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Abstract

We describe a series of Randomness Extractors for removing bias and resid-

ual correlations in random numbers generated from measurements on noisy

physical systems. The structures of the randomness extractors are based on

Linear Feedback Shift Registers (LFSR). This leads to a significant simpli-

fication in the implementation of randomness extractors.
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Chapter 1

Introduction

People have been fascinated and puzzled by the concept of randomness since

the earliest days of history. From ancients’ reading of the innards of birds

for divination to the tossing of dice in the game of gambling, all the way to

modern day risk assessments and market investments, we have put ourselves

into the hands of chance. The ancient Greek philosophers were among the

first to discuss the concept of randomness and chance and link it to divinity

[1]. Alongside the establishment of probability theory, randomness has been

a subject receiving continuous attention. In the meantime, its usefulness

was also gradually found in various fields of science and industry.

The study of randomness became crucial with the development of mod-

ern cryptography, when people realized that generating true randomness is

a fundamental task in essentially all information security protocols [2, 3].

However, this seemingly easy task is in fact surprisingly challenging. Plenty

of methods have been proposed and implemented, both arithmetical and

physical, and yet few of them are considered truly satisfying. While the

quality of randomness generation is of concern, faster generation speed is

also demanded by most modern communication protocols. Hence, having a
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reliable, fast random number generator that produces true random numbers

becomes one of the keystones of building a secure and efficient communica-

tion system, and this inspired various researches in the field.

1.1 Definition Of Random Numbers

The idea of a ‘random number’ is so simple that it can be understood by

literally anyone: the toss of a coin gives you one random bit with two equal

possible outcomes. We call it ‘random’ because we have no way of telling

the result before it happens.

However, despite the simplicity of the idea, it is in fact difficult to give

a truly satisfactory definition of random numbers. A comment made by D.

H. Lehmer in 1951 addressed the issue as such [4]:

“A random sequence is a vague notion embodying the idea of a sequence in

which each term is unpredictable to the uninitiated and whose digits pass a

certain number of tests, traditional with statisticians and depending some-

what on the uses to which the sequence is to be put.”

The comment points out two major properties that should be possessed

by a sequence of random numbers: unpredictability and a lack of structure

in its statistics. No one should be able to predict the elements in a random

number sequence: knowing the existing numbers should not leak any infor-

mation about the next number in the sequence. On the other hand, the

sequence should ’look random’: it should (at least with a high probability)

have similar statistics as one that is truly random. Even more strict argu-

ments can be made indicating that the second property mentioned above is

implied by the first: finding certain statistical structure in the data would

increase the predictability of the sequence.

The description above is by no means mathematically rigorous, but a
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random number sequence having these properties should at least satisfy

most real life applications, as will be introduced in the following session.

It is worth noting that other attempts are made in the field of computer

science and information theory. Related works are done by Kolmogorov,

Martin-Löf and Chaitin [5,6] interpret randomness in terms of computational

complexity.

1.2 Applications Of Random Numbers

Random numbers are useful in many different applications, ranging from

computer science to gaming industries.

The Monte-Carlo simulation is one of its well adopted applications in

science. This method rely on using random sampling to obtain numerical

results of a problem [7]. It is often used to simulate complex systems that

are beyond the capabilities of analytical methods. The Monte-Carlo method

usually requires a large amount of random numbers to seed the sampling

process hence it relies a lot on the speed of random number generation.

In computer science, it is found that certain randomized algorithms,

which require inputs of random numbers, perform better than their cor-

responding deterministic algorithms [4, 8]. Random number generators are

required when running these algorithms. In fact, it is hard to find a standard

compiler without a build-in random number generator.

1.2.1 Application in Cryptography

Perhaps the one field that relies on random numbers most is cryptography.

The usage of random numbers in cryptography is a good reflection of the

definition of random numbers and also provides some guide line for the

designing of random number generators.
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plaintext

random key

ciphertext
+

10101100
+

10000101

00101001 decrypted text

random key
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Figure 1.1: The One-Time Pad encryption protocol. The ciphertext is generated by

XORing the plaintext with a randomly generated key, and is decrypted by XORing the

same key once more.

One-Time Pad

As a first example, the One-Time Pad (OTP) is a cryptographic system de-

veloped in the early 20th century by Gilbert Vernam and Joseph Mauborgne [3].

The protocol is very simple:

1, Encode the plaintext in binary numbers;

2, Generate a key of random bits of the same length as the plaintext;

3, Obtain the ciphertext by performing a bitwise XOR between the plaintext

and the key;

4, The ciphertext and the key are transmitted seprately to the receiver;

5, On the receiving side, the ciphertext is decrypted by performing another

bitwise XOR between the ciphertext and the key.

An example is shown in Fig. 1.1. It is obvious that the OTP is an encryp-

tion system that largely depends on the generation of random numbers(bits).

In fact, the OTP is considered unbreakable for ciphertext attacks if the ran-

dom bits used for the encryption key are truly unpredictable random bits:

the encrypted message will appear completely random and gives no infor-

mation about the plaintext(well, except the length of the message) [2], and

an eavesdropper will take forever to guess the content of the message. It

was rumoured that a ‘hot line’ was established during the cold war between

Washington D.C. and Moscow using the OTP for highest level of security.
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However, the disadvantages of the one-time pad are fairly obvious: The

protocol requires on a large amount of random bits being reliably generated.

The rate of generation is the bottleneck of the entire scheme. Moreover, if

the random number generator is jeopardised and becomes predictable, the

system is no longer secure.

Key Generation

The one-time pad is a somewhat extreme protocol designed for ultimate

security. The protocol is safe but not practical for most real life scenarios.

Most modern cryptographic protocols make use of pairs of encryption

and decryption algorithms instead of directly XORing plaintext to the key.

As shown in Fig. 1.2, these algorithms usually operate together with a pair

of much shorter keys, whose values affect the algorithms: only people with

the correct pair of keys can successfully encrypt or decrypt messages. Eaves-

droppers who do not have access to the keys will be forced to guess their

content in order to crack the ciphertext.

The security of a protocol rest in the design of the algorithms and more

importantly, the choice of keys. It is in general a good practice to use

completely random bits as the encryption key such that the system can only

be attacked by brute force. For cryptographic system, it is vital that the key

generation is truly unpredictable: not just statistically random, but truly

uncorrelated to any outside information and takes maximum effort to be

guessed.

1.3 Methods Of Generating Random Numbers

Much effort have been devoted into finding ways of generating good random

numbers. Some very early work of the field include [9, 10]. There are two
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Alice Bob

Eve

Encryption Decryption

Encryption Key Decryption Key

Random number generator Original Key

Figure 1.2: Usage of random number generator for key generation. The original key is

usually a random string from a random number generator. The original key is manipulated

and a pair of encryption/decryption keys are generated and distributed to the users (Alice

and Bob). With the correct pair of keys, the encrypted messages can be safely transmitted

and the eavesdropper (Eve) who does not have access to the keys cannot breach the

protocol.

main types of random number generators, Pseudo-random number generator

and Physical random number generator.

1.3.1 Pseudo-Random Number Generator

A pseudo-random number generator is in principle a deterministic algo-

rithm producing an output stream that appears statistically random, i.e.,

the stream contains roughly the same number of 1s and 0s, does not seem

to have correlations between the bits, etc. Some of the famous algorithms

used for pseudo-random number generation include linear congruential gen-

erator1 [2–4], Mersenne Twister [11] and the Blum-Blum-Shub(BBS) gener-

ator [2,3,12]. Well designed pseudo-random number generators usually have

fast generation rates since they are completely based on arithmetic methods.

