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Abstract

Strong interaction between single atoms and single photons in cavity quantum electro-
dynamics (cavity-QED) is well established with the use of optical resonators of high
finesse and short cavity lengths. Despite their remarkable achievements to demon-
strate many important proof-of-principle protocols in quantum information process-
ing, stringent requirements of sophisticated mirror coatings can hinder scalability of
such techniques for the realization of a large-scale quantum network.

In this thesis, we present an alternative approach to implement cavity-QED by
coupling single rubidium atoms to an 11-mm-long near-concentric cavity which pro-
vides large electric field required for strong interaction via a strong focusing cavity
mode. Operating the cavity at 1.7(1)µm shorter than the critical length, we observed
a coupling strength of g0 = 2π× 5.0(2) MHz, which exceeds the natural dipole decay
rate by a factor of 1.9. Our approach is potential to achieve a strong coupling regime
with relatively low finesse mirrors and may even help to make cavity-QED possible
for atomic species like ions and Rydberg atoms, which are inherently challenging to
place in cavities.
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Chapter 1

Introduction

The last decades have heralded an exciting era in which quantum physicists start to

explore the impact of quantum physics on information and computer science. A broad

range of fundamental theories have been developed, from an algorithm that places

existing public-key cryptography at risk to proposals to teleport quantum states to

communication protocols that are inherently protected from eavesdropping [Shor,

1995, Boschi et al., 1998, Ekert, 1991].

These stimulating theoretical results provide motivation to explore physical pro-

cesses that translate those early ideas into reality. On the experimental side, sig-

nificant efforts have been made to demonstrate relatively simple protocols of quan-

tum information processing with many different physical platforms, including ion

traps [Blatt and Wineland, 2008], superconducting circuits [Devoret and Schoelkopf,

2013], spins in quantum dots [Warburton, 2013], crystalline defect centers [Hanson

et al., 2008], and nuclear magnetic resonance [Vandersypen and Chuang, 2004]. How-

ever, in order to transform the early phase of experiments in laboratory environments

to the stage that the power of quantum technologies can be harnessed to solve prac-

tical problems, the number of quantum bits implemented in the systems must be in-

creased while quantum coherence is preserved. Only recently, a tremendous progress

has been made to push the ion traps and superconducting circuits into a regime of

quantum supremacy, where the number of operations and amount of information

stored in the quantum bits (qubits) exceed what can be hardly implemented in clas-

sical counterparts. However, the information carriers in these systems are not yet in
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an appropriate form to be transmitted over a long distance. In the case of super-

conducting circuits, longer coherence time and efficient conversion from microwave to

optical photon would be required.

On the other hand, photons at visible and infrared wavelength have good trans-

port properties and are excellent candidates for information carriers. Superposition

and entanglement of photonic states can remain for indefinite times. The proba-

bility of photon-photon scattering in free-space is almost negligible. This linearity

in light propagation, high frequency and hence large bandwidth together with the

ease of detection and manipulation have made optical signals a preferable method to

convey information faithfuly over a long distance [Chang et al., 2014]. In addition,

the existence of a vast network of optical fibers deployed by the telecommunication

industry eases out the needs and financial investment to construct new infrastructure

for quantum communication.

In contrast, information processing relies on some form of interaction between

the signals. The same mechanism that protects the photons from decoherence makes

them hard to interact with each other, and hence challenging to construct photonic

quantum gates [Barenco et al., 1995]. The strategy of having a controllable qubit while

decoupling it from the environment to avoid decoherence can be realized by a hybrid

system of light and matter qubits: the quantum matter isolated from the environment

mediates the interaction between photons via nonlinear optical processes [Cirac et al.,

1997].

For years, scientists have observed nonlinear processes in bulk nonlinear materials

of sufficiently intense laser beams. Much effort has been spent to advance their

efficiency, resulting in the observation of nonlinear behavior of materials at lower

light intensity level [Byer, 1997]. However, generating an optical response that is

nonlinear at a level of individual photons is still a formidable challenge. This is

because a strong nonlinear response requires the amplitude of the electric field of the

light beam to be on the same order of magnitude as the field of the nucleus [Chang

et al., 2014]. Another hand-waving argument is to consider the probability that a

single photon can be scattered by a single atom. This probability is given by the

ratio of absorption cross section of the atoms (σ ≈ λ2) and the transverse area of the

laser beam (∼ w2). Due to the diffraction limit, the laser beam can be focused to a
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minimum waist of the wavelength scale (w ∼ λ), hence the probability of scattering

in free space is typically much smaller than unity.

A possible solution is the use of atomic ensembles that consists of a large number of

particles. By employing an electromagnetically induced transparency (EIT) scheme,

the photonic states can be mapped to a collective state of the atomic ensembles and

coherently retrieved later [Lukin et al., 2001, Fleischhauer et al., 2005]. Recent results

in this research direction include the storage and generation of nonclassical light

fields [Li et al., 2013, Maxwell et al., 2013], single-photon switches and amplifiers [Baur

et al., 2014], and the realization of the quantum repeaters which are crucial for the

task of distribution of quantum states over long distances [Sangouard et al., 2011].

The work in this thesis focuses on a different approach, where the stationary qubit

consists of single trapped neutral atoms. A single two-level atom is arguably the most

natural way to implement the nonlinearity as it cannot absorb or emit two photons at

the same time. In addition, a single trapped atom can be addressed individually and

manipulated with high precision. Beside the radiative coupling to the vacuum field,

single atoms can be decoupled almost completely from the environment by trapping

and cooling techniques [Metcalf and van der Straten, 2007]. However, as explained

above, the light-matter coupling in free space at the level of individual quanta is not

large.

One technique to enhance the atom-photon interaction is to increase the electric

field strength of a single photon via the use of optical cavities. Intuitively, the cavity

increases the photon scattering probability by the number of roundtrips made by the

photons in the cavity. In the frequency domain, the cavity imposes a discrete mode

spectrum of photons. Therefore, the density of states near a cavity resonance that is

close to the emission frequency of the atoms can be enhanced. This enhancement leads

to an increase of spontaneous emission rates into the cavity mode. Research in this

direction began with Rydberg atoms in microwave resonators [Raimond et al., 2001,

Walther et al., 2006], but then has extended into the optical domain and matured

into an established field of cavity quantum electrodynamics (CQED) [Kimble, 1998,

Reiserer and Rempe, 2015].

A generic CQED system consists of a single atom trapped at the antinode of

the cavity field. The two-level atom exchanges energy with the optical field at a
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rate characterized by the atom-cavity coupling strength g0. The coupling strength

depends on how susceptible the atom is to make an electronic transition, as well

as the electric field strength of a single photon at the location of the atom. The

latter is inversely proportional to the the cavity mode volume, which is defined as the

integral of the squared cavity spatial mode [Kimble, 1998]. In addition to the coherent

interaction that governs the internal dynamics of the system, there is dissipation that

arises from the coupling to a continous background of modes in the environment. In

particular, the atom can emit photons to modes rather than the cavity modes, and

this spontaneous emission contributes to energy losses of the system. For cavities

that cover a small solid angle, the atomic decay rate (γ) is independent of the cavity

geometry and constant for a specific atomic transition. Damping of the cavity field

through the cavity mirrors is accounted for by a decay rate

κ ∼ 1

F lcav
, (1.0.1)

where F is the cavity finesse and lcav is the cavity optical length.

To utilize a single atom to obtain a nonlinear interaction between photons, the

cavity QED system is required to be in the strong coupling regime, in which the

coupling between the single atom and a cavity mode must exceed the decay rates:

g0 ≫ (κ, γ). This is reflected by the single-atom cooperativity parameter which is

defined as

C =
g20
2κγ
≫ 1. (1.0.2)

Several designs of optical resonators exist toward realizing the strong coupling regime

by either increasing g0 or minimizing κ and γ. The search for strong coupling in the

optical domain began in 1980s and has been active until now. The most common

configuration is high finesse Fabry-Perot cavities [Reiserer and Rempe, 2015]. These

cavities consist of two curved mirrors with superpolishing surface and ultrahigh re-

flectivity coating facing each other. The mirror separation is typically on the order

of a few hundreds of micrometers which places the cavity in the near-planar regime,

where the cavity mode resembles a plane wave. Due to the short cavity length, the

requirement for the cavity finesse is high in order to keep the cavity linewidth rea-

sonably narrow. For this design, a typical value of the cavity finesse is on the order
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of millions while the transmission and losses of each mirror are below 1 ppm [Kim-

ble, 1998]. Despite of remarkable demonstration of quantum information processing

tasks by using these high finesse microcavities, the scaling of this technique remains a

question due to the sophisticated coating of the mirrors. In addition, the atom-cavity

coupling strength is bounded to a few 100MHz due to the penetration of the cavity

field into the thick mirror coating which consist of multiple dielectric interference

layers to achieve a high cavity finesse [Hood et al., 2001].
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Figure 1-1: Mode volume and linewidth of optical cavities of different geometri-
cal configurations. Near-concentric cavities minimize both the mode volume and
linewidth for a given cavity finesse and mirrors’ radius of curvature. Top insets show
the mode profile at three important cavity regimes.
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As a result, new types of cavities and resonant structures to improve the coupling

strength have been considered recently. Typical designs include whispering-gallery

modes in microspheres, microtoroids and bottle resonators [Vahala, 2003]. For these

cavities, the light field is contained and guided in the photonic material, typically

made of silicon dioxide. Hence, the atom can only couple to the evanescent field

within a distance of hundreds nanometers outside photonic structures. The limit

of this approach lies at the difficulties of the trapping of atoms near to dielectric

surfaces. Another method to form a cavity with a small mode volume is a fiber-

based Fabry-Perot resonator. In this approach, the end facets of two optical fibers

are laser-machined to form cavity mirrors with small radii of curvature [Hunger et al.,

2010]. Common to these designs is that they require understanding of the fabrication

process of the cavities.

Here, we explore an alternative approach of making a small mode volume cav-

ity, not by reducing the physical size of the cavity, but via a strong focusing tech-

nique [Morin et al., 1994, Durak et al., 2014, Nguyen et al., 2017]. In particular, we

are interested in exploring advantages of the strong focusing mode of near-concentric

cavities to realize the strong atom-light interaction, and hence the two-photon non-

linearity. Among all geometrical configurations of the Fabry-Perot cavities, the near-

concentric cavity, where the cavity length matches twice the radius of curvature of

the mirrors, has the strongest focusing mode and a cavity beam waist that can reach

a diffraction-limited size of λ/2. Hence, a small mode volume and, consequently, a

strong atom-photon interaction can be obtained even with millimeter cavity lengths.

In addition, the millimeter cavity length alleviates the requirement of high finesse. As

shown in Fig. 1-1, for a given radius of curvature of the mirrors and a cavity finesse,

the near-concentric cavity minimizes both the mode volume and the cavity decay rate.

Additional advantages include more optical access to the center of the cavity, where

the atoms will be trapped and interact with the cavity mode. For use with trapped

ions, the large separation between two mirrors provides the ability to avoid charging

problems with dielectric surfaces, which has been a major hindrance to the develop-

ment of ion traps in optical cavities [Harlander et al., 2010]. As near-concentricity

is simply a geometrical configuration of the Fabry-Perot cavities, the techniques de-

veloped here can be easily adapted to other types of cavities such as the fiber-based
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cavities [Hunger et al., 2010]. Another intriguing aspect of concentric cavities is that

the frequencies of the higher-order transversal modes are degenerate. This could allow

the realization of multimode cavity QED in the strong coupling regime [Wickenbrock

et al., 2013]. Outside of the atomic physics community, near-concentric cavities are

gaining more attentions. There are suggestions of using near-unstable cavities such as

near-concentric cavities to reduce the influence of thermal noise of the mirror coatings

on gravitational wave detectors [Wang et al., 2018].

This thesis presents the first step toward the realization of strong atom-cavity

coupling regime in a near-concentric cavity. In particular, the experiment performed

in this thesis employs a special design of cavity mirrors to form a near-concentric

cavity with a length of 11mm. The cavity finesse is measured to be 600 which corre-

sponds to a linewidth of 22.5MHz when tested outside the vacuum system. Chapter

2 gives an overview of the theoretical description of the atom-cavity system. Chapter

3 and 4 cover an alignment technique that was developed to position the mirrors with

sufficient accuracy such that the cavity can be kept stable in both transverse and lon-

gitudinal directions at the last few resonance lengths with a 780 nm laser. Trapping

and detection of single atoms is presented in chapter 5. Onset of the normal mode

splitting from a single atom in the near-concentric cavity is observed and analyzed in

chapter 6. Chapter 7 concludes the experimental results and provides an outlook on

future experiments that could be feasible based on the results of the work presented

in this thesis.
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Chapter 2

Theory

This chapter provides theoretical concepts behind the interaction between a two-

level atom interacting with a single mode of the electromagnetic field contained in an

optical cavity. In the absence of dissipation, the dynamic of the atom-cavity system is

described by the Jaynes-Cummings Hamiltonian (section 2.1). Inclusion of irreversible

losses leads to concepts of strong and weak coupling regimes (section 2.2). To obtain

the strong coupling, the interaction strength between the atom and the cavity must

dominate the dissipation rates. The interaction strength is proportional to the atomic

dipole moment and the amplitude of the cavity field. The latter is determined by the

cavity geometry. However, not all cavity configurations can be useful in the context of

cavity QED as some cavities do not support a stable mode. Section 2.4 introduces the

concept of cavity stability limit, provides an overview of some stable configurations

of Fabry-Perot cavities and predict their interaction strength with the atoms.

2.1 A spin and a spring: the Jaynes-Cummings

model

We consider a two-level atom with an excited state |e〉 and a ground state |g〉, con-
nected by an electric dipole transition at an angular frequency ωa. The dynamics

of this system is equivalent to a spin 1/2 system locating in a magnetic field; the

two electronic states correspond to eigenstates of the spin along the magnetic field

direction. Here, we adopt the second quantization method and describe the excita-
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tion and de-excitation of the atom with atomic raising and lowering Pauli operators:

σ+ = |e〉 〈g| and σ− = |g〉 〈e|. Setting the ground state energy zero, the Hamiltonian

for the two-level atom is

Ha = h̄ωaσ
+σ− (2.1.1)

Along the similar line with the classical theory of dipole radiation, we need to

know the dipole moment of the atom to describe the interaction with the radiation

field. The dipole moment is written as

d = −qr, (2.1.2)

where q is the elementary charge, and r is the operator of the position vector of the

electron. Assuming the atomic eigenstates |e〉 and |g〉 have opposite parities, we have
〈e|r|e〉 = 〈g|r|g〉 = 0. Consequently, the dipole moment is non-diagonal in the basis

spanned by |e〉 and |g〉
d = µeg(σ

+ + σ−), (2.1.3)

where µeg = q 〈e|r|g〉 is the dipole moment associated with the transition between

the two states.

