4.1 presents the extractable
randomness rate rn/τ with various block sizes n. In this calculation, we assume γ = 0,
use the observed S values shown in Fig. 3.8 as inputs, and apply the security parameter
ϵc = ϵs = 10−10. For comparison, Fig. 4.1 also shows the asymptotic value r∞/τ

computed with S values given by a simulation, which utilizes source efficiency and
dark-count as inputs. As explained in Chapter 3, the detection jitter time affects the
observable violation especially when the bin width τ is comparable to it. This causes
the extractable bit rate to undergo a sharp drop for short time widths. It is important
to note that the highest randomness rate is not obtained at maximal violation of
the inequality, where the highest randomness per round is observed (see Fig. 3.8 and
Fig. 4.1). It turns out to be advantageous to sacrifice randomness per measurement
round in favor of a larger number of rounds per unit time. This optimization will be
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Fig. 4.1 Random bit generation rate rn/τ as a function of τ for different block sizes n.
The points are calculated via Eq. 4.14 for finite n (Eq. 4.15 for n → ∞), and the
violation measured in the experiment (shown in Fig. 3.8), assuming γ = 0 (no testing
rounds) and ϵc = ϵs = 10−10. The continuous line is the asymptotic rate calculated
via Eq. 4.15, using S values calculated from a simulation based on our binning model
(described in Chapter 3) with the same security assumptions.

part of the calibration procedure for a random number generator with an active switch
of measurement bases.

In Fig. 4.1, the curve with an infinite block size n → ∞ shows that about 1300
random bits/s can be extracted from our setup when τ = 4.40µs. If we consider blocks
of size n = 108, with τ = 12.15µs, the calculated random bit rate is ≈ 167 bits/s, a
rate comparable with recent reported results [60, 31], but with the advantage that
the time required to acquire a single block is approximately 20 minutes instead of
more than a hundred hours in [60, 31]. Increasing the block size by one order of
magnitude to n = 109, with τ = 7.35µs, the rate of generated randomness increases to
≈ 834 bits/s, the corresponding acquisition time for such a single block ≈ 2 hours, and
is compatible with the experimental stability of our source. These numbers are not
optimal; more sophisticated analysis demonstrated higher randomness extraction for
the same detected violation [26, 118].
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Fig. 4.2 Extractable random bit rates with infinite block size (n → ∞) for different
down-converted photon pair rates. There are three datasets with different pair rates
(R in the figure represent the rate), but almost same heralding efficiency (details can
be found in Section 3.3.2). This figure shows that an increase in the pair rates results
in higher extractable random bit rates.

4.2.3 Extractable randomness with different pair rates

In the previous section, the pair rate was fixed at 24×103 s−1. This section shows the
extractable random bit rates with infinite block size for different down-converted photon
pair rates (see Fig. 4.2). There are three datasets with pair rates around 7×103 s−1,
12×103 s−1, and 24×103 s−1. The corresponding S values are 2.01467(72), 2.01577(44),
and 2.01602(32), respectively, which were also illustrated in Fig. 3.10. Although the
largest violation for these various datasets is similar, the highest extractable random
bit rates in Fig. 4.2 are almost linear to the pair rates.

We expect that the random bit rate will further increase with even higher pair rates.
This can be implemented by increasing the pump power, and is ultimately limited by
the detection time jitter. Thus, the use of efficient superconducting nanowire detectors
with tens of ps jitter time will be a significant advantage.
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4.3 Random bits extraction

4.3.1 Extracting random bits from the demonstration dataset

For the described experimental setup, the measurement basis cannot be actively changed
in each round to exactly follow the protocol introduced in Section 4.1. Instead, this
section describes a concrete procedure to extract the a string of random bits from the
42.8 minutes dataset used to demonstrate the violation.