These methods are most commonly used for Monte-Carlo simulations and

general programming purposes.

1the linear congruential generator is in fact a family of generators based on similar

methods.
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However, the deterministic nature of the pseudo-random number gener-

ators suggests that their output can in principle be predicted and hence are

not suitable for cryptographic purposes. On strict point of view, pseudo-

random numbers are not random, or as John Von Neumann commented:

“Anyone who considers arithmetical methods of producing random digits is,

of course, in a state of sin”.

1.3.2 Physical Random Number Generator

A physical random number generator (also known as Hardware random num-

ber generator) generates random numbers from physical processes. Instead

of using deterministic algorithms, they make measurements on noisy physi-

cal systems and convert the results into random bits.

Various physical phenomena have been used as the source of random-

ness, ranging from radioactive decay events to atmospheric noise. Hu-

man behaviour related events can also be useful sources of randomness.

In fact, in many Unix-like operating systems, a special device file named

/dev/random serves as a random number generator by collecting randomness

from keystroke timings, mouse movements and other possible environmental

noises [13].

The merit of using a physical random number generator is that the gener-

ated numbers are practically unpredictable: a real life physical system used

for such purposes is simply too complex for anyone to predict. However,

question still remains about whether all these systems can be considered

truly random. It is often argued that most marcoscopic systems described

by classical mechanics are still considered deterministic and are not truly

random [14]. Apart from that, physical random number generators usually

suffer from slow generation rates due to the limitation in detection and data
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processing.

1.4 Quantum Random Number Generator

Quantum Random Number Generators (QRNG) belong to a special class of

physical random number generators where the source of randomness is the

unpredictable outcome of a quantum measurement.

The concept of randomness is embedded in the basic postulates of quan-

tum mechanics. A quantum system under measurement will randomly fall

into one of its possible eigenstates and yield the corresponding outcome.

It is certified by experiments that these measurement results can be truly

non-deterministic [15,16] and hence make them idea candidates for random

number generation.

Randomness sources based on radioactive decays were used in many early

implementations of QRNGs [17,18]. A decay event (typically α decay) occurs

spontaneously in the nucleus and does not depend on external condition.

The decay statistics of a radioactive sample thus can be recorded and used

to generate good random numbers.

Quantum optical system is another popular choice of randomness. Dif-

ferent schemes use the randomness of a single photon scattered by a partially

reflective mirror into either of two possible ports [19, 20], as demonstrated

in Fig. 1.3. Since the transmission/reflection of the photon is intrinsically

random due to the quantum nature of the process, the unpredictability of

the generated numbers is ensured.

There are other implementations of QRNGs measuring the vacuum fluc-

tuations of electromagnetic field [21, 22] or the intensity and phase noise of

different light sources [23–25].
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PBS 0

1
single photon 

detectors

Figure 1.3: A quantum random number generator based on single photon events. A

photon is prepared in a 45 degree polarization state and is sent through a polarisation

beam splitter. The photon will have 50% chance being transmitted and another 50% being

reflected. Two single photon detectors are used to count the photons coming from each

port. Since the scattering of a photon is a quantum process, each event produces exactly

1 random bit

1.5 Statistical Tests Of Randomness

Besides the generation of random numbers, it is also important to have ways

of testing them. Although in principle one cannot tell whether a recorded

number sequence is truly random or not, the theory of probability and statis-

tics does offer some quantitative measures for the likelihood of randomness,

i.e. whether a given sequence ”looks random” or not.

The tests of randomness follow a general procedure. The sample of

numbers under test is first collected and manipulated to calculate certain

statistics. These statistics could be standard ones such as mean, variance,

autocorrelation, or some other self defined properties. In the mean time,

one calculates the expectation value of the same statistics by assuming the

numbers being truly random. These statistics obtained from the sample are

compared with their expectation values and a final decision will be made:

obviously, if the sample statistics are so far away from their expectations,
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then the numbers under test is most likely to be non-random; if the statistics

fit closely to the expectation values, then one may choose to conclude that

such a test cannot distinguish these numbers from truly random ones.

Lots of statistical tests have been created to assist the testing of ran-

dom number generators. Some of the most famous test suites include the

NIST Statistical Test Suite [26], Diehard/Dieharder Suite by Robert G.

Brown [27], etc. Each of these test suites consists of dozens of carefully

designed tests trying to probe possible statistical anomalies in the subjects,

and they are often used to certify the performance of newly designed random

number generators.

1.6 Thesis Outline

The purpose of this thesis is to document one specific design of quantum

random number generator based on a homodyne measurement of the vacuum

field.

The theory of vacuum fluctuation of electromagnetic fields and homo-

dyne detection will be introduced in chapter 2, followed by implementation

details and performance described in chapter 3. In chapter 4, I will introduce

the method of quantifying the randomness from the source and introduce

ways of extracting uniformly distributed random bits from the source. The

thesis will be concluded by chapter 5 in which remarks and outlooks will be

provided.
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Chapter 2

Vacuum Fluctuations And

Its Detection

2.1 Light As A Quantum Harmonic Oscillator

Light propagating in free space has long been recognized as an oscillating

electromagnetic field. As an oscillation phenomenon, its mathematical de-

scription shares great resemblance to that of a harmonic oscillator. This

resemblance is extended to the quantum regime and motivates the theory

of quantization of the electromagnetic field.

x

y

z

L

A

Figure 2.1: A linearly polarized EM wave in a cavity. The wave propagates along z axis

and is linearly polarized along the x axis. The length of the cavity is L and its volume is

V = L×A. Such a cavity only supports discrete number of frequency modes.
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A simple scenario to consider is a linearly polarized electromagnetic field

enclosed in a cavity of length L and volume V , as illustrated in Fig. 2.1. It

is apparent that such a cavity only supports EM field oscillations of certain

angular frequencies ω = nπ
L
c, and their corresponding wave vectors are k =

ω
c
.

For a specific frequency mode ω, the total electromagnetic energy stored

in the cavity has contribution from the electrical part and the magnetic part

of the oscillation, and is expressed as:

E =
1

2
(
V

2
ǫ0E02sin2ωt

︸ ︷︷ ︸

ω2q2

+
V B0

2

2µ0

cos2ωt

︸ ︷︷ ︸

p2

) =
1

2
(p2 + ω2q2) (2.1)

For convenience, we regroup the terms and rename two variables p and q,

where:

p = (
V

2µ0

)

1

2

B0 cosωt = (
ǫ0V

2
)
1

2E0 cosωt (2.2)

q = (
ǫ0V

2ω2
)

1

2

E0 sinωt (2.3)

To see the merit of such arrangements, observe that:

p = q̇ (2.4)

ṗ = −ω2q (2.5)

A comparison between the expressions above and the equation of motion

of a harmonic oscillator is given below:
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Harmonic Oscillator Optical Field

p = mẋ p = q̇

ṗ = −mω2x ṗ = −ω2q

E =
p2

2m
+

1

2
mω2x2 E =

1

2
(p2 + ω2q2)

. . .