A single mode of the electromagnetic field contained in a cavity is dynamically

equivalent to a quantum harmonic oscillator. The Hamiltonian of a cavity field with

a resonant frequency of ωc is

Hcav = h̄ωc(a
†a+

1

2
) , (2.1.4)

where a and a† are the creation and annihilation operators for the cavity mode,

respectively. Energy eigenstates of the cavity field are the Fock states, denoted as |n〉
where n is the number of photons in the cavity. Then, it is clear that each photon

has an energy of h̄ωc. The electric field operator is written as

E = ê

√

h̄ωc

2ǫ0V
(a+ a†), (2.1.5)

where ê is the polarization vector of the field, ǫ0 is the vacuum permitivity, and V is the

effective mode volume. The effective mode volume is a measure of the confinement
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of the electric field of a single photon in the cavity, and therefore determined by

cavity geometrical parameters: mirror’ radii of curvature and the cavity length. The

interaction Hamiltonian between the atom and the cavity field has the same form as

the energy of a classical dipole in a classical radiation field, which is

Hint = d ·E (2.1.6)

It now follows, on substituting for d and E from Eqs. 2.1.3 and 2.1.5 into Eq. 2.1.6,

that

Hint = h̄g0(σ
− + σ+)(a† + a) , (2.1.7)

where g0 describes the atom-cavity coupling strength. The coupling strength is pro-

portional to the dipole matrix element µeg between the two levels and inversely pro-

portional to the square root of the effective mode volume V :

g0 =
µegE

h̄
=

√

ωc

2ǫ0V h̄
µeg . (2.1.8)

The term σa in the interaction Hamiltonian describes the process in which the energy

of the atom and the field both increase; whereas σ+a† describes the process in which

their energy both reduce. Thus, they violate the energy conservation, and can only

be observed in timescales compatible with the uncertainty principle. In the rotating

wave approximation, these terms can be neglected, and we can simplify the interaction

Hamiltonian to

Hint = h̄g0(a
†σ− + aσ+) . (2.1.9)

The physical interpretation of this Hamiltonian is that the atom and the cavity inter-

act by exchanging one quantum of excitation with a rate determined by the coupling

strength g0.

The complete Hamiltonian of the atom-cavity system takes the final form of

H = Ha +Hcav +Hint, (2.1.10)

= h̄ωaσ
+σ− + h̄ωca

†a+ h̄g0(a
†σ− + aσ+), (2.1.11)

which is known as the Jaynes-Cummings Hamiltonian [Jaynes and Cummings, 1963].
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The eigenstates and eigenvalues of the coupled system can be found analytically

by diagonalizing the interaction Hamiltonian in Eq. 2.1.11. In the limit of vanishing

coupling strength (g0 → 0), the eigenstates of the system simply are |g, n〉 and |e, n〉,
which are the products of the atomic and cavity eigenstates. When the interaction

is turned on, these states are coupled and the eigenstates are found to be rotation of

the uncoupled eigenstates |e, n− 1〉 and |g, n〉:

|+, n〉 = cos θ |e, n− 1〉+ sin θ |g, n〉 ,
|−, n〉 = − sin θ |e, n− 1〉+ cos θ |g, n〉 .

The mixing angle θ reflects the relative contribution of the atom and the cavity to the

coupled states and depends on the coupling strength g0 and the atom-cavity detuning

∆ac = ωc − ωa as

θ = arctan
g0

−∆ac/2 +
√

g20 + (∆ac/2)2
. (2.1.12)

On resonance ∆ac = 0, the eigenstates of the coupled system are the Bell states:

|±, n〉 = 1√
2
(|e, n− 1〉 ± |g, n〉) . (2.1.13)

The energy level of the coupled system is shown in Fig. 2-1 The coupled atom-photon

states are referred to as dressed states, and the ladder of doublets is called the Jaynes-

Cummings ladder. The coupled energy eigenvalues are

E±,n = nh̄ωc − h̄
∆ac

2
± h̄

2

√

∆2
ac + 4g20n. (2.1.14)

The atom-cavity coupling induces a splitting in the energies of the excited states E±,n

by ∆E = E+,n − E−,n = h̄
√

∆2
ac + 4g2n. As a result, the spectrum of the coupled

atom-cavity system exhibits a distinctive doublet corresponding to resonant frequen-

cies of |±, n〉, in contrast to a single peak in the case of empty cavities. Borrowing

terms from classical mechanics, the coupling induced frequency splitting is called the

normal mode splitting.

On resonance, the normal mode splitting increases nonlinearly as h̄2g
√
n. This

photon-number dependent energy spectrum gives rise to the photon blockade effect,

in which the excitation of the atom-cavity system by one single photon blocks the
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atom cavity coupled

Figure 2-1: The Jaynes-Cummings ladder for resonant case ∆ac = ωa − ωc = 0.
The energy level structure is a series of doublets representing normal-modes of the
coupled atom-cavity system.

transmission of the second photon for a particular laser frequency [Birnbaum et al.,

2005].

The atom-cavity coupling strength not only determines how the atom-cavity sys-

tem can be driven, but also governs the internal dynamics of the system. Assuming

the atom is initially excited inside a cavity containing n− 1 photons, the initial state

of the system is thus |e, n− 1〉, which can be expressed as a linear superposition of

the eigenstates

|Ψ(t = 0)〉 = |e, n− 1〉 = 1√
2
(|+, n〉+ |−, n〉) . (2.1.15)

The time evolution of the state can be found by solving the time-dependent Schrodinger

equation:

H |Ψ(t)〉 = ih̄
d |Ψ(t)〉
dt

, (2.1.16)

|Ψ(t)〉 = 1√
2

(

e−iE+,nh̄/t |+, n〉+ e−iE
−,nh̄/t |−, n〉

)

. (2.1.17)
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We are interested in the probability of the atom emitting a photon to the cavity and

decaying to the ground state:

Pe→g(t) = 〈g, n|Ψ(t)〉2 = 1

2
[1− cos

(

2g0
√
nt
)

]. (2.1.18)

This transition probability describes a Rabi oscillation between |g, n〉 and |e, n− 1〉
at a frequency of Ω = 2g0

√
n. For the case when no photons are initially present in

the cavity, Ω = 2g0. As the oscillation involves the vacuum field, 2g0 becomes known

as the vacuum-Rabi frequency. In this thesis, we often refer to g0 as the atom-cavity

coupling strength.
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Figure 2-2: Spectroscopy of the Jaynes-Cummings ladder. Top: resonant frequencies
ω± of the uncoupled system (dash lines) and coupled system (solid lines) when the
cavity frequency is fixed and the atomic frequency is tuned over the resonance. Colour
indicates the relative amplitude of the atomic bare state |e, 0〉 (more red), and the
cavity bare state |g, 1〉 (more blue). At ∆ac = 0, Bottom: cavity transmission spectra
at different atom-cavity detuning of a weak probe beam such that only the first
doublet is excited.
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2.2 Damped atom-cavity system

In most of experimentally relevant cases, the atom-cavity system is not completely

isolated but is coupled to an environment. This system-environment interaction in-

troduces dissipation and decoherence affecting both the atom and the cavity field.

The environment we consider here is the electromagnetic vacuum consisting of a con-

tinuous background of modes. The effects of the environment on the system can be

classified into two loss channels.

The first loss channel is the spontaneous emission of the atoms into free-space

modes rather than the cavity modes. We characterize this loss channel with a rate

2γ. For a cavity covering a solid angle of ∆Ω, assuming the atoms are unpolarized

and have an isotropic radiation, γ is given by

γ =
Γ

2
(1− ∆Ω

4π
), (2.2.1)

where Γ is the free-space spontaneous-emission rate.

The second loss channel is the damping of the energy of the cavity mode at a rate

2κ. This damping is due to transmission and losses of photons at the cavity mirrors.

A standard approach to describe the evolution of an open quantum system is to

use a Master equation written in the Lindblad form [Carmichael, 1998]. Here, we

take an equivalent approach using an effective Hamiltonian [Lien et al., 2016],

Heff = H − iκa†a− iγσ+σ−. (2.2.2)

The properties of the damped atom-cavity system can be encapsulated in eigenval-

ues λ± of the effective Hamiltonian Heff. As the Hamiltonian Heff accounts for the

dissipation, it is non-Hermitian, and consequently λ± are complex. The eigenvalues

can be cast into a more meaningful form of λ± = E± − ih̄χ±. The real parts E±

are the eigen-energies of the atom-cavity system and the imaginary part χ± are the

linewidths. Consequently, ω± = E±/h̄ are the resonant frequencies.

In the following, we restrict our description to a subspace spanned by the ground

state and the first excitation manifold, {|g, 0〉 , |g, 1〉 , |e, 0〉}. This restriction applies

for experiments in which the atom-cavity system is probed by a weak laser beam.

Diagonalizing Heff, the complex eigenvalues λ± can be expressed as
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λ±/h̄ =
ωc + ωa − i(κ+ γ)

2
±

√

g20 +

[

ωc − ωa − i(κ− γ)
2

]2

. (2.2.3)

With dissipation, the Rabi frequency is no longer simply g0
√
n but also dependent

on the decay rates:

h̄Ωn = E+ − E− = 2Re

(
√

g20 −
(κ− γ)2

4

)

. (2.2.4)

A simple way to assess the coupling strength is the critical atom number N0,

defined as the number of atoms required to significantly affect the transmission of the

cavity. The inverse of N0 denotes the single-atom cooperativity C, which is defined

as

C =
g20
2γκ

. (2.2.5)

Similarly, a critical photon number nc determines the number of photons required to

saturate the atomic transition:

nc =
γ2

2g20
. (2.2.6)

2.3 Coupling regimes

The dissipation broadens the range of dynamics of the atom-cavity system. Depending

on the ratio of the three rates (g0, κ, γ), three coupling regimes of cavity QED can

be identified in experiments (see Fig. 2-3). In the following, we describe the basic

physical effects of each regime in more detail.

Weak and intermediate coupling regimes

If g0 ≪ κ, γ, the dissipation dominates the dynamics of the system and the coupling

between atom and cavity can nearly be ignored. In this weak coupling regime, from

Eq. 2.2.4, the Rabi frequency Ωn is zero, and hence there is no normal mode splitting

(see zone (i) of Fig. 2-3). From the physics point of views, the atom and the cavity

are nearly uncoupled and retain their individual properties.
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Figure 2-3: Coupling regimes of the atom-cavity system. Solid curves: normalized
resonant frequencies; dashed curves: normalized decay rates. Colour indicates the
relative amplitude of the atomic bare state |e, 0〉 (more red), and the cavity bare
state |g, 1〉 (more blue). Zones (i),(ii) and (iii) correspond to the weak regime, the
intermediate regime and the strong coupling regime respectively.

Increasing g0 till κ ≫ g0 ≫ γ and C ≫ 1, we enter the Purcell regime. The

vacuum-Rabi oscillation still cannot be observed as the photons quickly escape the

cavity before being absorbed by the atoms. In this regime, the eigenstate |+, n〉 is
mainly represented by the atomic states, and hence E+ and χ+ are the new atomic

resonant frequencies and the decay rate modified by the cavity, respectively. From

Eq. 2.2.3, the atomic decay rate γc into the cavity mode is

γc = χ+ = γ

(

1 +
g2

γκ

)

≈ g2

κ
, (2.3.1)

which is equivalent to
γc
γ

= 2C. (2.3.2)

This enhancement of atomic emission rate of a factor proportional to the cooperativity

C is known as the Purcell effect and was exploited to realize efficient sources of single

photons [Kuhn et al., 2002].

The normal-mode splitting appears only when g0 ≫ |κ − γ|/2 (see zone (ii) of
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Fig. 2-3). In this regime, the damping rate of the atoms and the cavity merges to a

mean value of (κ + γ)/2. However, the doublet of the normal modes is not clearly

resolved as the splitting is still smaller the damping rate, and hence this regime is

referred to as the intermediate coupling regime.

Strong coupling regime

The strong coupling regime corresponds to zone (iii) of Fig. 2-3. In this regime, the

atom-cavity coherent coupling dominates the two dissipative rates:

g0 ≫ κ, γ =⇒ C ≫ 1 (2.3.3)

The dynamics of the system is marked by the coherent exchange of energy between

the atom and the cavity. However, the population of excitation within each doublet

is no longer conserved as in the lossless case, but transferred from |±, n〉 to the lower

doublet at a decay rate of χ±. For strong coupling systems, the decay rate of the

normal modes are identical and equal to

χ± = χ =
γ + κ

2
(2.3.4)

Hence, multiple Rabi oscillations occur before the dissipation takes place and removes

the energy from the system. In contrast to the ideal lossless case, the Rabi frequency

Ωn=0 depends on both g0 and the imbalance between the two decay rates

Ω0 = 2g0 −
(κ− γ)2

4g0
. (2.3.5)

2.4 Cavity configuration and stability

A single mode of electromagnetic field is experimentally realized by confining light in

optical resonators. The most common type of optical resonators is Fabry-Perot cavi-

ties which consist of two facing mirrors with radii of curvature R1 and R2 separated

by a distance lcav. Light is confined in such cavities by reflecting multiple times from

the mirrors and interfering. Due to the interference, only certain intensity distribu-

tions are reproduced after every round trip in the cavities. These radiation patterns
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are known as eigenmodes, and the cavities that support these modes are referred to

as stable cavities. Eigenmodes in stable cavities can be divided into two types: longi-

tudinal modes which have the same transverse intensity pattern but differ in resonant

frequencies; and transverse modes which may differ in both. Of particular interest

to this work and many other experiments in cavity QED is fundamental transverse

modes described by a Gaussian beam and their interaction with atoms. The effective

mode volume that determines the atom-cavity coupling strength of these fundamen-

tal modes is V = 1/4πw2
0, where w0 is the waist of the Gaussian beam or the cavity

beam waist.

Not every optical cavity is stable. An example of unstable cavities is formed by

two convex mirrors; light in such cavity diverges progressively when reflecting from

the mirrors, and eventually escapes the cavity. Two mirrors acts as a stable cavity

only when

0 ≤
(

1− lcav
R1

)(

1− lcav
R2

)

≤ 1, (2.4.1)

which is often referred to as the stability criterion and can be derived by using methods

such as the ray transfer matrix analysis [Siegman, 1986]. To describe the cavity

properties, it is useful to introduce stability parameters

g1 = 1− lcav
R1

and g2 = 1− lcav
R2

. (2.4.2)

In terms of these parameters, the stability criterion is simplified to

0 ≤ g1g2 ≤ 1, (2.4.3)

and the cavity beam waist is

w2
0 =

lcavλ

π

√

g1g2(1− g1g2)
(g1 + g2 − 2g1g2)2

, (2.4.4)

where λ is the wavelength of light that is resonant with the cavity.