We dedicate a fraction γcalib of the dataset to estimating the winning probability
wexp. The security parameters ϵs, ϵc are set a priori (both = 10−10). Here the honest
implementation is defined as an implementation which reproduces wexp during the
calibration stage with probability

P (wexp ≥ wcalib) ≤ ϵcalib , (4.16)

where the wcalib is obtained from the calibration fraction of the dataset. The choice of
ϵcalib = 10−10 guarantees that the Bell violation will not be overestimated, and ensures
that the whole certification procedure succeeds with a large probability. Then, one can
write wexp as

wexp = wcalib − δcalib , (4.17)

where we use the upper bound

δcalib ≤
√

log(1/ϵcalib)
2n , (4.18)

valid for all winning probabilities ωcalib, leading to a conservative estimation. We
optimize the calibration fraction γcalib and the bin width τ to maximize the extractable
randomness from the demonstration dataset, obtaining γcalib = 22% and τ = 8.9 µs.

After optimizing these parameters, wexp is calculated via Eq. 4.17 and Eq. 4.18.
The data used to extract random bits is also verified that it has violated more than
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Fig. 4.3 The result of the extraction illustrated with black and white pixels. The left
side square contains 175 288 156 bits from the Bell test output. The small square at
the right side is the extracted 617 920 random bits.

the threshold wexp − δest calculated via Eq. 4.7, which confirms we made a honest
implementation.

Finally, we use the Trevisan extractor to extract the certified bits. The extractor
also requires a supply of seed randomness. A random number generator described
in [119] provides the seeds for this work. There are 175 288 156 bins in the reminding
dataset with 8.9 µs bin width. With these measurement rounds, the extractor generates
617 920 random bits. The calculated rate of extracted random bits considering the
total measurement time (≈ 42.8 minutes), which includes the acquisition time for the
calibration fraction γcalib (around 7.5 minutes), the source phase optimization time
(around 8 minutes), and the time used to rotate the waveplates (less than 1 minute)
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is ≈ 240 bit/s. If one only considers the net measurement time, the random bit rate
becomes ≈ 396 bit/s.

Figure 4.3 illustrates the result of the extraction using black and white pixels. It is
evident that the size of the bit string generated from the experiment is much larger
than the size of the extracted random bits string. However, the distribution of the n
bits from the experimental Bell test are obviously non-uniform.

We used the NIST Statistical Test Suite to ensure that the quality of generated
strings is at least on par with acceptable pseudo-randomness [120]. As mentioned in
Chapter 1, statistical tests can only verify the uniformity of the generated random
string, but cannot certify its privacy. The string generated from this dataset passed all
the tests that are meaningful for this relatively short sample, assuming an acceptable
significance level α = 0.01. The result of the individual tests are summarized in
table 4.1.

Test P–value Proportion
Frequency 0.590949 96/97
Block Frequency 0.275709 95/97
Cumulative Sums Forward 0.964295 96/97
Cumulative Sums Backward 0.637119 96/97
Runs 0.162606 97/97
Longest Run of Ones 0.590949 96/97
Discrete Fourier Transform 0.183769 96/97

Table 4.1 Result of the NIST Statistical Test Suite for the bits extracted from the
dataset. We split the random bits into 97 sequences of 6300 bits each.

4.3.2 More randomness from longer acquisition

Figure 4.1 indicates that a faster random number generator can be obtained with
a larger block size n. For example, when n = 109, with τ = 7.35µs, the rate of
generated randomness increases to ≈ 834 bits/s, and the time required to acquire a
single block is ≈ 2 hours. The source introduced in this thesis could stably output
polarization-entangled photon pairs with high efficiency for tens of hours. We thus
acquired a long dataset (around 17.3 hours) with a violation and generated pair rate
similar to the 42.8 minutes demonstration data. In this dataset, the time for data
acquisition was around 11.3 hours, and the remaining 6 hours were used to find the
optimal phase angle and set the measurement bases.
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For this longer acquisition, the calculated optimal calibration fraction γcalib is
around 8%, and the optimal bin width (τ) is 5.35 µs. Via Eq. 4.14, we found that the
extractable random bits m from this large dataset is 35 799 872. The corresponding
rate, computed base on the entire 17.3 hours, is ≈ 573 bits/s.