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 Ĥ =

1

2
(p̂2 + ω2q̂2)

A important step here is to extend the similarity to quantum regime. The

pair of variables p and q are replaced by operators p̂ and q̂ similar to the

momentum and position operators of a quantum harmonic oscillator. The

most direct consequence due to this is the quantization of energy spectrum:

En = (n+
1

2
)h̄ω (2.6)

At this point, the concept of photon is introduced: an energy quanta of

electromagnetic field that equals to h̄ω. A quantum state of light can now

be expressed as a linear combination of number states |n〉, each representing

the existence of n photons in the optical mode.

Similarly, the uncertainty relation is also inherited in this case:

∆p∆q ≥ h̄

2
(2.7)

In many literatures [28,29], a new pair of dimensionless variables known

as the field quadratures are defined for the convenience of discussion. The

field quadratures are defined in terms of the p and q variables in Eq. 2.2:

X1 = (
ω

2h̄
)
1

2 q, X2 = (
1

2h̄ω
)
1

2 p (2.8)
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and naturally, the quadrature operators are defined for the quantum

case:

X̂1 = (
ω

2h̄
)
1

2 q̂, X̂2 = (
1

2h̄ω
)
1

2 p̂ (2.9)

and the Hamiltonian now can be written as:

Ĥ = h̄ω(X̂1

2
+ X̂2

2
) (2.10)

and the uncertainty relation is now expressed as:

∆X1∆X2 ≥
1

4
(2.11)

2.2 Coherent State And Vacuum State

2.2.1 Coherent State Of Light

The coherent state of light is a superposition of photon number states:

|α〉 = e−
|α|2

2

∑

n

αn

(n!)
1

2

|n〉 (2.12)

and has a poissonian photon number distribution:

P (n) = |〈n|α〉|2 = e−
|α|2

2

|α|2n
n!

(2.13)

This state minimizes the uncertainty relation in the field quadratures:

∆X1 = ∆X2 =
1

2
(2.14)

Fig. 2.2 is a phasor diagram of the coherent state in Eq. 2.12. A coherent

state is characterized by a complex number α defined as:

α = X1 + iX2 = |α|eiφ (2.15)

and the square of its magnitude is given by:

|α|2 = X1
2 +X2

2 = n̄ (2.16)
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Figure 2.2: Representation of a coherent state in the phasor diagram. The state has a mean

photon number of |α|2. The uncertainty of the field quadratures are ∆X1 = ∆X2 = 1

2
.

Like a classical wave, it has a well defined average phase φ.

where n̄ is the average photon number of the state.

The coherent state is important because it is a quantum-mechanical

equivalent to a classical monochromatic EM wave and is often used as a

model to describe laser light. However, unlike a classical EM wave, the

phase and photon number of a coherent state have uncertainty in them and

are always fluctuating about their average values.

2.2.2 Vacuum State And Vacuum Fluctuations

One counter-intuitive result due to the quantization of EM fields is the

presence of energy in the vacuum state. In Eq. 2.6, even at the ground

level of an optical mode (n=0) the system still possesses a non-zero energy

of 1

2
h̄ω.

An explanation was suggested [30] that that this energy originates from

a randomly fluctuating electromagnetic field. This field, often referred to

as the vacuum field, is present everywhere with or without the presence of

photons. The magnitude and direction of the vacuum field fluctuates about
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Figure 2.3: Representation of the vacuum state in the phasor diagram. The uncertainty

of the field quadratures are ∆X1 = ∆X2 = 1

2
. However, the uncertainty of phase cannot

be well defined in this case.

zero, and its variance contributes to the non-zero energy of vacuum.

A phasor diagram of the vacuum state is given in Fig. 2.3. The vacuum

state can be treated as a special coherent state with n̄ = 0. However, since

the vacuum field is a randomly fluctuating field, it does not have a well

defined phase.

2.3 Detection Of Vacuum Fluctuations

The effect of vacuum fluctuations can be observed in phenomenon such as

spontaneous parametric down-conversion and the Casimir effect [31]. In this

thesis, we use a technique known as the balanced homodyne detection to

measure the quantum noise induced by vacuum fluctuations of the electro-

magnetic field.

2.3.1 Balanced Homodyne Detection

The scheme of a balanced homodyne detector for vacuum fluctuation is

illustrated in Fig. 2.4. The detector requires two optical inputs: a relatively

weak input optical state under measurement, known as the signal and a
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Figure 2.4: The balanced homodyne detection scheme. A coherent laser beam (the local

oscillator) is split into two equal intensity beams by the beam splitter. The other input

port has no input which corresponds to the vacuum state input. Two identical photodiodes

pd1 and pd2 are used to generate photocurrents that are subtracted at the output.

strong coherent state, known as the local oscillator (LO). In the case of

detecting vacuum fluctuations, the signal input is simply blocked to provide

a vacuum state input.

The two input states are sent through the two ports of a 50:50 beam

splitter, and the two output beams are received by two identical photodiodes

pd1 and pd2 and converted to photocurrents. The measured photocurrents

are then subtracted to provide the final output.

In the phasor diagram, the local oscillator and the vacuum field at arbi-

trary time t are be expressed as:

αlo = αlo + δX1,lo(t) + iδX2,lo(t) (2.17)

αvac = δX1,vac(t) + iδX2,vac(t) (2.18)

As shown here, the coherent local oscillator is represented by a complex

number α, which is decomposed as the sum of its average value α plus the

uncertainty δX1 + iδX2. The square of its magnitude, |α|2, equals to its

average photon number n. A similar expression is used for the vacuum field,

except that αvac = 0 since the average magnitude of vacuum field is zero.

After mixing the two input states at the PBS, we obtain two output
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fields β1 and β2:

β1 =
1√
2
(αlo + αvac) (2.19)

β2 =
1√
2
(αlo − αvac) (2.20)

The photocurrents measured at the detectors are proportional to the

received photon number measured over a detection period τ :

i1 =
Sh̄ω

τ
· |β1|2 , i2 =

Sh̄ω

τ
· |β2|2 (2.21)

where h̄ω is the energy per photon and S is the sensitivity of the photodiode.

Substituting the expressions in Eq. 2.17, the difference in the photocurrents

is:

i1 − i2 =
Sh̄ω

τ
· (|β1|2 − |β2|2) (2.22)

=
Sh̄ω

τ
· [1
2
|(αlo + αvac)|2 −

1

2
|(αlo − αvac)|2] (2.23)

=
Sh̄ω

τ
· (αloα

∗

vac + α∗

loαvac) (2.24)

=
Sh̄ω

τ
· {(αlo + δX1,lo + iδX2,lo)
︸ ︷︷ ︸

αlo

(δX1,vac − iδX2,vac)
︸ ︷︷ ︸

α∗
vac

+C.C}

(2.25)

Since the local oscillator is a strong coherent state, αlo ≫ δX, an

approximation is taken here to neglect any higher order terms such as

δX1,lo · δX1,vac, δX1,lo · iδX2,vac, etc. As such, the current difference is given

as:

i1 − i2 = ∆i =
Sh̄ω

τ
· (|β1|2 − |β2|2) (2.26)

≈ Sh̄ω

τ
· 2αlo · δX1,vac (2.27)
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The square of the current fluctuation is:

∆i2 ≈ (
Sh̄ω

τ
· 2αlo · δX1,vac)

2 (2.28)

=
4Sh̄ω

τ
· (Sh̄ω|αlo|2

τ
) · (δX1,vac)

2 (2.29)

=
4e

τ
· i · (δX1,vac)

2 (2.30)

One can see that by rearranging the terms, the noise power is in fact pro-

portional to the total photocurrent generated (i = i1 + i2, i1 = i2 since the

optical power is balanced). According to Eq. 2.14, 〈δX1,vac
2〉 = 1

4
, and if we

take the average noise power, we have:

〈∆i2〉 = 4ei

τ
〈δX1,vac

2〉 (2.31)

=
ei

τ
(2.32)

Which describes the shot noise power generated by a photodiode with aver-

age photocurrent i. Alternatively, in the frequency domain, the noise power

over a bandwidth ∆f is:

〈∆i2〉 = 2ei∆f (2.33)

It is apparent that the output signal is a white noise (independent of fre-

quency) whose magnitude depends on the detector bandwidth. To obtain a

large enough noise signal, fast photodiodes are desirable as they provide a

larger bandwidth.