It is convenient to visualize cavities in the stability diagram in which each cavity

can be represented by a point in the g1g2 plane. The stability criterion described in

Eq. 2.4.3 infers that the region of stable cavities in the g1g2 plane is bounded by the
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coordinate axes and the hyperbolas g1g2 = 1; whereas outside this region corresponds

to unstable cavities. Near to the hyperbolas, cavities are susceptible to both mis-

alignment in transverse direction and any tilting between two optical axes of cavity

mirrors. Perhaps the most common configurations of cavity are symmetric cavities,

g1

near-concentric

confocal

near-planar

g2g1 =1

lcav

R1 R2

=1-lcav/R1

g2=1-lcav/R2

Figure 2-4: The stability diagram for two-mirror optical cavities. The grey area
indicates the stable region.

which have mirror curvatures R1 = R2 = R, and hence the stability parameters

g1 = g2 = g = 1− lcav/R. Three examples within this class are of special interests to

the study of atom-light interaction:

• Confocal cavities: The central point in the stability diagram is the symmetric

confocal stable cavity with R = lcav and g = 0. The focal points of the cavity

mirrors coincide with each other at the cavity center. Hence, though locating near to
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the stability limit, the confocal cavity is insensitive to misalignment. Tilting of the

mirrors only displaces the optical axis of the cavity by a small amount.

• Near-planar cavities: Mirrors that have long radii of curvature (R≫ lcav) form a

near-planar cavity. As the cavity length is shorter than the two times of the Rayleigh

range, the cavity waist varies only slightly in the near-planar cavity. The cavity waist

and the mirror spot sizes are nearly equal to

w2
0 ≈

lcavλ

π

√

R

2lcav
(2.4.5)

• Near-concentric cavities: In the region closer to the lower limit, g → −1, the
cavity length is slightly lesser than two times of the radius of curvature. This cavity

is referred to as the near-concentric cavity and has a very strong focusing mode with

a cavity waist of

w2
0 ≈

lcavλ

π

√

(2R− lcav)
8lcav

, (2.4.6)

which can be on the order of a few µm [Stute et al., 2012, Nguyen et al., 2017]. As

near-concentric cavity waist are very small, they are not useful in laser designs which

often require large cavity mode volumes to interact with bulky lasing medium, and

hence have not been widely used before. However, in the context of cavity QED in

which the medium consists of only one or a few atoms, the near-concentric cavity can

offer strong interaction as the cavity field is concentrated to locations of the atoms

with a cavity waist comparable to σabs, the absorption cross section per atom.

To obtain the strong coupling regime with a given atomic transition, one need to

maximize g0 and minimize the cavity decay rate κ. As shown in Fig. 2-5, the coupling

strength g0 can be optimized by choosing either near-planar with very short cavity

lengths or near-concentric cavities as the mode volumes are minimal at these two

cavity configurations. However, to keep cavity decay rate low enough, which scales as

κ ∝ 1/F lcav, the near-planar cavities require mirrors with a very high finesse. On the

other hand, the near-concentric cavities can keep the decay rate low with a decent

cavity finesse. This describes the motivation behind using near-concentric cavities for
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cavity QED experiments.

10
1

10
2

10
3

10
4

10
5

 0  0.5  1  1.5  2

concentricconfocalplanar

κ
 (

M
H

z
)

length / radius

10
2

10
3

10
4

10
5

10
6

10
7

 0  0.5  1  1.5  2

m
o

d
e

 v
o

lu
m

e
 (

λ
3
)

10
0

10
1

10
2

10
3

 0  0.5  1  1.5  2

B
e

a
m

 s
iz

e
 (

µ
m

)

Figure 2-5: Comparison of properties of a fundamental transverse mode for stable
cavity configurations. The cavity is formed by a pair of mirrors with the radius of
curvature of R = 5mm and a finesse of 500. Top: beam size of the cavity mode at the
mirrors (dashed line) and the cavity waist at the center (solid line). Middle: effective
mode volume in the unit of λ3 where λ = 780 nm. The mode volume is minimum at
the near-planar and near-concentric regime and maximum at lcav/R = 3/2. In the
near-concentric region, the mode volume reduce more rapidly than the near-planar
region. Bottom: the cavity loss (κ) inversely proportional to lcav.
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Chapter 3

Building a near-concentric cavity

This chapter provides a “recipe” to build a near-concentric Fabry-Perot optical cavity.

In particular, we present a detailed description of a cavity design and a step-by-

step instruction to construct and align the near-concentric cavity. The constructed

cavity has a length that can be varied from 3.5µm shorter to 1µm longer than the

critical length. Further, we discuss techniques for characterzing cavity length and

perform an analysis of cavity modes at the last resonant cavity length for laser light

at 780 nm, which corresponds to a distance of 207(3) nm away from the critical length

and a stability parameter g = −0.99996(28). At this length, we obtain a coupling

efficiency of 37% into a fundamental mode of the cavity. The cavity fundamental mode

maintains similar cavity linewidths and transmission as the nominal values. Some

design challenges and technical hurdles about working with near-unstable cavities are

also discussed. At the end of the chapter, we present a new design of the cavity mount

to overcome the alignment difficulties.

3.1 Design of the cavity

The cavity system is designed to obtain a strong interaction with a single trapped
87Rb atom. Drawing on previous experiences of trapping a single atom between a

pair of high-numerical-aperture lenses and some previous attempts to construct the

concentric cavities, we consider the following aspects for our cavity design:

Compactness. The system is located inside a glass cuvette with a size of 25 ×
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25× 150mm, which provides a convenient optical access to the cavity focus for other

optical beams preparing atoms in experiment. Moreover, by using a compact cuvette,

magnetic coils can be reduced in size, and hence, require only a low current to generate

a sufficient magnetic field gradient (∼ 20 G/cm) for the magneto-optical trap (MOT)

with little heat generation.

Tunability. The positions of the cavity mirrors are adjustable in both axial and

transverse direction with sub-nanometer resolution, and a travelling range of more

than a few microns.

MOT formation. As we would like to form a MOT directly inside the cavity,

there must be optical access for three cooling laser beams. In addition, a clear path

must exist between the atom dispenser and the center of the cavity. However, a line-

of-sight between the cavity mirrors and the dispenser must be avoided to prevent the

contamination of the cavity mirrors.

In addition to these geometrical constraints, the cavity needs to be stabilized

during the experiment. In the following sections, each components of the design will

be discussed in more details.

3.1.1 Mirror design

Central to the experiment is a pair of cavity mirrors, separated by a distance of

approximately 11mm (lcav ≈ 11mm). The cavity mirrors are manufactured by As-

phericon and made of N-SF11 glass. One surface is superpolished into a spherical

form with a radius of curvature of 5.5mm (RC = 5.5mm) and a diameter of 8.39mm

in cross section (see Fig. 3-1). The spherical surface has a high reflectivity (HR)

coating and, hence, acts as a cavity mirror. The HR coating of the cavity mirrors has

a nominal value of 99.5% with the central wavelength at 780 nm, which corresponds

to cavity finesse of F ∼ 600. Because all mirrors are coated in the same coating run,

it is reasonable to assume that they have identical optical properties. We will revisit

this assumption again in the discussion about mirror losses.

The choice of RC = 5.5mm is a compromise of the following factors: a sizable

atom-cavity coupling strength and technical difficulties in superpolishing and im-

plementing the HR coating on spherical surfaces with small radii of curvature. In

particular, by reducing RC and hence reducing the cavity length to maintain the geo-
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metrical requirement of near-concentric (lcav ∼ 2RC), we can increase the atom-cavity

coupling strength. However, this requires a mirror coating with higher reflectivity to

maintain the same cavity linewidth, as the cavity linewidth scales as δν ∝ lcav/F .
On the contrary, an increase of RC alleviates the coating requirement but increases

the cavity mode volume and hence the coupling strength is reduced.

Figure 3-1: Design of the near-concentric cavity mirrors. Left: Schematic drawing
of the mirror. The spherical surface with HR coating at 780 nm acts as the cavity
mirror. The input surface has an elliptical profile and employed as the mode-matching
lens. Top right: Image of the cavity mirror in the shield. Bottom right: Image of the
cavity mirror surface.

Previous experiments in cavity QED with short cavity lengths in a range of few

hundreds microns employ a standard design of plano-concave cavity mirrors [Raizen

et al., 1989, Thompson et al., 1992, Boca et al., 2004]. The cavity lengths are shorter

than the Rayleigh range, and hence such cavities have cavity modes that resemble

plane waves. The mode-matching lenses used in the experiments with the plano-

concave cavitiy mirrors are located outside of the vacuum chamber and separated

from the cavity setup by a thick window. Though there are ”problematic” planar

surfaces that may introduce abberations in the mode-matching process, it has been

reported that the mode-matching efficiency of coupling light into such cavities does

not suffer significantly [Meschede, 2013]. For near-concentric cavities, the cavity mode

has a spherical wavefront that extends a large solid angle. Such cavity mode with

a large beamwaist and a large spherical wavefront introduces more difficulties to the
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cavity mode-matching.

Recently, it has been demonstrated that the planar surface of the plano-concave

mirror reduces the mode-matching efficiency of near-concentric cavity significantly [Du-

rak et al., 2014]. Here, to address this mode-matching problem, we take a different

approach to the design of the cavity mirrors. In particular, we replace the planar

surface of the cavity mirror’s substrate with an anaclastic surface (see Fig. 3-1). The

anaclastic surface acts as a mode-matching lens that transforms the strong focusing

cavity mode in the near-concentric regime into a collimated Gaussian mode. The

relative offset between optical axes of the coupling lens and the mirrors is critical to

the coupling of light in and out of the cavity. In the case of using a separate mode-

matching lens, a drift of the lens can change both the transverse position and the

beam waist of the input laser at the cavity mirrors, which consequently affects the

coupling efficiency. In our approach of combining the mode-matching lens and the

cavity mirrors into one substrate, this shifting and the additional effort of alignment

of the mode-matching lens are minimized.

3.1.2 Mechanical positioning of the mirrors

Near to concentric point, the cavity modes are sensitive to misalignment in the trans-

verse direction. Therefore, we need to introduce some control elements to the design

which is capable of moving one of the cavity mirrors in the tranverse directions. Heat-

ing elements can be employed to control positions of cavity mirrors via the thermal

expansion of the cavity holder. This approach can offer a solution with an adjustment

range of hundreds micrometers to even millimeters. However, the thermal control does

not provide sub-nanometer resolution and independent movements in three directions.

Consequently, actuators such as piezoelectric materials are more viable.

The piezo used in our experiment is a customized piezo (PI P-153.10H). The piezo

consists of 72 shear-piezo stacks glued together, which can be grouped into three

segments coresponding to three orthorgonal travelling directions. In each direction,

the piezo is able to move ±5 µm with sub-nanometer resolution. In addition, there is

another ring piezo which can cover a shorter travelling distance but provides a higher

locking bandwidth.
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3.1.3 Cavity mount

The cavity mounting system is designed to be compact and fit to a scientific cuvette

which can provide convenient optical access to the experiment. Figure. 3-2 shows the

schematic of our design. The system essentially consists of: a piezo holder, cavity

mirror shields, and a L-shaped block.

As will be shown in section 4.2, the near-concentric cavity is sensitive to the

displacement of the cavity mirrors in the transverse direction. This transverse dis-

placement is mainly caused by the temperature change of the cavity mount. We

observe that a cavity mount made of aluminium did show a too large dependence

on the ambient temperature. Hence, except the cavity mirror shields, all the compo-

nents are made of titanium to reduce structural changes of the mounting system due

to thermal fluctuations.

Figure 3-2: An overview of the near-concentric cavity mounting system.

The cavity mirror is placed into a mirror shield made from alumninium and secured

with a vacumm-compatible epoxy. The shields provide general protection and prevent

the cavity mirrors from being contaminated by atomic beams emitted from a dispenser

which is located about 20 cm away from the cavity. The cavity holder is the main

body of the cavity mounting system and accommodates the stack piezo. The cavity
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holder is machined from a block of Ti6Al4V Grade-5 titanium. The cavity holder has

a protruding arm with a spherical opening to hold one of the cavity mirrors. The four

columns at the opening provide anchor points to glue the cavity mirror. The other

mirror would be mounted inside a similar structure located on the L-shaped block

(the movable mirror holder). The diameter of the spherical openings is ∼ 100 µm

larger than the diameter of the mirror shields. This gap between the shield and

the four columns provides space to adjust the mirror’s position during the alignment

process. A larger gap, though allows for more machining tolerances, but requires a

higher amount of glue to apply and hence causes the cavity mirrors to drift more

during the curing process.

Figure 3-3: Three-dimensional model of the near-concentric cavity system. (a) The
completed assembly view with system dimensions in millimeters. (b) The exploded
view: 1 Cavity holder. 2 Back plate. 3 Stacked piezo. 4 Front plate. 5 L-shaped
block. 6 Ring piezo. 7 PEEK spacer. 8 Right cavity mirror in the shield. 9 Left
cavity mirror in the shield. 10 Spherical opening. The yellow bars indicate the piezo
electrodes. Arrows show the direction of assembling parts.
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Figure 3-4: Image of an assembled near-concentric cavity.

3.2 Cavity construction

3.2.1 Assembly procedure

The optical axes of the cavity mirrors need to be nearly overlapped within a travelling

range of the piezo. Hence, the two spherical opening of the block and the holder,

which accommodate the mirrors, must be aligned within ±5 µm. In the following,

we describe a precise pre-alignment procedure to achieve this requirement.

Figure 3-3 shows the basic assembly steps. First, the two ends of the piezo are

glued to two thin plates which have four tapped holes at the corners. They provide a

non-destructive and convenient way to detach the piezo from the holder. The piezo

with two attached metal plates is fixed on the holder by means of four titanium

crews. A cylinder that goes through both holes on the piezo and the holder is used as

a reference to align the position of the piezo on the holder. The other end of the piezo

is attached in a similar way to a L-shaped block, which is the mounting structure for

29



the cavity mirror and the ring piezo. The adjustment cylinder is withdrawn after the

assembling is done.