These reported rates do not include the processing time of the Trevisan extractor.
This classical computation took 9 hours to process the 42.8 minutes dataset on a
machine processing 24 threads in parallel. For the long measurement, the estimated
extraction time is around ≈ 18 years if run on the same hardware. In order to reduce
this time to a few days, it would be necessary to employ thousands of cores. We
decided not to pursue this effort as we did not think that it would add further value to
the presented results.





Conclusion

This thesis presented an experiment on a detection loophole-free Bell violation with a
continuously pumped photon pair source. The photon pairs were generated through a
spontaneous parametric down conversion process, and measured with highly efficient
transition-edge sensors, reaching an overall detection efficiency of more than 82%, with
a lower rate of background events (less than 0.2%).

Section 3.2.2 presented in detail the source of photon pairs with a controllable degree
of polarization entanglement with a fidelity larger than 99.1%. The precise control
of the entanglement allowed us to maximize the observable Bell violation [49]. The
reported source could also generate a maximally entangled state with 99.1% visibility
on the D/A bases.

Bell tests are carried out in successive rounds. We defined the measurement rounds
of Bell tests by organizing the detection events in uniform time bins, and observed a
maximum violation of S = 2.01602(32) with average number of pairs per round of ≈
0.32. The flexible definition of the experimental round with a continuous photon pair
source allowed us to study the observable violation as a function of the average number
of photon pairs per experimental round. This same flexibility can be exploited to
reduce the time necessary to acquire sufficient statistics for the detection loophole-free
Bell experiments. Section 3.3 showed that an increase in the pair rate is accompanied
by a reduction of the round duration, τ , for the largest violation. This approach shifts
the experimental repetition rate limitation from the photon statistics to the other
elements of the setup, e.g., the detector time response or the active polarization basis
switching speed.

The observation of a Bell violation certifies the generation of private randomness.
The number of random bits that can be extracted per measurement round r(τ) is a
function of the CHSH parameter S(τ). The random bit generation rate is equal to
r(τ)/τ . Hence, the optimal round duration is a trade-off between the experimentally
observed CHSH parameter S(τ) and the number of rounds per unit time 1/τ . While the
optimal round duration would be infinitesimally short in a ideal scenario (Fig. 4.1), it is
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limited in our system by the detectors jitter time ≈ 170 ns. The calculated asymptotic
random number generation rate of our experimental setup is ≈ 1300 s−1.

In order to extract uniformly distributed random bits from the experimental Bell
test, we employed a randomness expansion protocol [115]. Such a protocol includes
n rounds forming a block in which nγ rounds are used to violate the Bell inequality,
and the rest of the n(1 − γ) rounds work as the input for a quantum-proof randomness
extractor [116]. We calculated the extractable randomness rate rn as a function of
the block size n, the observed violation S, and the security and uniformity parameters
ϵs = ϵc = 10−10. With a block size of n = 108 and τ = 12.150 µs, the calculated rate
of random bit rate is ≈ 167 s−1. This number is comparable with recently reported
results in [31, 60], but the data acquisition time for such a block is approximately
20 minutes instead of more than hundred hours in [31, 60]. If the block size is increased
to n = 1010, the optimal random bit extraction rate will be around thousands of bits
per second, and the corresponding acquisition time will still be relatively short (less
than 20 hours).

Finally, we applied the Trevsion extractor to our 42.8 minutes dataset, which was
used to demonstrate the Bell violation, and extracted 617920 random bits. The corre-
sponding bit generation rate is ≈ 240 s−1. If one only considers the net measurement
time (excluding the calibration, phase lock, and waveplate rotation time), the rate
becomes ≈ 396 s−1.

Currently, the certified random number generation speed of the device-independent
random number generator reported in this thesis represents a significant advance toward
reaching the goal of a practical source of certified randomness for secure information
processing applications.

Outlook

The reported randomness generation rate in this thesis is mainly limited by the jitter
time of the single-photon detectors and the photon pair generation rate, which can
be overcome by replacing the used transition edge sensors with faster detectors and
increasing the pump power of the source. Moreover, by using a fast polarization switch
and space-like separating our measurement devices, it is possible to generate random
numbers that are completely loophole-free.
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