An interesting feature of homodyne detector is that it cancels the clas-

sical noise in the local oscillation. In practice, the intensity of the local

oscillator cannot be perfectly constant due to possible interference from the

environment (fluctuations of supply current, mechanical vibrations, etc).

These classical noises resides in the laser beam and is simultaneously by the

photodiodes. Unlike shot noise, the classical noises detected by the photo-

diodes are correlated and get cancelled out upon current subtraction.
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The shot noise is usually a limiting factor in classical optical detections.

Unlike other noises, the shot noise originated from the quantum uncertainty

of the coherent itself and in principle cannot be eliminated unless squeezing

techniques are applied to modify the state of the light [32]. However, in our

case it becomes a suitable choice as a source of randomness.

2.4 Vacuum Fluctuation As Source Of Random-

ness

Measurement of vacuum fluctuations turns out to be a suitable source of

randomness for several reasons. Firstly, it is a purely quantum mechanical

phenomenon that does not have a classical correspondence. Measurements

on such a quantum system should yield outcomes that are intrinsically ran-

dom: they are neither predetermined [33], nor are they correlated to any

other systems. This meets the requirement of unpredictability of a random

number generator.

From a practical point view, vacuum fluctuation measurement is a suit-

able choice of randomness source because of its efficiency and simplicity. The

balanced homodyne detection scheme makes use of fast photodiodes which

usually have high cut-off frequencies. This generates a random signal with

larger bandwidth and allows faster data acquisition speed that results even-

tually in a higher random number generation rate. A homodyne detector is

also a relatively simple construct and can be made compact and portable.
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Chapter 3

Hardware Implementation

3.1 Experimental Setup

Fig. 3.1 shows the schematic of our random number generator implemen-

tation. The local oscillator of the homodyne detector is provided by a con-

tinuous wave laser diode (LD) of 780 nm wavelength. The laser diode is

powered by a constant current source with a 5V supply voltage.

The output optical power of the laser diode is split by a polarizing beam

splitter (PBS). Since the laser diode output is a linearly polarized light, one

can use a PBS to tune the power distribution of the two split beams by

simply rotating the laser diode. The two split beams are directed to two

identical photodiodes (Hamamatsu S5972) and are converted to photocur-

rents i1 and i2. The photocurrent difference i1 − i2 at the middle point

between the two diodes is measured.

The DC component of the photocurrent difference is measured across a

resistor RDC . Since the scheme is a balanced detection, the DC component

should be ideally kept at 0V such that the photodiodes receive equal input

power. This can be achieved by rotating the polarization of the laser diode to
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Figure 3.1: Schematic of the quantum random number generator. A polarizing beam split-

ter (PBS) distributes the optical power from the laser diode equally on two photodiodes.

The photodiodes generate photocurrents i1 and i2. The photocurrent difference i1 − i2 is

measured. Its fluctuating AC component is amplified, digitized and sent to a randomness

extractor to generate true random bits.

adjust the optical power at the output ports of PBS. Since the optical power

received by the diodes is balanced, classical power fluctuations in the local

oscillator will be simultaneously detected and cancelled in the photocurrent

difference [34, 35]. An alternative interpretation is that the laser beam is

generating photocurrents i1,i2 with a noise power proportional to the average

optical power, which is the shot noise of the local oscillator.

Gain Stage

The AC component of the photocurrent difference is the shot noise of local

oscillator, which is used as our source of randomness. However, since the

shot noise level is too weak to be directly used, amplification of signal is

needed.

The AC component is sent through a gain stage, as shown is Fig. 3.2.
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Figure 3.2: Gain stage used to amplify the shot noise signal. A transimpedance amplifier

(TIA) forms the first stage to convert photocurrent difference i1− i2 into a low impedance

voltage signal. The voltage signal is further amplified by the second and third stage

amplifiers, which are both transistor amplifiers (Mini Circuits MAR 6 SM+). The gain

stage is designed to have an effective transimpedance Reff ≈ 590kΩ.

A transimpedance amplifier (Analog Devices AD8015) is used as the first

stage amplifier to amplify the photocurrent difference into a voltage signal.

The amplifier is inductively coupled to the next stages and has a effective

transimpedance of 7.07 ± 1.41kΩ. The second and third stages are two

transistor amplifiers (Mini Circuits MAR 6 SM+), with a gain of 20 dB

each. Due to insertion losses and other factor, we concluded the effective

transimpedance of the gain stage to be Reff ≈ 590± 118kΩ.

The gain stage is designed to have a wide bandwidth for amplification,

ranging from 20 MHz to 120 MHz, determined by the DC block capacitors

and the cut-off frequency of the transimpedance amplifier. This will avoid

most RF noises and acoustic/mechanical noises from entering the circuit.

Digitization And Post-processing

The amplified signal is digitized into signed 16-bit numbers at a sampling

rate of 60 MHz set by the Analog-to-Digital Converter (ADC) unit used. The

sampling rate is set to be lower than the cut-off frequency of the amplifier

in order to avoid temporal correlation between samples.

The digitized 16-bit numbers follow a non-uniform distribution and can-

not be directly used as good random numbers. An additional step known
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Figure 3.3: Noise levels measured after the gain stages with a resolution bandwidth B =

1 kHz. Between 20 and 120 MHz, the total noise (red) is the amplified photocurrent

difference i1 − i2 with a balanced optical power impinging on both photodiodes. The

measured total noise comes close to the expected shot noise level calculated in Eq. 3.1.

The AC current of a single photodiode i1 is also recorded (blue) and shows classical noises

at various frequencies. The electronic noise (black) is measured without any optical input.

as randomness extraction is need to process the imperfect random numbers.

The details of randomness extractors will be elaborated in chapter 4.

3.2 Performance

In operation, the local oscillator laser supplies about 10 mW optical power.

After the PBS, 3.1 mW is coupled to each photodiode. After the gain stages,

one would expect an amplified noise power of:

P =
4eĪBReff

2

Z
≈ −52± 2 dBm (3.1)

where Ī ≈ 1.34 mA is the average DC photocurrent generated by each pho-

todiode and e is the electron charge. The measurement bandwidth chosen

to be B = 1 kHz and the load resistance is Z = 50 Ω.