The ring piezo is electrically isolated from the holder with a PEEK spacer (Polyether

ether ketone). The mirror contained in the shield is secured to the spacer. Altogether,

they form a stack that is mounted to the L-shaped block. To allow for obstructed

movement of the ring piezo, it is advisable to avoid any contacts between the four

columns of the block and the stack. The only contact point is between the ground

electrode of the ring piezo and the L-shaped block.

3.2.2 Alignment procedure

The relatively large numerical aperture of near-concentric cavity modes and the as-

pheric outside surface of the cavity mirrors require that the optical axes of the two

cavity mirrors coincide – a requirement that is much less critical in conventional

cavity arrangements. Additionally, the absolute transverse separation of the mirror

surfaces needs to be near the critical distance within the moving range of the piezo

translator. In the following, we describe the steps required to align the cavity mirrors

and assemble them into the cavity mount. Figure. 3-5 shows the schematics of the

alignment setup.

The first step is to have an optical setup of two fiber-couplers (FC1 and FC2) cou-

pled to each other. The laser beam between the two fiber-couplers defines a reference

line for the alignment of the cavity mirrors. In other words, the optical axes of two

cavity mirrors will be aligned to be coincident with the reference laser beam. This

provides a coarse alignment and a finer adjustment is carried out subsequently. The

cavity mounting system with one glued cavity mirror is mounted on a xyz precision

translation stage (TS) (Thorlabs PT3/M) with a tip-tilt mirror mount (KM100-E02).

This arrangement allows us to adjust the mirrors with three degrees of freedom in

translation and two rotational degrees of freedom.

The next step is to adjust the cavity mirror such that the laser beam hits the

center of the cavity mirror. This can be ensured by checking the symmetry of the

reflected beam from the mirror on a camera. The adjustment of the tip-tilt mirror

(TM) makes the reflected beam from the cavity mirror back to the fiber coupler.

On the left side, the other mirror, which is denoted as the left mirror, is clamped to
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Figure 3-5: Schematic of the cavity alignment setup. Two single-mode fiber couplers
(FC) coupled to each other define a reference line for the optical axis of concentric
cavity (CC). An auxiliary holder (AH) is placed on the left translation stage (TS1)
with an external piezo system (EPS). The cavity mounting system is on the right
translation stage (TS2). Rotational degrees of freedom are provided by tip-tilt mounts
(TM). M: mirrors.
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an auxiliary holder (AH). We employ another translation stage to control the position

of the left mirror. The mirror can be released from the holder by untightening the

screws on the top of the auxiliary holder after the gluing process. Following the same

procedure, the optical axis of the left mirror is aligned with the reference beam. Here,

besides the coarse movement of the micrometer, the left mirror can be moved with

nanometer-resolution steps provided by an external piezo system (EPS) (Jiena Piezo

System).

When the two cavity mirrors are well aligned with the reference beam, the left

mirror is slowly moved into the holder through the spherical opening of the cavity

holder. In order for the left mirror to avoid touching the cavity holder which can

alter the alignment, we monitor the electrical continuity between the holders and

the mirror shield. In addition, the optical power of the reflected beam into the fiber

couplers is ensured to be relatively constant during the transport process. When the

cavity mirror is totally inside the holder, fine adjustment of the transverse position

is carried out with the external piezo system. We use the cavity transmission as a

feedback for the alignment. Note that during the alignment procedure, the alignment

of laser beams are maintained fixed, only the positions of two cavity mirrors are

adjusted to get the optimized cavity transmission.

When the alignment is completed, vacuum-compatible epoxy (Torrseal) is applied

at contacts between the cavity mirror shield and the four columns at the spherical

opening of the holder. Torrseal is chosen because of its relatively low shrinkage,

ultrahigh vacuum compatibility, and high elasticity modulus. We observe that the

curing process can change the volume of glue and hence pushing the cavity mirror

out of the alignment. Therefore, it is critical to apply an equal amount of glue at the

four corners to cancel the drift during the curing process. We observe that it takes

about two hours at room temperature for the Torrseal to be cured and hardened.

During the curing process, the position of the cavity mirrors needs to be constantly

monitored and adjusted to maintain the cavity alignment. After the mirror’s position

is secured by the cured Torrseal, the mirror is released from the auxiliary holder, and

the holder is withdrawn, leaving the cavity mirrors assembled and aligned inside the

cavity holder. The aligned cavity is moved into a glass cuvette with a vacuum system

that can reach a pressure of 10−9 mbar.
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Figure 3-6: Cavity drifting after alignment. Each red dot indicates the drift of one
cavity mirror with respect to the other after one attempt of cavity alignment.

3.2.3 Post-alignment drift

After each attempt to align the cavity, we record the drifts of the mirrors in three

directions. The statistics of these displacement is shown in Fig 3-6. The average

drift is 0.49± 0.65 µm, 0.21± 0.56 µm, and −0.11± 1.17 µm for x,y, and z direction

respectively. The average total drifting distance is 1.26±0.9 µm. We observe that the

drift is random in all directions. By careful application of the same amount of glues at

four corners, we can minimize the drift to be below the maximum travelling distance

of the piezo. However, after the vacuum bake out at around 50 oC to 70 oC, the

drifting of the cavity is more significant and capricious. We attribute the irreversible

change in the alignment of the two mirrors to the thermal stress and hysteresis of the

structure and glue points.

3.3 Characterization of cavities

A good understanding of cavity and cavity mirrors’ properties is essential to predict

the cooperativity of the atom-cavity system and to eliminate systematic errors in our

experiments. In the following, we will describe and discuss methods of characterizing

cavity properties. A summary table of the properties of the cavity is presented at the

end of the section.
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3.3.1 How near is near to concentric?

In the stable regime, the atom-cavity coupling strength varies insignificantly in re-

lation to the cavity length. However, when operating near to concentric point, one

observes a much more sensitive relationship between lcav and g0. As a result, the

determination of cavity length is important to estimate the atom-cavity coupling

strength.

Comparison of methods

There are several methods to determine a cavity length. One of these is to measure

the free spectral range of the cavity and deduce the cavity length by using a simple

relationship:

lcav = c/(2νfsr) (3.3.1)

where νfsr is the free spectral range, and c the speed of light in vacuum.

The free spectral range can be measured with a phase-modulated laser coupled

to the cavity. The cavity transmission of the phase-modulated laser consists of three

peaks: a carrier and two sidebands. The frequency spacing between the carrier and

the sideband is denoted as νsb. When νsb ∼ νfsr/2, the sidebands overlap and the

transmissions of the sidebands increase. By taking a derivative of lcav with respect

to νfsr, we can approximate the required accuracy of the measurement of νfsr to

determine lcav accurately: δlcav/δνfsr = c/2ν2fsr. The nominal free spectral range of

our 11-mm cavity is νfsr ∼ 13.6 GHz. Substituting this into Eq. 3.3.1 , we can de-

termine that, in ideal measurements, an accuracy of 800 kHz in the determination of

the cavity free spectral range is required to determine the cavity length with uncer-

tainty below 10 nm. This leads to further technical requirements for the experimental

setup: (1) one must be able to generate a frequency marker which is tunable around

νfsr/2 = 6.8 GHz and (2) to overlap the two sidebands with an accuracy of 800 kHz,

the cavity linewidth should be as narrow as possible preferably on the same order

of the desired accuracy. These requirements are indeed not very severe and can be

satisfied. However, this method could not be applied for shorter cavities with free

spectral ranges on the order of hundreds of THz, or cavities with broad linewidth

such as the near-concentric cavity presented in this thesis.

The second method to measure the cavity length is to compare the frequencies

of two laser beams that are simultaneously resonant with the cavity. This method is
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convenient for our experiment as to trap atoms and to lock the cavity, we often operate

780-nm and 810-nm lasers on resonance with the cavity. This resonant condition

implies that the cavity length must satisfy these equations simultaneously:

lcav = n
λ780
2
, (3.3.2a)

lcav = m
λ810
2
. (3.3.2b)

where λ780 and λ810 are wavelengths of 780 nm and 810 nm laser respectively, m and

n are longitudinal mode numbers. As a result, we have the following relationship

between the resonant wavelengths of the two lasers:

λ780
λ810

=
m

n
. (3.3.3)

The wavelength of the lasers can be determined from a calibrated wavemeter to

an accuracy of 10 MHz. Subsequently, m and n can be solved and hence we can

determine the cavity length by substituting the mode numbers into Eq. 3.3.2. We

note that Eq. 3.3.2 is only valid for plane-wave cavity modes, as it is assumed that the

phase shift of the cavity mode is due to only the propagation along the cavity axis.

For arbitrary modes with intensity distribution varying along the propagation axis,

such as Gaussian beams or higher-order Laguerre-Gaussian modes, Eq. 3.3.2 must

be corrected for the additional Gouy phase shift. As explained in the next session,

this Gouy phase shift is the same for different longitudinal modes. In contrast, the

first method is free from this modification, as it calculates a different of resonant

frequencies between two consecutive longitudial modes - the free spectral range.

The two methods, though conceptually simple, require a rather complicated setup

and changing experimental parameters when measuring different cavity lengths. In

particular, in the first method, the generated sideband must be scanned to find the

overlapping point. While, in the second method, frequencies of two laser beams

must be changed to be resonant with different cavity lengths. More importantly,

the above methods can determine only lcav and hence could not provide us with the

crucial information about how near to the critical concentric point the cavity length

is. In other words, besides the cavity length lcav, we are interested in determining

the critical distance d = 2RC − lcav and the stability parameter g = 1 − lcav/RC ,
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which are required to estimate the atom-cavity coupling strength g0. In fact, if one

knows the radii of curvature of the cavity mirrors with an uncertainty less than half

of the wavelength, the above techniques are adequate. In other experiments with

near-planar cavity mirrors, an accurate determination of RC is not a concern as a

variation of RC does not affect g0 significantly. However, for the cavity mirrors in

our experiments, which have a relatively small radius of curvature (RC = 5.5mm),

the tolerance in manufacturing is ±0.1% of the nominal value, which is equivalent to

±5.5 µm. In the near-concentric regime, such variation of RC implies an uncertainty

of more than an order of magnitude of g0.

Transverse mode spacing

As a result of the above analysis, we take a different approach to measure the

cavity length and the stability parameter in our experiment. The approach relies on a

property of concentric cavities that transverse cavity modes are degenerate in resonant

frequencies. Laguerre-Gaussian (LG) functions form a complete basis to solutions of

the paraxial wave equation, and thus can be used to describe the eigenmodes of a

spherical optical resonator. We denote cavity modes as LGnlp where n, l, p are integer

numbers. Modes of different n are known as the longitudal modes, while the indices

(l, p) indicate spatial dependences of the cavity modes on transverse coordinates,

hence known as transverse modes. Following the work of Allen in orbital angular

momentum of light [Allen et al., 1992], we can write down the mode functions of

LGnlp as

u(r, φ, z) =
Clp

w(z)

(

r
√
2

w(z)

)|l|

exp

(

− r2

w2(z)

)

L|l|
p

(

2r2

w2(z)

)

exp

(

−ik r2

2R(z)

)

exp(−ikz) exp(−ilφ) exp(iψ(z)) ,
(3.3.4)

where Clp is the normalization factor, R(z) the radius of curvature, w(z) beam width

at position z, k wave vector, L
|l|
p generalized Laguerre polynomials, and ψ(z) =

(|l|+ 2p+ 1) tan−1(z/z0) the Gouy phase.

Equation 3.3.4 can be separated into two parts: the last four terms represents the

total phase of the field, while the remaining terms depict the amplitude distribution.

We can confine our attention to the total phase of the field at the optical axis (r = 0)

Φ = −kz − lφ+ ψ(z). (3.3.5)
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The total phase shift of the cavity modes after one round trip in the cavity is then

given by

∆Φ = −2klcav + 2ψ(lcav/2z0) . (3.3.6)

The resonant frequencies of the cavity modes are determined by the condition

that the round-trip phase shift in the cavity must be an integer multiple of 2π

− 2klcav + (|l|+ 2p+ 1) tan−1(z/z0) = n2π. (3.3.7)

By substituting k = 2πν/c into Eq. 3.3.7 and rearranging the terms, we can obtain an

expression for the resonant frequencies of the cavity with identical spherical mirrors

and under paraxial approximation

νn,l,p = n
c

2lcav
+ (1 + |l|+ 2p)

c

2lcav

∆ψ

π
, (3.3.8)

where c is the speed of light, ∆ψ = 2 tan−1 (lcav/2z0) is the Gouy phase shift of LG00

for a round trip in the cavity length, and z0 is the Rayleigh range of the cavity [Saleh

and Teich, 2001]. From this, we derive the expression for the frequency spacing of

LG00 and LG10 in terms of lcav and RC :

∆νtr = ν00 − ν10 =
c

2lcav

(

1− cos−1 g

π

)

, (3.3.9)

where g = 1 − lcav/RC the stability parameter. As the cavity length approaches

critical length, the shift of the transverse mode frequencies approach one unit of the

free spectral range. Therefore all transverse modes are co-resonant for concentric

cavities.

To determine ∆νtrans from the cavity transmission spectrum, we detune the cavity

length within a free spectral range by applying a sawtooth voltage to the z-segment

of the stacked piezo, which controls the cavity length. We record the spectrum at

multiple resonant cavity lengths and use a peak-detection algorithm to determine the

resonance frequencies. Monitoring the intensity distribution of the light transmitted

through the cavity on a linear camera helps us to distinguish different transverse

modes.

To obtain a frequency marker, we modulate the probe laser by using an electro-
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Figure 3-7: Transverse mode frequencies in various geometrical configurations of
optical cavities. The longitudinal mode spacing (or the free spectral range) is denoted
as ∆νfsr. The transverse mode spacing is denoted as ∆νtr.

optical phase modulator (EOM). The two sidebands emerged in the cavity trans-

mission are used as a frequency reference for the peak-detection algorthim. Fig. 3-8

shows the transverse mode frequency spacing at different cavity lengths which are

resonant with the 780-nm laser. From a fit of Eq. 3.3.9 to experimental data, we

determine d = 207(13) nm at the last stable resonance, which corresponds to the

stability parameter g = −0.99996(2). This is consistent with our observation that

when increasing the cavity length by another half wavelength, the cavity enters the

unstable regime and exhibits lossy modes (see Fig. 3-9 and the next section).

The good agreement between the experimental data, including the last resonant

point before critical length, and the fit based on the paraxial equation prompts us to

discuss about the validity of the paraxial approximation in our near-concentric cavity.