The actual output shot noise signal is measured with a spectrum anal-
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Figure 3.4: Autocorrelation of the total signal sampled at 60 MHz (solid line), compared

with the 2σ confidence level (dashed line).

yser with a resolution bandwidth of 1 kHz. The spectral power density is

displayed in Fig. 3.3. The measured total noise signal (red) is about 1.5

dB lower than the theoretically calculated shot noise level (dashed trace),

which is still with the error bar caused by the uncertainty in the gain of the

amplifier chain. The noise signal has a relatively flat power density in the

range of 20 to 120 MHz.

To illustrate the effectiveness of removing classical noise using balanced

homodyne detection, the power spectral density of photocurrent generated

by a single diode is also displayed (blue). Strong spectral peaks at various

radio frequencies appear in the signal possibly through modulating the laser

supply current and this may reduce the randomness available in the signal.

For completeness, the electronic noise of the amplifier is also recorded (black)

which appears to be at least 10 dB below the total noise level, thus it is safe to

conclude that the total output noise is dominated by quantum fluctuations.

The total noise signal is digitized into signed 16-bit words xi at a sam-

pling rate of 60 MHz and the autocorrelation function is computed to check
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for temporal correlation between samples. As shown in Fig. 3.4, the nor-

malized autocorrelation function:

A(d) = 〈xixi+d〉n/〈xi2〉n (3.2)

is computed over n = 106 samples and the autocorrelation coefficient falls

into the expected confidence interval (dashed line) which indicates no sig-

nificant correlation between samples.

3.3 Entropy Estimation

The random noise signal we obtained at the output of the gain stages is

a combination of amplified shot noise and the electronic of the amplifiers.

Although we can achieve a signal to noise ration of 10 dB, the electronic

noise may still affect the randomness of the signal. At this point, it would

be helpful if we can quantify the amount of randomness we can safely extract

from the total noise such that the randomness is still considered originating

from a quantum mechanical source.

To quantify the amount of randomness, we use the concept of Shannon

entropy. The Shannon entropy of a random variable X is defined as:

H(X) =
∑

−p(x) log2 p(x) (3.3)

where p(x) is the probability distribution of the random variable X.

To estimate the amount of Shannon entropy of shot noise H(Xs), we

follow an approach used in [25, 36]. We assume that the measured total

noise signal Xt is the sum of the shot noise Xs and the electronic noise Xe,

such that:

Xt = Xs +Xe (3.4)

Here, Xt, Xs and Xe are random variables with discrete distributions over

the digitization interval from 2−15 to 215−1. Further more, we assume that
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Figure 3.5: Probability distribution of the measured total output noise with variance σt
2

(a), electronic noise with variance σe
2 (b), and the estimated shot noise with calculated

variance σs
2 (c). The filled areas in (a) and (b) show the actual measurements over 109

samples. The solid lines approximate the related Gaussian distributions.

Xs and Xe are independent to each other. Since we are uncertain of the

origin of electronic noise, we consider the worst case scenario that the elec-

tronic noise is completely untrustworthy, i.e., an adversary is able to gain full

knowledge of electronic noise and predict the exact outcome of variable Xe

at any moment. In this case, the accessible amount of randomness in the ac-

quired total noise signal is quantified by the conditional entropy H(Xt|Xe),

i.e., the amount of entropy left in the total noise, given full knowledge of the

electronic noise Xe.

As we have assumed the random variables to be additive and indepen-

dent, the conditional entropy may be calculated as:

H(Xt|Xe) = H(Xs +Xe|Xe) = H(Xs|Xe) = H(Xs) (3.5)

Which is the Shannon entropy of the shot noise itself.

However, since the shot noise signal cannot be directly measured, we

can only approximately estimate its distribution. The variance of the total
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noise σt
2 is given by the sum of the variance of shot noise σs

2, and electronic

noise σe
2. We recorded an ensemble of 109 samples and the distribution

is displayed in Fig. 3.5. The total noise and electronic appear to follow

Gaussian distribution with σt = 4504.41 and σe = 1481.8. Note that for

the total noise, the observed distribution is slightly skewed compared to a

Gaussian fitting (solid line in Fig. 3.5(a)), which is believed to be effect

from amplifier distortions.

We assume here that the shot noise has a Gaussian distribution [30],

such that we may compute:

σs
2 = σt

2 − σe
2 ≈ 4253.72 (3.6)

At this point, we estimate that Xs is a random variable with a Gaussian

distribution of variance 4253.72 over the digitization interval 2−15 to 215−1.

The Shannon entropy is then estimated:

Hs =
216∑

x=1

−ps(x) log2 ps(x) ≈ 14.1 bits (3.7)

with ps(x) being the corresponding distribution function. This suggests

that out of every 16-bit sample, one should be able to extract 14.1 bits of

uniformly distributed random bits.

It should be noted that this numerical estimation only serves as an up-

per bounder of randomness, i.e., the maximum possible amount of entropy

one can extract from the total noise with the assumptions of a Gaussian

distribution of the independent random variables Xs and Xe. In other lit-

eratures [21, 37], entropy is estimated under more strict assumption that

an adversary not only can monitor the electronic noise, but is also able to

change its value. Fewer random bits can be extracted under this scenario.
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Chapter 4

Post-processing And

Evaluation

From the physical setup introduced in Chapter 3. We obtained a noise signal

that can be used as our source of randomness. We concluded that our signal

resembles white noise over a large bandwidth (Fig. 3.3), shows no significant

temporal correlation (Fig. 3.4) and follows a Gaussian distribution (Fig.

3.5). We also estimated the amount of extractable entropy from the noise

signal and concluded an upper bound of 14.1 bits entropy out of every 16-bit

sample.

Our noise signal originates from quantum fluctuations and is in prin-

ciple unpredictable. However, in many applications, random numbers are

required to be not only unpredictable, but also uniformly distributed. This

means that our raw date from the digitized noise signal cannot be directly

used since they are non-uniformly distributed. To form a complete random

number generation scheme, post-processing is required.

38



0 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 0 1 1 0 1 1 1 0

0 1 1 0 1 1 0 1 1 

0 1      0

1 0      1

0 0      

1 1      
discarded

raw input bits

extracted output bits

Figure 4.1: The Von Neumann randomness extractor. A stream of biased bits are divided

into pairs. The algorithm discards all the 00 and 11 pairs, and makes the mapping 01 → 0,

10 → 1. The resulted stream will have equal probability of 0s and 1s.

4.1 Randomness Extraction

Randomness extraction is the essential process required to generate high

quality random numbers that are uncorrelated and uniformly distributed.

The central part of randomness extraction is usually an algorithm known as

the randomness extractor. The randomness extractor receives a statistically

weak binary stream as input, and generate uniformly distributed random

bits at its output.

The Von Neumann Extractor is perhaps one of the earliest randomness

extractors proposed [10]. The algorithm is used to extract uniform random

bits from a stream of independent, but biased random bits (P (0) 6= P (1) 6=
1

2
).

Fig. 4.1 illustrates the Von Neumann extraction scheme. The algorithm

receives the biased stream as input and divides the stream into pairs of bits.

All the 00 and 11 pairs are discarded, and the remaining 01 and 10 pairs

are mapped into 0s and 1s accordingly. Since the probability of having a 01

pair is the same as having a 10 pair, the output stream of such algorithm is

guaranteed a uniform distribution between 0s and 1s.

It is worth noting that the Von Neumann extractor is only suitable for

independent , biased random bit stream. If correlations exist between con-
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secutive bits in the stream, this method is no longer applicable. Also, the

algorithm is not considered efficient as more than 75% of the bits from the

input are lost while there are still remaining entropy available.

Many other implementations of randomness extractors have been re-

ported, such as Trevisan’s extractor and Toeplitz-hashing extractor in [36],

random-matrix multiplication used in [25, 38]. For implementations of ran-

dom number generators, various families cryptographic hashing functions

are often adopted such as Secure Hashing Algorithms (SHA) in [22], and

Advanced Encryption Standard hashing (AES) in [37]. These algorithms

are usually carefully designed and have good performance. However, most

cryptographic hashing functions are complicated and required lots of com-

putational resources. This could be a limiting factor when one is pushing

for higher rate of random number generation.

In this document we report an implementation of a randomness extrac-

tor based on Linear Feedback Shift Register (LFSR). The implementation

appears effective against various randomness tests and the construct is com-

pact. Details of the implementation will be introduced in the remains of the

chapter.

4.2 Randomness Extractors Based On Linear Feed-

back Shift Registers

4.2.1 Linear Feedback Shift Registers

Linear Feedback Shift Register (LFSR) is a arithmetic method known for

quickly generating long pseudo-random streams with very little computa-

tional resources. It is widely used in communication applications for spec-

trum whitening and other purposes [38, 39].
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Figure 4.2: Schematic of a 63-bit LFSR. Tap bit in the shift register is XORed to generated

a new bit and is fed back to the shift register. This specific choice of tap bits can maximize

the period of the output stream, making it repeat itself after 263 − 1 bits.

Fig. 4.2 shows an example of a LFSR. Its main body is a shift register

of 63 bits length. Bits stored in the two rightmost cells are called tap bits

and are involved in the logic gate operations of LFSR. At each clock cycle,

an XOR operation is performed between the tap bits and produce one new

bit, which is then sent to the output; the very same result bit is also sent to

the left most cell of the shift register with the remaining bits shifted to the

right by one bit (right most bit discarded). At each clock cycle the LFSR

produces on bit output and update the internal state of the shift register.

It is obvious that a LFSR has a deterministic output: the binary stream

will repeat itself after a certain period since there is only a finite number of

internal states possible. This period can be maximized by specific choices of

tap bit positions. For a n-bit LFSR, the maximal period achievable is 2n−1

bits, which corresponds to all possible possible internal state of a n-bit word

except the all zero state1. In the example in Fig. 4.2, choosing the tap

bits at two right most cells produces an output stream of maximal length

of period 263 − 1 bits. We chose a 63 bit LFSR for the simplicity of the

structure: a 63 bit LFSR only needs 2 tap bits to produce a maximal length

output, which reduces the number of XOR gates required to the minimum.

The output streams of such maximal-length LFSRs have nice statistical

1If all the bits in the shift register are 0, the LFSR will produce an output stream of

0s.
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Figure 4.3: Randomness extractor based on a LFSR structure. The tap bits are XORed

together with the input to generate a new bit. The new bit is sent to output and also fed

back to the LFSR.

properties. They have uniform distribution of bits and their spectrum is

white, and for this reason the LFSRs are sometimes used to generate pseudo-

random streams for communication purposes [38, 40].

LFSRs can be implemented using simple digital circuits and reach very

high speed in real operations. This motivates us to construct a randomness

extractor based on LFSR structure.

4.2.2 LFSR-Based Randomness Extractor

Our implementation of randomness extractor is illustrated in Fig. 4.3. The

main body of the extractor is a 63-bit linear feedback shift register of max-

imal period, similar to the example in Fig. 4.2. The raw data is sent to

the extractor in serial. At each clock cycle, a XOR operation is performed

between the two tap bits of the LFSR. The result bit is then XORed with

the input bit of the raw data, generating one new bit. The new bit is then

sent to output and also fed back into the LFSR and update its internal state

by shifting all bits to the right. The initial internal state of the extractor can

be set to any random bit string of 63 bit length, and the first 63 bits output

should be discarded to ensure that the extraction process is irreversible.

Since the extractor is a deterministic process, the entropy in the output
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Figure 4.4: Effect of randomness extraction. Raw data (blue) has obvious non-uniform

distribution. After extraction, the extracted data are grouped in 16-bit numbers and

shows a uniform distribution over the 216 interval.

should be less than or equal to the entropy in the raw data. It is previously

calculated in Eq. 3.7 that the raw data contains 14.1 bits of Shannon entropy

per 16-bit sample. To ensure that we are extracting less than the Shannon

entropy bound, for every 16-bit output, we discard 8 bits2 and keep 8 bits

to the final data for the sake of programming simplicity.

Fig. 4.4 demonstrates the effect of randomness extraction. The raw data

samples (red) are displayed in both time domain (left) and histogram (right).

The raw data obviously follows a Gaussian distribution. The extracted

random bits are grouped into signed 16-bit numbers and displayed in the

same figure (red). The extracted numbers now distribute uniformly over the

entire interval and appears more random.

2This can be done by simply discard bits at fixed positions of output, since the extracted

numbers are already randomly distributed.
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Figure 4.5: A Galois type LFSR-based extractor (63-bit). The XOR operations can be

performed simultaneously, which shortens the processing time.

This implementation shares some nice features of a LFSR. It can operate

at very high speed as processing each bit only takes one clock cycle. Unlike

many other randomness extractors, our method will not be a limiting factor

of the overall generation rate. This extractor is also very compact as a

LFSR requires very little computational resources. It can in principle be

implemented in cell-phones, smart cards or other mobile applications where

only limited computing power is allowed.

Variations Of Randomness Extractor

A few variations can be made to our LFSR-based randomness extractor to

even further improve the efficiency of randomness extraction.

Fig. 4.5 shows an extractor based on a slightly different LFSR known

as the Galois type LFSR. The merit of such a design is that all the XOR

operation in the Galois type LFSR can be done simultaneously, thus reduce

the actual time needed to process one input bit. Extractor based on a Galois

type LFSR can achieve the same uniformizing effect as the one introduced

in the previous section.

A parallel version of randomness extractor is shown in Fig. 4.6. This

version takes parallel input/output and provides a boost in the processing

speed. However, the trade-off is that the parallel extractor requires more
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XOR circuit
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Figure 4.6: A parallel LFSR-based extractor. This version of extractor has parallel in-

put/output and significantly improves the processing speed of randomness extraction. The

trade-off is an increased number of memory cells and XOR gates.

memory cells and XOR gates in its circuitry.

4.3 Testing Random Numbers

Till this point we have completed the process of quantum random number

generation. It is natural at this stage to consider about testing the quality

of the generated random numbers.

Testing random numbers is in fact a non-trivial task and research on

this matter is still active in related fields in mathematics and statistics.

One frustrating fact regarding random number tests is that there is no way

to perfectly certify randomness. Given a number sequence from unknown

source, one can never tell whether it is truly random or not because there

is always possibility of having a random number generator generating the

same sequence.

However, it is possible to determine the likely-hood of a sequence being

random. This can be achieved through various statistical tests, as introduce

45



Compression software Original file size (Bytes) Compressed file size Compression ratio

Lzma

2,147,438,647

2,176,693,974 1.0136

WinRAR 2,153,045,093 1.0026

Gzip 2,147,831,450 1.0001

Bzip 2,156,976,807 1.0044

Table 4.1: 2 GByte random bits compressed using commercial compression software. None

of the software can compress the file to a smaller size.

in Chapter 1. The tests probe the statistical properties of the number se-

quence and compare them to the expected values of true random number

sequences. The comparison is usually done in the form of a chi-square test

and the likely-hood is expressed in terms of P-values.