The amplitude of the electric field distribution that propagates in the z direction can

described as E (x, y, z) = u (x, y, z) e−ikz, where k is the wave vector. To be valid for
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Conventionally, Equation. 3.3.10 is considered valid for optical beam components

with an angle with the optical axis up to ≈ 30 degrees [Siegman, 1986]. Transverse

fundamental near-concentric cavity modes (LGn00) have a beam divergence of θ =

λ/πw0, where λ is the wavelength of the resonant mode taken to be 780 nm, and w0

is the cavity beam waist. Taking the beam divergence now as a characteristic angle

with the optical axis, the validity limit of 30 degrees for the paraxial approximation

corresponds to w0 ≥ 496 nm, or equivalently d ≥ 0.5 nm. As a result, the paraxial

approximation is still valid to describe the modes in our near-concentric cavity. We

also note that the definition of the critical distance d and validity of Eq. 3.3.9 are

based on a meaningful definition of a mirror surface position. The thickness of the

dielectric Bragg stacks forming the mirrors for our cavity exceed by far the critical

distances d for the last stable longitudinal resonances, so the absolute position of the
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mirror surface has to refer to an effective position of these Bragg stacks.

3.3.2 Cavity mode analysis

Beside the sensitivity to misalignment, another factor that hinders the feasibility

of using near-concentric cavities is the reduction of the linewidth and transmission.

Previous observations indicated that the cavity finesse reduces significantly as the

cavity is pushed toward the geometrical instability [Haase et al., 2006]. In contrast

to this, possibly due to refined manufacturing techniques of large angle spherical

surfaces, we demonstrate in this section that our near-concentric cavity can maintain

the transmission and linewidth at the last two resonant cavity lengths before the

unstable regime.

An optical resonator can be viewed as a system that can store electromagnetic

energy. The lifetime of stored energy (or a photon) in the cavity determines its

linewidth. The possible decay channels are the coupling to an external mode or the

scattering and absorption losses of the cavity mirrors. In the context of cavity QED,

the dissipation should be minimized to achieve the strong coupling regime. The cavity

losses are also important in practice as they determine an insertion loss of the atom-

cavity system employed as a node in a quantum network. While the cavity linewidth

depends on the reflectivity of the cavity mirrors and the cavity length, the transmis-

sion is a function of both the cavity losses and the mode matching of a probe field to

the cavity mode. The reduction of cavity transmission and the cavity photon lifetime

in near-unstable cavities can be attributed to the mode-matching and misalignment

losses. Ineffective mode-matching excites multiple transverse cavity modes. In the

near-concentric regime, where all the transverse mode are co-resonant, the excitation

of multiple cavity modes broadens the linewidth and reduces the coupling into the

fundamental modes. In addition, as explained in the next section, any tilting between

two cavity mirrors introduces a diffraction loss in the cavity. The undesired effects

can be alleviated by employing the aspheric mode-matching surface and the careful

alignment procedure described in section. 3.2.

A ringdown measurement is usually employed to determine the cavity linewidth

[Rosenfeld, 2003]. The ringdown technique basically is a time-domain method that

tracks the cavity field decay rate when the pumping light is suddenly switched off.
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This requires a setup that is capable of switching off the laser faster than the estimated

photon lifetime in the cavity, which is on the order of 20 ns for our cavity. Here, we

characterize the cavity properties by measuring the cavity transmission spectrum.

This method requires the probe laser linewidth to be much narrower than the cavity

linewidth, which is technically more difficult with high finesse cavities. However,

it especially suits to our cavity specifications with an expected cavity linewidth of

around 30 MHz.

We use a diode laser operating at a wavelength of 780 nm to probe the cavity. This

is the wavelength of the D2 transition of 87Rb, which is our target transition of the

atom-cavity coupling. The laser linewidth is about 1 MHz. The cavity transmission

is recorded as the cavity length is detuned across the resonant frequency of the probe

laser. To obtain a frequency reference, we modulate the phase of the probe laser with

an electro-optical modulator (EOM), driven by a RF signal generator (WindFreak,

SynthUSBII 34MHz - 4.4GHz). The optical side-bands act as frequency markers to

convert the piezo’s voltage to units of frequency. Typical cavity transmission spectra

are shown in Fig. 3-9. The tranmission of two cavity modes (LG00 and LG10) can be

modelled by a summation of two Lorentzian functions:

T (ν) =
T1

4(ν − ν1)2/δν21 + 1
+

T2
4(ν − ν2)2/δν22 + 1

, (3.3.11)

where T1(2) are transmission coefficients, ν1(2) are resonant frequencies, and δν1(2) are

linewidths of the cavity modes LG00 and LG10, respectively. We can determine the

cavity linewidths and transmission by fitting Eq. 3.3.11 to the data. We acknowledge

that the accuracy of the linewidth measurement relies on the linearity of the piezo

scan. As a result, the frequency for the phase modulation must be similar to the

expected linewidth of the cavity, which is chosen to be 50 MHz in our experiment.

At d = 207 nm, we observe that the cavity fundamental mode maintains the simi-

lar cavity linewidth and transmissions. In particular, the linewidth of the fundamental

mode LG00 measures 22.43(5) MHz which agrees with the nominal value of 21.7 MHz,

determined from the cavity mirror’s design reflectivity of 99.5% at 780 nm. At this

length, the cavity transmission is 37%. However, at the last resonant length, as the

transverse modes start to overlap and the probe laser simultanously couples to multi-

ple higher-order modes, the second cavity mode becomes difficult to identify, and has
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Figure 3-9: Cavity transmission spectra measured by detuning the cavity length.
(a) d = 597 nm. The dashed line is the fit based on a summation of two Lorentzian
functions, corresponding to two resonant peaks. (b) d = 207 nm. Transverse modes
become degenerate and form a long tail extending out to the lower frequencies. (c)
d = −183 nm. The cavity is in the unstable regime. The insets show the transverse
mode profiles.

a broadened effective linewidth, which is determined from the fit to be 98(2)MHz.

When increasing the cavity length by another half wavelength (d = −183 nm), we ob-

serve a sudden decrease in the cavity transmission and a sudden increase in the cavity
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linewidth, which are indicative of unstable cavity modes. Moreover, the transverse

profile of the cavity mode deviates from a Gaussian profile.

3.3.3 Cavity losses

The intra-cavity photon can escape the cavity via two independent processes: trans-

mitting through the cavity mirrors and being absorbed or scattered by defects on

the mirror coating. Both processes contribute to the cavity decay rate. However,

there is a fundamental difference. The transmitted photons are coherently coupled

to a well-defined output mode and can be detected on photodetectors. In contrast,

scattering is a dissipative process and should be considered as an irreversible loss in

the cavity. In almost all applications of optical resonators, cavity losses should be

minimized as information about the system gets lost to undetectable channels. Know-

ing the cavity linewidth alone is also not enough to quantify the rate of each process

independently. Characterization of the cavity losses is therefore essential as the only

property of the cavity mirrors provided by the manufacturer is the reflectivity of 99.5

%; no information on the losses and transmission is provided.

In this section, we analyze the two types of losses of the near-concentric cavities:

(1) losses due to the imperfection of the mirror’s HR coating and (2) the diffraction

loss due to the misalignment between two optical axes of the two cavity mirrors.

Mirror losses

Optical properties of cavity mirrors can be described by three parameters: the coeffi-

cients of reflectivity R, transmission T , and loss A. The principle of energy conserva-

tion requires T + A + R = 1. The loss coefficient includes absorption and scattering

losses. One approach to experimentally determine these coefficients is to measure the

transmission and reflection of an incident laser beam on the cavity mirrors. In the

case of high finesse cavity mirrors, the reflectivity of the mirror is extremely high with

a typical value of transmission and loss on the order of ppm. Therefore, though being

direct and simple to set up, the above measurement is experimentally not feasible

with high finesse cavity mirrors, and as shown below, also not suitable for our cavity

mirrors with small radii of curvature.

As a result, we employ an alternative method described in [Hood et al., 2001].
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The method requires that a cavity must be formed by the two mirrors that need

to be characterized. Subsequently the three coefficients that characterize the optical

properties of the mirrors can be determined from the resonant transmission Pt, the

resonant reflection Pr and the finesse F of the cavity.

We begin with the derivation of formulas used in [Hood et al., 2001] and specify

the assumptions of the derivation. On resonance, for a monochromatic light with

input power Pin incident on an optical cavity, the transmitted and reflected power

are given by

Pt =
T 2 (1− A)

[1−R (1− A)]2
Pin , (3.3.12)

Pr =
RA

[1−R (1− A)]2
Pin . (3.3.13)

Here, the mirrors are assumed to have the same optical properties, meaning that

R1 = R2 = R, and T1 = T2 = T . This is a reasonable assumption as all of the

mirrors coating are produced in the same coating run. Further steps are taken with

the assumption that the reflectivity of the mirrors is close to unity and the cavity

mirror loss is small but not neglibile, meaning that with R ≈ 1 we have the relations

Pt =
T 2

(T + A)2
Pin, (3.3.14)

Pr =
A2

(T + A)2
Pin. (3.3.15)

With this assumption, the cavity finesse can be approximated by

F =
π

A+ T
. (3.3.16)

In experiments, it is necessary to take into account the fact that not all optical power

of the incident resonant light can be coupled to the cavity. This is taken into account

by introducing the mode-matching factor η, so that (1− η)Pin is the optical power

rejected by the cavity and reflected directly off the input cavity mirror. Then, ηPin

can be considered as effective indicent input optical power. Equations 3.3.14 and
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3.3.15 must be modified as following

Pt

ηPin

= T 2

(F
π

)2

, (3.3.17)

Pr − (1− η)Pin

ηPin

= A2

(F
π

)2

. (3.3.18)

To eliminate η from the equations, we divide Eq. 3.3.18 by Eq. 3.3.17. This gives us

an expression for the effective cavity transmission α

α =
Pt

Pin − Pr

=
T 2
(

F
π

)2

A2
(

F
π

)2 − 1
. (3.3.19)

Combining with Eq. 3.3.18, we can determine T , R, A and η from experimentally

accesible quantities:

T =
2α

1 + α

π

F , (3.3.20)

A =
1− α
1 + α

π

F , (3.3.21)

R = 1− A− T, (3.3.22)

η =
Pt

Pin

(T + A)2

T 2
. (3.3.23)

We determine Pin, Pt, and Pr with a calibrated photodetector. The cavity finesse

was obtained according to the method described in Sec. 3.3.2. All additional losses due

to other optical elements such as the glass cuvette are taken into account. Operating

the cavity at d = 207 nm, for an optical input power of Pin = 2.430(1)mW, we

measure Pt = 1.010(1)mW, and Pr = 1.332(1)mW. From these values, we find

A = 0.0217(4)%, T = 0.4990(4)%, and R = 99.48%.

Misalignment losses

Besides the scattering and absorption loss, the cavity can exhibit additional diffraction

losses due to the finite aperture of the mirrors if there is a misalignment between the

two optical axes of the cavity mirrors. The misalignment causes a shift of the cavity

intensity profile on the mirror. This diffraction loss due to misalignment becomes
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Figure 3-10: Titlting misalignment of spherical optical cavities. A tilt of one of the
cavity mirrors about the optical axis (o.A.) by θ induces additional diffraction loss
per round trip. The total diffraction loss is a function of stability parameter g, the
mode beam waist on mirror wm, and the radius of mirror aperture a.

more critical for near-unstable cavities as the beam waist at the cavity mirror is

large. Hence, it is important to assess the degree of misalignment in our cavity. Here,

we assume that the misalignment is entirely due to the tilting of the mirrors, as one of

the mirrors can be translated by the piezo. With that assumption, the misalignment

loss per round trip is given by [Hauck et al., 1980]

α = θ2
1 + g2

(1− g2)3/2
πlcav
λ

(a/wm)
2

exp[2(a/wm)2]− 1
, (3.3.24)

where θ is the misalignment angle, a is the radius of cavity mirror’s aperture, and

wm is the beam waist at the mirrors (see Fig. 3-10). From the observation that

the cavity linewidth is comparable to the nominal value and assuming that all the

cavity losses is due to the tilting misalignment, we can estimate the tilting angle

between the two cavity mirrors to be better than 0.5 degrees (θ ≤ 0.5 deg) in the

near-concentric regime. This estimation agrees with what can be guaranteed in the

alignment procedure described in section 3.2.2, as the reflected laser beams from the

cavity mirrors are ensured to couple back to the fiber couplers. Table 3.1 summarizes

the optical properties of the near-concentric cavities.
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Table 3.1: Cavity parameters at the last few stable resonances.

d = 2RC − lcav 597 nm 207 nm −183 nm

Transmission T1 (%) 41.13(5) 37.06(6) 13.60(1)

Linewidth δν1 (MHz) 22.43(5) 22.55(6) 60.7(1)

Stability parameter g -0.998903(2) -0.999962(2) -1.000033(2)

Tranverse mode spacing 62(4) 40(5) NA
δνtr (MHz)

Cavity waist w0(µm) 3.17 2.44 NA

Coupling strength g0(MHz) 2π × 15.46 2π × 20.15 NA

Cooperativity C 3.62 6.15 NA

3.4 Contamination of cavity mirrors

The reported cavity properties in Table 3.1 were characterized in air. After the

alignment process, we place the cavity setup in a vacuum chamber and perform a

bake-out at a temperature of 70 oC measured at the glass cuvette for two weeks.

The cavity properties remain similar to the values obtained in air. However, after

operating the dispenser at a high current of 3.5A for aligning the MOT, we observed

a degradation of the cavity mirrors reducing the cavity finesse from 600 to 136 at

780 nm wavelength. This corresponds to an increase of the cavity linewidth from 22

to 100MHz. In addition, the cavity transmission decreases to 4.6(2)%. Using a the

technique described in Section 3.3.3, we determine the round-trip loss of the cavity to

be 3.6%. However, we do not observe any significant reduction of the cavity coupling

efficiency.

Several attempts have been carried out to recover the cavity finesse in the vacuum

chamber. Attributing this degradation to the contamination of mirrors by rubidium

atoms, we focus a cw 450 nm laser beam with an optical power of 20mW at the cavity
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mirrors. It has been reported that strong UV-light can remove rubidium atoms from

the stainless steel surface of the inner vaccum chamber [Torralbo-Campo et al., 2015].

However, we do not observe any improvement after operating the 450-nm laser in 48

hours. Pulsed UV lasers with higher delivered optical energy may be required to

break chemical bonds between the adsorbate and the mirror coating. However, the

optical energy impinged on the mirror coatings should not exceed the laser damage

threshold for our HR-coating, which is provided by the manufacturer to be 12 J/cm2

with a pulse duration of 6 ns, a duty cycle of 100 Hz and at the wavelength of 532 nm.