Luckily, there are well organized sets of randomness tests, or randomness

test suites, available for the testing purposes. We adopted two famous test

suites to evaluate the performance of our prototype: the statistical test suite

from NIST (National Institution of Standards and Technology), and the

Die-harder randomness test suite [26,27]. Reports from two test suites show

that our random number generator passed both test suites. A conclusive

test report from the Die-harder test suite can be found in the Appendix.

We performed another interesting test by using compression software.

A 2 GigaByte binary file was populated with random bits generated from

our prototype. Four different compression software are applied to this file,

shown in Table. 4.1. Since the file contains nothing but random bits, the

compression algorithm of the software should not be able to find a more

efficient way to encode the file, hence the compressed file size should be at

least larger than or equal to the original file size.

46



4.4 Rate Of Random Number Generation

Another point of concern is the speed of random number generation. As

mentioned in Chapter 3, the rate of sampling of the ADC is set to 60 MHz

and each sample is a 16-bit signed integer. In the randomness extraction

process, we discard 4 bits from each 16-bit sample and only keep 12 bits

as final output. This in theory give us a generation rate of 720 Mbits/s.

However, due to limitation of data transfer (USB2.0), the generation rate

is currently limited to 480 Mbits/s. However, this result is still significantly

faster compared to many commercial products in the market [41].

The implementation has the potential to reach even higher rate (>1

Gbits/s) by changing to faster ADC unit and wider bandwidth amplifiers.

The randomness extractor will not be a limiting factor since it can be im-

plemented very efficiently.

47



Chapter 5

Conclusion And Outlook

The thesis described an implementation of a quantum random number gener-

ator based on measurements of vacuum fluctuation of electromagnetic field.

The importance and usefulness of random numbers motivates the pursuit of

good random number generators [2–4]. This is introduced in chapter 1 along

with a brief summary of existing methods of random number generation. For

generating truly unpredictable random numbers for cryptographic purposes,

physical random number generators based on quantum measurements are

favoured due to their intrinsic randomness. Several different schemes of

quantum random number generation have been reported in [17–25].

The theory of vacuum fluctuation is briefly introduced in chapter 2.

For the vacuum state of the electromagnetic field, the number of photons

fluctuates due to the energy-time uncertainty. Since the vacuum fluctuation

is not correlated to any other state, it is a good randomness source. A way of

probing the vacuum fluctuation is through a homodyne measurement with

a coherent laser, in which the measured fluctuation is also interpreted as the

quantum noise of the coherent laser [28].

The detailed implementation of the homodyne detector is described in
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chapter 3, and is based on a 50:50 polarisation beam splitter and a pair

of fast photodiodes. The differential signal measured by the photodiodes

is recognized as the quantum noise and is amplified by a transimpedance

amplifier. The output is a white noise signal of 100 MHz bandwidth and

has a noise power of -53.5 dBm. The signal appears to have very low auto-

correlation and its amplitude follows a nearly Gaussian distribution and it

is used as the source of randomness.

In chapter 4, we try to quantify the amount of randomness in the random

signal by statistically calculate its Shannon entropy. The effect of electronic

noise is also taken into account. This entropy estimation concludes 14.1

bits of entropy out of every 16-bit digital sample. The digitized signal is

yet to be converted to a uniformly distributed random bit stream, for which

we applied a randomness extractor based on linear feedback shift registers.

Several designs of the randomness extractors are proposed and one is imple-

mented. The final output after the extractor appears to be a correlation-free,

uniformly distributed random bit stream. The generated bit stream passed

two different statistical test suites and is shown to be incompressible against

compression software. An overall generation rate of 480Mbit/s is achieved.

This implementation has the potential to reach even higher generation

rate by using faster data transfer protocols, amplifiers and ADC with wider

bandwidth. The hardware can be miniaturized into a compact design to

improve portability. These points may be addressed in future prototypes of

the device. There are still room for improvement regarding the theoretical

description of entropy estimation and randomness extraction and is subject

to future effort.

The reported prototype can potentially be applied to various informa-

tion security systems where secure key/password generations are required.
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Given its compact design, the random number generator can be embed-

ded to mobile communication systems and even satellites. The proposed

randomness extraction algorithm can be efficiently implemented to systems

where only limited computational resources are available such as cellphones

or even smart cards. We are currently in process of commercializing the

prototype into a robust and easy-to-use product.
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Appendix A

Test Report Of Dieharder

Randomness Test Suite

We display a randomness test report from the Dieharder Randomness Test

Suite. It shows the various tests used against our random number output,

and the P-value of each test. The pass/fail threshold of P-value is set to

0.05, which is a commonly adopted value.

The test result is Pass for majority of the tests, except for one of the

marsaglia-tsang gcd test. However, we did not consider this to be an

anomaly as the fail is not reproducible. In addition, a good random num-

ber generator should fail a test occasionally (1 out of 100 test, estimated

by the author of the test suite [27]) as there is always non-zero possibility

that a random number generator generates a sequence that does not appear

random.
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#=============================================================================#

# dieharder version 3.31.1 Copyright 2003 Robert G. Brown #

#=============================================================================#

rng_name |rands/second| Seed |

stdin_input_raw| 5.64e+05 |3685956135|

#=============================================================================#

test_name |ntup| tsamples |psamples| p-value |Assessment

#=============================================================================#

diehard_birthdays| 0| 100| 100|0.42189983| PASSED

diehard_operm5| 0| 1000000| 100|0.83296102| PASSED

diehard_rank_32x32| 0| 40000| 100|0.48340646| PASSED

diehard_rank_6x8| 0| 100000| 100|0.30685907| PASSED

diehard_bitstream| 0| 2097152| 100|0.08570837| PASSED

diehard_opso| 0| 2097152| 100|0.86761981| PASSED

diehard_oqso| 0| 2097152| 100|0.87503398| PASSED

diehard_dna| 0| 2097152| 100|0.63984183| PASSED

diehard_count_1s_str| 0| 256000| 100|0.80631795| PASSED

diehard_count_1s_byt| 0| 256000| 100|0.03422649| PASSED

diehard_parking_lot| 0| 12000| 100|0.87504329| PASSED

diehard_2dsphere| 2| 8000| 100|0.97398772| PASSED

diehard_3dsphere| 3| 4000| 100|0.26366379| PASSED

diehard_squeeze| 0| 100000| 100|0.63934427| PASSED

diehard_sums| 0| 100| 100|0.01266915| PASSED

diehard_runs| 0| 100000| 100|0.97014427| PASSED

diehard_runs| 0| 100000| 100|0.29336373| PASSED

diehard_craps| 0| 200000| 100|0.73510155| PASSED

diehard_craps| 0| 200000| 100|0.40634955| PASSED
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marsaglia_tsang_gcd| 0| 10000000| 100|0.00319964| WEAK