We do not observe any improvement with powerful LEDs at 430 nm wavelength and

heat lamps with a broad emission spectrum. On the other hand, outside the vacuum

chamber, we are able to clean the cavity mirrors by soaking them in distilled water

at a temperature of 70o. The cavity transmission recovers from 1% to 7%.

3.5 Upgrading the design

A severe limitation of the current design is the limited travel range of the stacked

piezo. In the new design of the cavity system, we replace it with a piezo scanner

(Attocube ANSxyz100). The new piezo scanner is able to move 50 µm in x and z

directions, and 24 µm in y direction. The cavity mount was redesigned to accommo-

date the scanner. The new mount consists of only two parts: a cavity mount and a

mirror mount. The scanner is stationed on a solid base plate of the cavity mount.

Due to the space constraints, the mirror is not mounted on the top of the scanner.

Instead, the mirror mount sits on the top plate of the scanner with a spherical open-

ing to accommodate the mirror. To increase the stability, we add a rib to the mirror

mount. In addition, we place the ring piezo on the cavity mount. This is to avoid the

potential cross-talk between the movement of the piezo and the piezo scanner during

dual-piezo locking process.
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Figure 3-11: Assembly of the cavity system with the Attocube piezo scanner (AN-
Sxyz100).

Figure 3-12: Image of an assembled cavity with the Attocube piezo scanner.
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Chapter 4

Taming a near-concentric cavity

In the context of cavity QED experiments which focus on the near-resonant atom-light

interaction, the cavity length must be tuned such that the cavity resonant frequency

and the atomic transition are nearly overlapped, preferably within the three param-

eters that characterize the atom-cavity system: the cavity linewidth (κ), the atomic

decay rate (γ), and the coupling strength (g0). In practice, unwanted disturbances

such as mechanical vibrations or temperature changes cause the cavity length to fluc-

tuate or drift away from its resonance. A displacement of δlcav of the cavity length

causes a shift of cavity resonance by

δν = F∆ν
δlcav
λ/2

, (4.0.1)

where F is the cavity finesse, λ is the laser wavelength that is resonant with the cavity,

and ∆ν is the cavity linewidth. In order to have the cavity resonance stabilized within

10% of the cavity linewidth (δν ≈ 0.1∆ν), the fluctuation of the cavity length has to

be less than

δlcav =
1

10

λ

2F
. (4.0.2)

For our cavity parameters, F = 610 and λ = 780 nm, and hence δlcav = 60 pm, which

is approximately the mean radius of a ground state electron orbit in hydrogen atoms

(the Bohr radius). Such degree of stabilization is typically challenging for passive

stabilization elements such as damped springs or vibration isolators. This leads to

the need for continuous stabilization of the cavity length, which is the main topic of
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Figure 4-1: Schematic of the near-concentric cavity locking chain. The strategy is to
have the near-concentric cavities indirectly locked to the 780-nm laser, indicated by
the dashed arrow, via intermediate nodes: the 810-nm laser and the transfer cavity.

this chapter.

The effect of misalignment in transverse direction is often negligible in nearly

flat cavities that are used in most other cavity QED experiments [Raizen et al.,

1989, Thompson et al., 1992, Boca et al., 2004]. On the contrary, we observe that

even with the cavity length stabilized, the cavity resonant transmission of the near-

concentric cavity exhibits a long-term drift on the time scale of minutes to hours.

We attribute this drift mainly to thermal expansion in the transverse direction of

the cavity mount. Therefore, we developed an algorithm to stabilize the transverse

alignment of the cavity. With a combination of temperature stabilization and the

active transverse algorithm, the near-concentric cavity remains aligned over a few

hours. This is an important step for the observation of atom-cavity coupling presented

in the next chapters.

4.1 Longitudinal stabilization

Our goal is to stabilize the resonance of the near-concentric cavity to the atomic

transition 5S 1/2, F=2→ 5P3/2, F=3 of 87Rb atoms at 780 nm wavelength. To avoid

the resonant scattering of the atoms trapped in the cavity mode, we do not lock

the near-concentric cavity directly to a 780 nm laser. Instead, we stabilize the near-

concentric cavity with the help of intermediate locking nodes (see Fig. 4-1).

The locking chain consists of three locking nodes: the near-concentric cavity lock,
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the transfer cavity lock, and the lock of the 780 nm laser. As the 780 nm laser is

resonant with the atomic transition, we refer to it as the resonant laser. The chain

starts with stabilizing the resonant laser to the D2 transition of 87Rb, ωres = ωa.

The resonant laser provides concurrently cooling light for the magneto-optical trap

(MOT),

The resonant frequency of the near-concentric cavity ωc is stabilized to the fre-

quency of a lock laser ωl:

ωc = ωl + n1νc, (4.1.1)

where n1 is the longitudinal mode number, and νc is the free spectral range of the

near-concentric cavity. The lock laser also serves as an intra-cavity dipole trap to

capture single atoms. As will be explained in section 5.2, to reduce the scattering

rate, the lock/trap laser frequency is set to be far detuned with respect to the atomic

transition. We choose the wavelength to be 810 nm, which by design lies in the region

of the high reflectivity of the cavity mirrors.

Due to the absence of accessible atomic frequency standards near to 810 nm, we

set up a transfer cavity to pass the stability from the resonant laser to the lock laser.

The lock laser is stabilized to the transfer cavity which is locked to the resonant laser,

ωl = ωtr + n2νtr, (4.1.2)

ωtr = ω780 + n3νtr, (4.1.3)

where n2 and n3 are the mode numbers, ωtr is the resonant frequency of the transfer

cavity, and νtr is the free spectral range of the transfer cavity. The resonant frequency

of the cavity is then locked to

ωc = ωa + (n3 + n2)νtr + n1νc, (4.1.4)

As the free spectral ranges of the two cavities are different (νtr 6= νc), the resonant

frequency of the stabilized near-concentric cavity would have an offset from the atomic

frequency. To compensate for this offset, we introduce a difference in frequencies

(∆νl) between the two lock laser beams that couple to the two cavities. By setting

∆νl = mνc − (n3 + n2)νtr, the near-concentric cavity can be set to be resonant with
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the atoms

ωc = ωa + (m+ n1)νc. (4.1.5)

In practice, we determine ∆νl by overlapping the resonant peaks of the resonant laser

and the lock laser on the transmission of the near-concentric cavity.

4.1.1 Optical setup

Transfer cavity

The transfer cavity has a finesse of 6200, inferred from the reflectivity 99.94% of the

mirrors. The two cavity mirrors are separated by an Invar spacer. The distance

between the mirrors is 1.1 cm corresponding to a free spectral range νtr = 12.8GHz

and a linewidth of 2.8MHz. To minimize the frequency drift, we place the transfer

cavity in a compact vacuum chamber (5× 10−6mbar) and stabilize the temperature

using heating tapes. This can reduce the temperature fluctuation down to about 100

mK corresponding to a fluctuation of 42MHz of the transfer cavity resonant frequency,

which is about two times of the near-concentric cavity linewidth. To further improve

the stability, we stabilize the transfer cavity length by controlling a piezo attached to

one of the mirrors.

Lock laser

The lock laser is an external cavity diode laser (ECDL) with a grating in the Littrow

configuration. The center wavelength of the free-running diode emission is 808 nm.

By adjusting the diffraction grating, the diode can reliably operate at 810 nm. After

the grating and optical isolators, the optical power is approximately 20 mW. This

laser power is distributed to two paths for the two cavities. A frequency difference

(∆νl) between two paths is generated by sending one of the paths to a fiber-based

electro-optic phase modulator (EOM) to generate frequency sidebands. We refer to

this path as the modulated path.

One approach to implement the locking chain is to couple the modulated beam to

the near-concentric cavity. The frequency of the near-concentric cavity is stabilized

to one of the sidebands, and the lock laser is stabilized to the transfer cavity via the
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Figure 4-2: Optical locking scheme of transfer cavity and the 810-nm lock laser. Red
and orange lines indicate beams from 780-nm laser and 810-nm lock laser, respectively.
The 780-nm laser serves as the cooling laser for atom trapping. The frequency of the
780-nm laser is stabilized to a D2 transition of 87Rb. The lock laser’s sideband is
stabilized to a resonance of the transfer cavity, which in turn is stabilized to the 780-
nm laser. The frequency of the lock laser can be tuned by adjusting the sideband’s
frequency. All cavity locking schemes use the standard Pound-Drever-Hall technique
with 20-MHz phase modulation. EOM: electro-optic phase modulator. PD: high-
bandwidth photodetector. HWP: half-wave plate. QWP: quarter-wave plate. PBS:
polarization beam splitter. SMF: single-mode fiber. IF: interference filter.

unmodulated path. By changing the sideband frequency, the resonant frequency of

the near-concentric cavities can be tuned. This method, however, requires optical

filters such as etalons to prevent other sidebands and the carrier from coupling to the

near-concentric cavity which would inevitably introduce additional complications to

the optical setup. Furthermore, as the maximum optical power of the sideband that

can be generated is about 40% of the total optical power, one would need a higher

emitted power from the lock laser diode to achieve a sufficient trap depth.
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To overcome these problems, we instead lock the modulated path to the transfer

cavity and the unmodulated path to the near-concentric cavity (see Fig. 4-3). The

frequency of the lock laser can be fine-tuned by controlling the frequency of the

sideband. We observe that a large tuning of the sideband’s frequency causes the

laser lock to loose quickly. To avoid these sudden kicks to the control loop of the

laser lock, we therefore change the sideband’s frequency only slowly in steps of 1MHz

per 0.5 seconds in the control script. We determine the frequency of the lock laser

using a wavemeter with a resolution of 10MHz. Setting the sideband frequency

∆νl = 160MHz, we observe that the resonant laser, the lock laser and the near-

concentric cavity are co-resonant. At this sideband frequency, we determine the

frequency of the trap laser to be ν810 = 370.04568(1) THz, which is red-detuned

below the D2 transition by 14.184 THz. This detuning corresponds to 1043 times of

the free spectral range of the near-concentric cavity.

Near-concentric cavity lock

The optical setup for locking the near-concentric cavity is, in principle, similar to the

the locking scheme of the transfer cavity (see Fig. 4-4). The two laser beams (810-nm

and 780-nm) are combined at a dichroic mirror and coupled to fundamental modes of

the near-concentric cavity. The 780 nm laser is used to align the cavity and probe the

trapped atoms. A combination of a dichroic mirror and interference filters separates

the 780 nm transmission from the 810 nm transmission. The cavity transmission

of the 810-nm laser is coupled to a single-mode fiber to clean up the spatial mode

and subsequently detected on a high-bandwidth photodetector. Here, the locking

error signal is derived from the cavity transmission of 810-nm laser instead of the

reflection because multiple-modes interference at the reflecting path may distort the

error signal shape. We adjust the frequency of the lock laser by tuning the frequency

of the sideband such that the cavity resonances of the 810 nm and 780 nm overlap.

We find that it is essential to use angled physical contact (APC) single-mode fibers

and optical isolators in the optical setup to reduce back-reflections that cause residual

amplitude modulation of the error signal.
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Figure 4-3: Optical locking scheme of the near-concentric cavity. Red and orange
lines indicate the beams from 780 nm laser and 810 nm lock laser, respectively. The
two laser beams are combined at a dichroic mirror (DM) and coupled to the fun-
damental modes of the cavity. The locking error signal is derived from the cavity
transmission which is coupled to a single-mode fiber for the spatial mode filtering.
PD: high-bandwidth photodetector. SMF: single-mode fibers. IF: interference filters.

4.1.2 Locking circuit

The error signals used to lock the cavities are derived using the standard Pound-

Drever-Hall (PDH) technique [Drever et al., 1983]. Similar techniques to PDH are the

frequency-modulation (FM) spectroscopy and its variation, the modulation transfer

spectroscopy, which are used to stabilize lasers to atomic transitions in our experi-

ment [Bjorklund, 1980, McCarron et al., 2008]. The two techniques have the same

working principle and are derived from an older method of controlling the frequency

of microwave oscillators, also developed by Pound [Pound, 1947]. Consequently, the

laser and the cavity locking in our experiment have the same electronic design.

The locking circuit consists of two primary parts: the signal processing part and

the control loop (see Fig. 4-4). A direct digital synthesizer (DDS) supplies a modu-

lation signal (fm = 20MHz). The 20-MHz signal is coherently split into two paths;
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one acts as a local oscillator (LO), and the other drives the EOM that modulates

the phase of the lasers. The cavity reflection/transmission of the modulated laser

is detected on a high-bandwidth photodiode, and the photocurrent is passed to a

transimpedance amplifier. The photodiode signal is subsequently amplified and de-

modulated by multiplying with the LO at a RF frequency mixer (Mini-circuits, RP2).

The result of the mixing is a combination of a DC and a high-frequency signal at 2fm.

The DC part provides the error signal for the locking scheme. Unequal delays between

the signal and the LO reduce the magnitude of the error signal [Black, 2001]. We

compensate for delays with a phase shifter (Mini-circuits, JSPHS-26) to before the

LO. A low pass filter removes the high-frequency signals. The feedback control loop

is carried out using an analog Proportional-Integral (PI) controller. The controller

output drives the piezo to keep the cavity length on resonance. A sawtooth voltage

signal can replace the controller output to scan the cavity length and find a good lock

point.

EOM

optical

input

PS 20-26 MHz
Φ

∫dt

HV×p +

10 Hz sawtooth

control 

out

DC-10 KHz

DDS 20 MHz

Figure 4-4: Schematic diagram of the electronic circuit to generate the error signal
and to lock the cavity resonance using the PDH technique. A modulation signal
at 20MHz drives the EOM and operates as a local oscillator. The optical signal
from the cavity reflection/transmission is amplified and demodulated at the mixer to
generate the error signal. The control loop consists of Proportional-Integral feedback
implemented with operational-amplifiers. The phase shifter (PS) adjusts the phase
of the local oscillator (LO) to compensate for the phase offset. HV: high voltage
amplifier.
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4.2 Transverse stabilization

4.2.1 Transverse misalignment sensitivity

The alignment of near-concentric cavities is sensitive to the transverse position of the

cavity mirrors [Yariv, 2010, Wang et al., 2018]. To quantify this effect, we measure

the resonant transmission of the cavity fundamental mode coupled to a single-mode

fiber as we displace one of the cavity mirrors in x and y directions (see Fig. 4-5).

Throughout the measurement, the cavity length is locked to the frequency-stabilized

810-nm laser. The transverse profile in Fig. 4-5 shows a FWHM of 59(3) nm in radial

direction. In Fig. 4-6, we repeat the transverse sensitivity measurement every 30

minutes. We observe a directional drift with a time scale correlated to the temperature

change in the vicinity of the experiment. Therefore, we attribute the transverse

displacement mainly to the thermal expansion of the cavity structure. From the

FWHM of the transverse profile, we approximate that a change of temperature of

the cavity on the order of 100 mK is sufficient to reduce the resonant transmission

of the fundamental mode by 10%. This result re-emphasizes the importance of using

a three-dimensional actuator to stabilize the position of the near-concentric cavity

mirrors.

4.2.2 Transverse stabilization algorithm

Practical operation of a near-concentric cavity therefore requires either aggressive

temperature stabilization, or a transverse locking scheme. Unlike the longitudinal

direction, the transverse direction lacks a clear way to derive a locking error signal

to implement feedback control. To actively compensate for the transverse drift, we

implement an two-dimensional lock-in algorithm based on the gradient-search method

to maximize the cavity transmission [Nguyen et al., 2018].

The algorithm is triggered when the cavity transmission drops below a threshold

value. The cavity mirror is transversely scanned in incremental steps surrounding the

initial position to find the direction of steepest ascent of the cavity transmission. We

implement a raster scan to alleviate the hysteresis by avoiding any large voltage jumps

send to the piezo. The algorithm repeats the iteration until the cavity transmission

reaches the maximum within a predefined tolerance for termination. The size of the
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Figure 4-5: Sensitivity of cavity transmission coupled to a single-mode fiber as
a function of transverse displacements. The cavity mirror is displaced in x and y
directions while the cavity length is stabilized.
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Figure 4-6: Observation of drift of transverse cavity alignment. The cavity trans-
mission coupled to a single-mode fiber as a function of transverse displacements is
recorded at an interval of 30 minutes. The drift is directional and is attributed to the
thermal expansion of the cavity structure.
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scanning step is reduced as the cavity transmission increases to avoid unnecessary

“aggressive” correction near to the optimal alignment position.
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Figure 4-7: Long-term stability of the near-concentric cavity at d = 207 nm. The
cavity length is locked during the measurement. The slow drift of cavity transmission
on the order of minutes is due to the transverse misalignment which is caused by
temperature change. Vertical arrows indicate the activation of the stabilization algo-
rithm. The cavity transmission recovers to the maximum value after the successful
implementation of the algorithm.

Figure 4-7 shows a typical record of cavity transmission at the last resonant length

as the transverse stabilization algorithm is in effect. We attribute the slow drift on the

order of minutes to the temperature change of the cavity, while the fast fluctuation of

the maximum transmission is due to the vibration of the cavity length. To separate

the effects of the fast fluctuation from the transverse offset, the algorithm takes an

average of cavity transmission on a time scale that is much longer than the cavity

length fluctuation. The threshold can be chosen to be as high as 97% to have a high

duty cycle. The average search time to recover to the maximum cavity transmission

is on the order of seconds. With a combination of both temperature stabilization and

the transverse stabilization algorithm, the near-concentric cavity remains aligned for

the course of a few hours.
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Chapter 5

Trapping single atoms in a

near-concentric cavity

Single atoms interact strongly with a cavity mode when they are placed at locations

where the cavity photons exhibit the strongest electric field. The field of photons

contained in a Fabry-Perot optical cavity is not uniform; it has a global maximum

at an antinode of the cavity focus, decreases in the radial direction (the Gaussian

profile), and varies periodically in the axial direction (the standing-wave pattern).

Therefore, to obtain the optimal coupling strength, the atoms need to be positioned

at the central antinode preferably with a spread of much less than the period of the

standing wave λcav/4.

The transit time of the atoms through the cavity mode is also an important

factor in determining the atom-cavity cooperativity. An atom beam with a velocity

v traversing a cavity beam waist w0 has an effective absorption line broadened by

∆νtransit ≈ v/4πw0 due to the finite interaction time. For example, a thermal atomic

beam of 87Rb at a temperature of 300K has ∆νtransit = 5.4 MHz when crossing a

cavity beam waist w0 = 4 µm. Another hand-waving argument is that the interaction

time between the atoms and the cavity must be longer than one period of the Rabi

oscillation. Therefore, in addition to g0 > (κ, γ), the strong coupling also requires

that g0 ≫ 2π∆νtransit = 1/τd, where τd = v/2w0 is the transit time of the atoms in

the cavity mode [Kimble, 1998]. Altogether, it is important to trap the atoms with

sufficient long storage times in the cavity mode.
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Here, we present an experimental setup to trap a single neutral 87Rb atom in a

near-concentric cavity. The trap is a red-detuned far-off-resonance intra-cavity dipole

trap (FORT) [Ye et al., 1999], implemented in a standing-wave configuration along

the cavity axis. The dipole trap depth is on the order of few mK, so a pre-cooled atom

cloud is required to load the dipole traps. We prepare a cold cloud of 87Rb atoms

directly in the near-concentric cavity mode using the magneto-optical-trap (MOT)

technique. This arrangement avoids the need of any sophisticated atom delivery

methods such as an atomic fountain and an atomic conveyor belt [Fortier et al.,

2007]. The atoms in the MOT are probabilistically loaded into the cavity mode. We

detect the trapped atoms based on the atomic fluorescence collected by the cavity

mode. In the absence of additional cooling methods, we observe an average trap

lifetime of 230(30) ms.

5.1 Magneto-optical traps

Principle of operation

Cooling and trapping of atoms by light-induced forces are two related phenomena. In

particular, cooling requires a velocity-dependent force which plays a role of friction

or a damping force. Trapping, on the other hand, relies on a position-dependent

restoring force, and acts like a spring. A combination of restoring force and friction

is able to halt fast moving atoms and constrain them in a well defined region. The

magneto-optical-trap (MOT) is a technique developed to simultaneously cool and trap

neutral atoms [Raab et al., 1987]. Using the MOT technique, it is able to prepare

samples of cold neutral atoms with a temperature of few microkelvins.

The cooling effect in the MOT is realized by overlapping three counter-propagating

and circularly polarized laser beams. In addition, the cooling beams must be red-

detuned with respect to an atomic transition. Due to the Doppler effect, an atom

moving in the overlapping region preferably absorbs the photons from the beam op-

posite to its motion. When an atom absorbs or scatters a photon, its momentum

changes by h̄k according to the law of momentum conservation. As the scattering is

random in all directions, the average momentum transferred to the atom by the emis-

sion process is zero. The net result is the slowing down of the atom in the opposite
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Figure 5-1: Principle of operation of magneto-optical trap. (Left): one-dimensional

view of the energy level of atoms located in the magnetic quadrupole field. The

degeneracy of excited sub-Zeeman states is lift off and their energy varies linearly

with the atomic position. The two counter-propagating lasers are circularly polarized

and red-detuned. (Right): three-dimensional view. Green lines indicate the magnetic

field lines created by a pair of anti-Helmholtz coils.

direction to the atomic motion, with an effective damping force that is proportional

to the velocity of the atoms.

Cold atoms gradually diffuse and eventually escape from the trapping region.

Hence, it requires a trapping mechanism to capture and contain the atoms. By intro-

ducing a magnetic quadrupole field with a center at the trapping region, the atoms

experience a position-dependent light-induced force. This mechanism is illustrated in

Fig. 5.1 for the case of J = 0↔ J = 1.

When the atoms are displaced, for example, to the right of the trap center, the

atomic transition shifts closer to resonance with the σ+ beam, which propagates to

the left, and further away from resonance with the σ− beam. As a result, the atoms

preferably absorb photons of the σ+ beam. The net effect is that the atoms are

pushed back to the opposite direction with a rate proportional to its distance from

the trap center.

The effective operation of the MOT relies on the tiny but repetitive momentum

kicks from the absorption of red-detuned photons. However, for atoms with high
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enough initial velocity, the transit time through the trap is not long enough for many

cooling cycles to happen. This is reflected through the capture velocity vc which is

defined as the maximum velocity of the atoms that transverse the trapping region

and still can be captured by the MOT. The capture velocity determines the cut-off

population of the thermal atomic beams that will be successfully trapped in the MOT.

The number of atoms in the MOT is related to the capture velocity and the trapping

volume (Vtrap) by a relation [Lindquist et al., 1992, Gattobigio et al., 2010]:

N ∝ vc
4V

2/3
trap (5.1.1)

An important experimental parameter that determines both vc and Vtrap is the waist

of the cooling beams (wm). For a configuration of three orthogonal MOT beams, we

can have an approximation that vc ∝
√
wMOT and Vtrap ∝ wm

3. As a consequence,

N ∝ wm
4, which clearly illustrates the importance of having a large beam waist for

the MOT cooling beams.

Optical setup

The cooling transition for the MOT in our setup is the closed cycling transition

5S 1/2, F=2 → 5P3/2, F=3 of the D2 line of 87Rb (see Fig. 5-4). In contrast to

the simplified picture shown in Fig. 5.1, the excited manifold of the D2 line consists

of closely spaced hyperfine levels. The atoms can be off-resonantly excited to 5P3/2,

F=2 and subsequently decay to F = 1 in the ground state, which is a dark state with

respect to the cooling transition. This spontaneous decay usually happens before the

cold temperature of the atomic cloud can be reached, and thus hinders the formation

of the MOT. Hence, we apply a repump laser to transfer the population of the atoms

back to the cooling cycle. The repump laser is resonant to the 5S 1/2, F=1 → 5P1/2,

F=2 transition of the D1 line at 795 nm. More details of the level scheme are shown

in Fig. 5-4.

The experimental setup is shown in Fig. 5-2. The cooling and the repump lasers

are diode lasers in the Littrow configuration, with frequencies stabilized to reference

cells of 87Rb atoms. The repump laser is locked to the cross-over of 5S 1/2, F=1

→ 5P1/2, F=1/2, and its frequency is shifted up to F=1 → F=2 using acousto-
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optic modulators (AOM) in a double-pass configuration. On the other hand, we

lock the cooling laser directly to the cooling transition using the modulation transfer

spectroscopy (a variation of the FM spectroscopy technique) [McCarron et al., 2008].

We detune the cooling laser using two single-pass AOMs in the +1 and -1 diffraction

order. The cooling and repump lasers are combined on a PBS and coupled to an

1-to-3 fiber beam splitter that delivers optical power to the three MOT beams . The

polarization of each output fiber of the fiber beam splitter is controlled by three-

paddle polarization controllers.

The large spacing between the cavity mirrors (11 mm) allows us to prepare the

MOT at the center of the near-concentric cavity. This removes the need for additional

complex setups to deliver the atoms to the cavity. This advantageous feature can be

exploited to increase the single-atom loading rate in future experiments. We employ a

MOT configuration with an angular separation of 20 degrees between the two vertical

MOT beams. The third MOT beam is orthogonal to the cavity axis and the two

vertical beams.

The cooling power is recycled by reflecting the MOT beams back to the fibers.

The MOT performance requires an intensity balance between the counterpropagating

cooling beams. Since the glass cuvette has a transmission of approximately 90% at

780 nm, the reflecting MOT beams lose about 9% of their optical power in comparison

to the incoming MOT beams. To compensate for this imbalance, we slightly focus

the returning MOT beams to waists of approximately 0.9 mm at the trapping region

such that the peak intensity of the two counterpropagating MOT beams is nearly

equal.

The frequency of the cooling laser is red-detuned by 1.6Γ = 10MHz, where Γ = 6

MHz is the spontaneous-emission rate of the D2 transition. The typical intensity for

each cooling beam is about 100 µW. The total optical power of the repump beams is

set to be one third of the cooling power.

The magnetic quadrupole field is realized by a pair of anti-Helmholtz coils. Due

to the compact size of the glass cuvette, the anti-Helmholtz coil can be designed with

a relatively small diameter of 50 mm and a spacing of 25 mm. The coil provides

a magnetic field gradient of 20 G/cm with a current of 1A and therefore little heat

generation, which is important to minimize temperature change of the cavity. In
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Figure 5-2: Schematic experimental setup of trapping single atoms in the near-
concentric cavity. A magneto-optical trap (MOT) of 87Rb is prepared at the cavity
focus. The two vertical MOT beams, indicated by red lines, form an angle of 20
degrees. Not shown is the horizontal cooling beam and the magnetic coils. The
coil axis is orthogonal to the plane of the paper. The trap laser couples to the
fundamental mode of the cavity to form an intra-cavity far-off-resonance dipole trap.
Single atoms are probabilistically loaded into the trap and coupled to the cavity mode.
The fluorescence light of the trapped single atoms collected into the resonant cavity
mode is spectrally filtered and coupled to a single-mode fiber which is attached to an
avalanche photodiode (APD).

addition, three orthogonal pairs of coils in a Helmholtz configuration are employed

to compensate stray magnetic fields.

The thermal atom source that loads the MOT is a rubidium dispenser (SAES NF

series) located 20 cm from the trapping region (see Fig. 5-3). We typically run the

dispenser at a heating current of 2.5A to load the trap. To verify that the location of

the MOT is at the cavity focus, we image the MOT on a camera placed at the top of

the setup. We observe that the MOT becomes unstable in the vicinity of the cavity

mode, which is resonantly driven by the probe laser. In addition, the cavity resonant
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transmission of a weaker probe beam is significantly reduced in the presence of the

MOT. Using these two observations as feedback, we can position the MOT in the

proximity of the cavity focus, which is necessary to achieve the optimal atom-cavity

coupling strength.

Figure 5-3: Schematic of a vacuum chamber for atom trapping experiments with
near-concentric cavities.

5.2 Intra-cavity dipole traps

Radiation pressure traps such as magneto-optical traps are excellent in preparing a

cold atomic ensemble with temperature in a range of several microkelvins. However,

the number of atoms in the MOT varies from run to run. The minimum attainable

temperature of the atomic cloud is limited by atomic recoils in random direction due

to the spontaneous emission [Lett et al., 1989]. Furthermore, the internal dynamics of

the atoms is strongly perturbed by interacting with the cooling beams on a time scale

of microseconds. For the purpose of quantifying the atom-photon coupling strength,

it is therefore preferable to switch off all near-resonant interactions with the trapped
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tions used for MOT cooling and MOT repump lasers.
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atoms except the cavity field, and weakly probe the atom-cavity system from the

cavity axis.