marsaglia_tsang_gcd| 0| 10000000| 100|0.35131881| PASSED

sts_monobit| 1| 100000| 100|0.14597918| PASSED

sts_runs| 2| 100000| 100|0.70212549| PASSED

sts_serial| 1| 100000| 100|0.07460339| PASSED

sts_serial| 2| 100000| 100|0.41882230| PASSED

sts_serial| 3| 100000| 100|0.53204182| PASSED

sts_serial| 3| 100000| 100|0.94640049| PASSED

sts_serial| 4| 100000| 100|0.93194562| PASSED

sts_serial| 4| 100000| 100|0.56535565| PASSED

sts_serial| 5| 100000| 100|0.26895674| PASSED

sts_serial| 5| 100000| 100|0.73262918| PASSED

sts_serial| 6| 100000| 100|0.76240849| PASSED

sts_serial| 6| 100000| 100|0.04844870| PASSED

sts_serial| 7| 100000| 100|0.41811741| PASSED

sts_serial| 7| 100000| 100|0.61719976| PASSED

sts_serial| 8| 100000| 100|0.32199931| PASSED

sts_serial| 8| 100000| 100|0.06904407| PASSED

sts_serial| 9| 100000| 100|0.17257992| PASSED

sts_serial| 9| 100000| 100|0.46246179| PASSED

sts_serial| 10| 100000| 100|0.56731759| PASSED

sts_serial| 10| 100000| 100|0.11145197| PASSED

sts_serial| 11| 100000| 100|0.97415867| PASSED

sts_serial| 11| 100000| 100|0.98259562| PASSED

sts_serial| 12| 100000| 100|0.68642366| PASSED

sts_serial| 12| 100000| 100|0.36017898| PASSED

sts_serial| 13| 100000| 100|0.64254801| PASSED
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sts_serial| 13| 100000| 100|0.47286122| PASSED

sts_serial| 14| 100000| 100|0.59154759| PASSED

sts_serial| 14| 100000| 100|0.38707573| PASSED

sts_serial| 15| 100000| 100|0.95824892| PASSED

sts_serial| 15| 100000| 100|0.92350938| PASSED

sts_serial| 16| 100000| 100|0.09095919| PASSED

sts_serial| 16| 100000| 100|0.56182805| PASSED

rgb_bitdist| 1| 100000| 100|0.39639663| PASSED

rgb_bitdist| 2| 100000| 100|0.72602136| PASSED

rgb_bitdist| 3| 100000| 100|0.37324029| PASSED

rgb_bitdist| 4| 100000| 100|0.19810600| PASSED

rgb_bitdist| 5| 100000| 100|0.29363437| PASSED

rgb_bitdist| 6| 100000| 100|0.47719328| PASSED

rgb_bitdist| 7| 100000| 100|0.67125884| PASSED

rgb_bitdist| 8| 100000| 100|0.14444784| PASSED

rgb_bitdist| 9| 100000| 100|0.71522946| PASSED

rgb_bitdist| 10| 100000| 100|0.93546675| PASSED

rgb_bitdist| 11| 100000| 100|0.32744169| PASSED

rgb_bitdist| 12| 100000| 100|0.60879141| PASSED

rgb_minimum_distance| 2| 10000| 1000|0.35819754| PASSED

rgb_minimum_distance| 3| 10000| 1000|0.31634046| PASSED

rgb_minimum_distance| 4| 10000| 1000|0.31847551| PASSED

rgb_minimum_distance| 5| 10000| 1000|0.01436149| PASSED

rgb_permutations| 2| 100000| 100|0.99476937| PASSED

rgb_permutations| 3| 100000| 100|0.32529068| PASSED

rgb_permutations| 4| 100000| 100|0.92522581| PASSED

rgb_permutations| 5| 100000| 100|0.66868108| PASSED
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rgb_lagged_sum| 0| 1000000| 100|0.65341124| PASSED

rgb_lagged_sum| 1| 1000000| 100|0.11967455| PASSED

rgb_lagged_sum| 2| 1000000| 100|0.60587959| PASSED

rgb_lagged_sum| 3| 1000000| 100|0.82562475| PASSED

rgb_lagged_sum| 4| 1000000| 100|0.75646089| PASSED

rgb_lagged_sum| 5| 1000000| 100|0.53671066| PASSED

rgb_lagged_sum| 6| 1000000| 100|0.14519368| PASSED

rgb_lagged_sum| 7| 1000000| 100|0.66749106| PASSED

rgb_lagged_sum| 8| 1000000| 100|0.88940851| PASSED

rgb_lagged_sum| 9| 1000000| 100|0.54639878| PASSED

rgb_lagged_sum| 10| 1000000| 100|0.47756900| PASSED

rgb_lagged_sum| 11| 1000000| 100|0.58962360| PASSED

rgb_lagged_sum| 12| 1000000| 100|0.20041641| PASSED

rgb_lagged_sum| 13| 1000000| 100|0.15039751| PASSED

rgb_lagged_sum| 14| 1000000| 100|0.80833370| PASSED

rgb_lagged_sum| 15| 1000000| 100|0.65139925| PASSED

rgb_lagged_sum| 16| 1000000| 100|0.72767544| PASSED

rgb_lagged_sum| 17| 1000000| 100|0.16736509| PASSED

rgb_lagged_sum| 18| 1000000| 100|0.40254815| PASSED

rgb_lagged_sum| 19| 1000000| 100|0.15101255| PASSED

rgb_lagged_sum| 20| 1000000| 100|0.79959023| PASSED

rgb_lagged_sum| 21| 1000000| 100|0.38269395| PASSED

rgb_lagged_sum| 22| 1000000| 100|0.98203674| PASSED

rgb_lagged_sum| 23| 1000000| 100|0.38378827| PASSED

rgb_lagged_sum| 24| 1000000| 100|0.86744838| PASSED

rgb_lagged_sum| 25| 1000000| 100|0.81447636| PASSED

rgb_lagged_sum| 26| 1000000| 100|0.95293320| PASSED
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rgb_lagged_sum| 27| 1000000| 100|0.89398631| PASSED

rgb_lagged_sum| 28| 1000000| 100|0.14228229| PASSED

rgb_lagged_sum| 29| 1000000| 100|0.17492848| PASSED

rgb_lagged_sum| 30| 1000000| 100|0.79591771| PASSED

rgb_lagged_sum| 31| 1000000| 100|0.30424708| PASSED

rgb_lagged_sum| 32| 1000000| 100|0.75532517| PASSED

rgb_kstest_test| 0| 10000| 1000|0.88354617| PASSED

dab_bytedistrib| 0| 51200000| 1|0.40187309| PASSED

dab_dct| 256| 50000| 1|0.04782332| PASSED

Preparing to run test 207. ntuple = 0

dab_filltree| 32| 15000000| 1|0.80805904| PASSED

dab_filltree| 32| 15000000| 1|0.15756894| PASSED

Preparing to run test 208. ntuple = 0

dab_filltree2| 0| 5000000| 1|0.35748968| PASSED

dab_filltree2| 1| 5000000| 1|0.90131637| PASSED

Preparing to run test 209. ntuple = 0

dab_monobit2| 12| 65000000| 1|0.56350949| PASSED
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Appendix B

Patent Information

The Randomness extraction algorithm described in Chapter 4 has been reg-

istered as a Non-Provisional Application at the Intellectual Property Office

of Singapore, as in the following:

SG Non-Provisional Application No. 10201509277U

Title: Efficient Randomness Extractor for Random Numbers Based

on Physical Measurements

ILO Ref: 15014N-SG/PRV
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