Another type of radiation forces that does not involve the absorption of light is the

dipole force, which is used in far-off resonant dipole traps (FORT). A dipole trap can

be experimentally realized in several ways. A common configuration is single-focus

trap consisting of a microscope objective or a high numerical aperture lens [Schlosser

et al., 2001, Tey et al., 2008]. In a single-focus dipole trap, a collimated Gaussian

red-detuned laser beam is focused to a micron-sized waist and forms an intensity

maximum to attract the atoms. These traps achieve a high confinement in the radial

direction. Another configuration is a one-dimensional optical lattice, where a pair

of counter-propagating of laser beams of the same polarization interferes to form a

standing wave [Bloch, 2005]. Due to the interference, the intensity at the antinodes

increases by four times.

Here, we employ a dipole trap formed by the cavity fundamental mode at 810

nm. This intra-cavity dipole trap has an advantage of increasing the trap depth by

a factor proportional to the cavity finesse. For the near-concentric cavity, the cavity

beam waist is on the order of few microns which would greatly enhance the trap

confinement in the radial direction. In addition, the boundary condition of the cavity

ensures the spatial overlap of the dipole trap and the probing field as they both couple

to the cavity fundamental modes.

The dipole force

One way to understand simply dipole force is to consider refraction of light by a

nearly-transparent objects. Its mechanism can be understood from a classical model

in which the atom is treated as a damped harmonic oscillator driven by a classical

radiation field. The classical model provides an intuitive way to understand the dipole

force and is sufficient to calculate the ground-state shifts and the scattering rate in

the low excitation regime. The maximum of the ground-state shift is interpreted

as the depth of the dipole trap. Calculation of excited-state energy shift requires

the perturbation theory. The full quantum approach with exact treatment of the

force fluctuation and momentum diffusion in the dipole trap can be found in [Cohen-

tannoudji and Dupont-roc, 1997].
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Unlike the radiation pressure the dipole force is a conservative force, and hence

its magnitude and direction can be derived from the gradient of the corresponding

potential energy. An atom interacting with the radiation field is classically modeled

as a driven harmonic oscillator (the Lorentz’s model). The electron of the atom is

treated as a point-like particle elastically bound to a fixed nucleus by a spring-like

force with a resonant frequency ω0 corresponding to the optical transition frequency.

In addition, there is a damping term Γ associated with the radiative decay due to the

charge acceleration. The driving term is the Coulomb force acting on the electron by

the electric field E(t) = E0e
−iωt of the incident polarized light1. Denote x(t) as the

displacement of the electron from the equilibrium position, the equation of motion of

the electron is

ẍ+ Γẋ+ ω2
0x = −eE(t)/me. (5.2.1)

The electric dipole moment of the atom is related to the displacement as d(t) = ex(t),

where e is the elementary charge. Consider only a small displacement of the electron,

to the first order approximation, the induced dipole moment responses linearly to

the driven electric field: d(t) = α(ω)E(t), where α(ω) is polarizability. Integration of

Eq. 5.2.1 yields the explicit expression for the polarizability,

α(ω) =
e2

me

1

ω2
0 − ω2 − iωΓ . (5.2.2)

The potential energy of the dipole interaction is:

Udip(r) = −
1

2
〈dE〉 = − 1

2ǫ0c
Re(α)I(r), (5.2.3)

where the brackets denote the time average over many oscillation periods of the

electric field, r is the position vector of the atom, and I(r) = 2cǫ0|E0|2 is the electric
field intensity.

The dipole force results from the gradient of the dipole potential

Fdip = −∇Udip(r) =
1

2ǫ0c
Re(α)∇I(r) (5.2.4)

1As the laser light is polarized, the electric field and the induced displacement of the electron can

be taken as scalar value in the basis of the polarization vector.
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The dipole force is only approximately conservative, as the atoms can dissipate the

energy by absorbing and scattering the photons. This photon scattering of atoms

in the dipole trap sets the limit for the trap lifetime. Due to the limited available

excited states in the two-level system, each absorption event of the atoms must be

followed by an spontaneous re-emission of a photon. As a result, the scattering rate

is determined by the absorbed optical power divided by the energy per photon of the

driving field

Rsc =
Pabs(r)

h̄ω
=
〈ḋE〉
h̄ω

=
1

h̄ǫ0c
Im(α)I(r). (5.2.5)

The separate contribution of the imaginative and the real part of the polarizability in

Eq.5.2.4 and 5.2.5 consolidates our initial view on the nature of the dipole force and

the radiation pressure. In particular, Re(α) gives a measure of the refractive index

of the atomic medium. Its variation extends over a large range of frequency and has

an asymmetrical lineshape across the resonant atomic frequency. This reflects the

dispersive nature of the dipole force. On the other hand, Im(α) has a Lorentzian

profile with a peak on resonance and is related to the absorption coefficient.

For large detuning ∆ = ω − ω0, the dipole potential and the scattering rate can

be approximated as

Udip(r) =
h̄Γ2

8I0

(

1

ω − ω0

+
1

ω + ω0

)

I(r), (5.2.6)

Rsc(r) =
Γ3

8I0

(

1

ω − ω0

+
1

ω + ω0

)2

I(r), (5.2.7)

where I0 = 1.67 W/cm2 is the saturation intensity of the D2 transition of 87Rb

atoms. Making the rotating-wave approximation (∆ ≪ ω0), we can neglect the

counter-rotating term ω + ω0, and Eq. 5.2.6 and 5.2.7 are simplified to:

Udip(r) =
h̄Γ2

8I0∆
I(r), (5.2.8)

Rsc(r) =
Γ3

8I0∆2
I(r). (5.2.9)

The trap potential scales as I(r)/∆ while the scattering rate scales as I(r)/∆2.

Therefore, in experiments, it is preferable to have a large detuning to minimize the
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scattering rate given a certain trap depth. Another observation is that the direction

of the dipole force depends on the sign of the detuning ∆. This leads to the division

of the dipole trap into two classes: red-detuned traps and blue-detuned traps. For

red-detuned trap (∆ < 0), the dipole potential is negative, and the atoms are trapped

at the local minima of the trap potential, which coincide the maximum intensity of

the trap laser. Above resonance (∆ > 0), the dipole force repels the atoms to the

locations where the intensity is minimum.

Without deriving the explicit expression for the dipole trap potential, its sign

can be inferred from the phase relationship between the driven harmonic oscillator

and its driving field. Below resonance, the oscillator follows the driving field, hence

the product 〈dE〉 ≃ 〈sin(ωt)〉2 is positive. Above the resonance, the oscillator has

a π phase lag behind the driving field. As a result, 〈dE〉 ≃ 〈sin(ωt) sin(ωt+ π)〉 =
−〈sin(ωt)〉2 is negative.

Before moving on to the application of the dipole trap for the near-concentric

cavity, there is a caveat about the above derivation that worth mentioning. We have

so far described the dipole force in a classical framework, utilizing only Newton’s laws

and the Coulomb force. One may ask at which conditions the classical model will

break down and the full quantum treatment is required. In fact, if we are interested in

only the averaged values and limits ourself in the low atomic excitation regime, which

is valid for the far-off-resonant dipole trap, the expressions for the dipole potential

and the scattering rate in the two frameworks are identical [Grimm et al., 2000].

However, the estimation of the decay rate Γ is different. In the classical treatment,

the decay rate Γ is calculated from the Lamor’s formula:

Γclassical =
e2ω2

0

6πǫ0mec3
. (5.2.10)

In quantum theory, the radiative decay of the electron can no longer be treated as

a continuous process resulting from the acceleration of the the charge particles, but

a discrete jump between two energy-levels. The radiative decay rate is then called

the spontaneous emission rate, and determined by the matrix element of the dipole

moment between the ground and the excited states:

Γ =
ω3
0

3πǫ0h̄c3
|〈e|µ|g|〉|2. (5.2.11)
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Figure 5-5: (a) Energy level of atoms interacting with a red-detuned laser. The
atomic energy is shifted according to the laser-intensity profile. The ground-state
atoms are attracted to the maxima of the intensity, while the excited-state atoms are
repelled from it. (b) Atoms from the MOT can be loaded to the dipole trap when
their kinetic energy kBT is below the trap depth Udip.

Another limit of the classical theory is its incapability to estimate the dipole potential

when the atom is not in the ground state. The dipole potential that experienced by the

excited atoms has the opposite sign compared to those values calculated for the ground

state (see Fig. 5-5). This can be explained by using the dressed-state formalism and

numerically calculated with the perturbation theory where the dipole potential is

the energy shifts of the atomic eigenstates (AC Stark-shift) [Cohen-tannoudji and

Dupont-roc, 1997].

Calculation of the trap depth

In this section, we calculate the dipole trap depth and the scattering rate of the intra-

cavity dipole trap. First, we derive the intra-cavity power from the cavity transmission

under the ideal condition of no cavity losses. The relation can be obtained from the
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more general equations of optical resonators [Saleh and Teich, 2001]. Here, we choose

a simpler way which relies on an intuition that on resonance the cavity is an optical

storage. We depict the optical beam as a stream of infinitesimally thin optical pulses.

When an optical pulse couples to the cavity, it will be contained in the cavity with an

average lifetime of τcav. At a given time and at a transverse plane inside the cavity,

the total optical power is the summation of the power of all optical pulses which have

been circulating in the cavity. As a result, the intra-cavity optical power is enhanced

by a factor of αe which is equal to the number of circulating pulses during τcav :

αe =
duration of a photon stays in the cavity

the round trip time
=

τcav
2L/c

. (5.2.12)

Substituting τcav = 1/2πγ, we obtain:

αe =
c

4Lπγ
=

F

2π
, (5.2.13)

where F is the cavity finesse. This yields the relationship between the cavity trans-

mission power and the intra-cavity power:

Pintra = 2αePt =
F

π
Pt , (5.2.14)

where the factor of two comes from the fact that we only measure the transmission

from one side.

The spatial profile of the dipole potential of the intra-cavity trap follows the spatial

intensity distribution of the cavity fundamental mode

Udip = −U0
w2

0

w2(z)
exp

[

−2(x2 + y2)

w2(z)

]

cos2
(

2π

λ
z

)

, (5.2.15)

with the cavity beam waist w0, and the beam radius w(z) = w0(1 + z2/z2R)
1/2.

The trap depth U0 is given by Eq. 5.2.8 as

U0 =
h̄Γ2

8I0∆
Imax , (5.2.16)

76



where the peak cavity intensity is

Imax =
4Pintra

πw2
0

=
4F

π2w2
0

Pt . (5.2.17)

The factor of four accounts for the standing-wave pattern: the electric field at the

antinode of the cavity mode has twice the amplitude, and hence four times of the

intensity compared to the running wave case. Combining these results, we can relate

the dipole trap depth to the cavity finesse and beam waist

U0 =
h̄Γ2

2I0∆

F

π2w2
0

Pt . (5.2.18)

The scattering rate is obtained in a similar way

Rsc =
Γ3

2I0∆2

F

π2w2
0

Pt . (5.2.19)

Experimental setup

The dipole trap laser is simultaneously used to lock the near-concentric cavity. The

frequency stabilization of the trap laser was discussed previously in chapter 4. Here,

we provide more details which are relevant to the single-atom trapping experiment.

We couple the linearly polarized trap laser to a fundamental transverse mode

of the near-concentric cavity. With a typical input power of 2.6 mW, we observe

a cavity transmission of about 100µW. Using the methods describe chapter 3, we

measure a cavity finesse of 100 and a cavity coupling efficiency of 22% at 810 nm.

As the dipole trap is linearly polarized, all of the Zeeman states of the ground states

have an equal trap depth. Figure. 5-6 shows the trap potential of the near-concentric

cavity operated at the critical distance d = 1.7µm corresponding to a beam waist of

4.1µm. From Eq. 5.2.19 we predict that the trap depth is 27MHz and the scattering

rate is 11 events per second.
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Figure 5-6: Intra-cavity dipole potential of the near-concentric cavity. The cavity
length is set at 1.7 µm away from the concentric point. The intra-cavity power is
11 mW. The wavelength was stretched by a factor of 100 in z direction to display
individual trapping sites.

5.3 Detection of single atoms

Cold atoms from the MOT are probabilistically loaded into the intra-cavity dipole

trap when their kinetic energy is well below the trap depth. As the dipole trap and the

resonant cavity mode share the same spatial mode, the trapped atoms would scatter

photons from the MOT cooling beams to the cavity. The near-resonant scattering

rate is proportional to the position-dependent coupling strength g0(~r). Hence, to

determine if the single atoms are loaded into the cavity, we monitor and analyze

the atomic fluorescence into the cavity mode at 780 nm wavelength. We couple the
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Figure 5-7: Typical trace of detection events during the atom loading process. The
sudden increase of fluorescence indicates the entering of an atom into the dipole trap.

cavity transmission of 780 nm to a single-mode fiber, which is subsequently detected

by an APD (see Fig. 5-2). To account for the light shift induced by the trap, the

cavity length is set so that the resonance frequency is 22MHz higher than the atomic

transition ( ∆ca = 22MHz). While operating the MOT with the presence of the dipole

trap, we detect the coupling of individual atoms to the fundamental cavity mode

by the sudden increase of photoevents at the APD. The photoevents are recorded

and time-tagged with a timestamp device. On the other hand, the sudden decrease

indicates the escape of the atoms out of the trap. Figure 5-7 shows a typical time

trace during the loading process exhibiting a telegraph signal which is characteristic

for single atom loading. The background is mainly due to cavity mirrors’ shields

scattering the MOT beams into the cavity mode.

Even though the cavity beam waist is small (ω0 ≈ 4.1 µm), we are not operating

the dipole trap in a regime of collisional blockade that ensures a single-atom occupancy

at any trapping event [Schlosser et al., 2002]. The standing-wave pattern of the cavity

mode creates many independent trapping sites at antinodes. The large number of the

trapping sites increases the probability of loading more than one atom. We estimate
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the number of trapping sites ntr as the number of antinodes in the interval of two

Rayleigh ranges of the cavity mode

ntr ≈
[

4zR
λ810

]

=

[

4πw2
0

λ2810

]

, (5.3.1)

where the the square brackets denotes the nearest integer function. For the cavity

with a beam waist of 4.1µm, there are about 250 trapping sites. However, we can

operate the MOT at a regime such that the frequency of the loading is low (less than

one event per second). Hence, the probability of simultaneously loading more than

two atoms in the center region of the cavity is small. Figure 5-8 shows samples of

fluorescence of trapped atoms. We posit that it is unlikely for more than one atoms

to enter and escape the trap simultaneously. This leads us to attribute the loading

of single atoms to samples that have a clear telegraph signal with a sharp transition

between two levels. For comparison, the loading of two atoms is also shown in Fig. 5-

8(b). Based on this classification, we estimate the probability of a successful loading

of single atoms to be approximately 30%.

Measurement of atom lifetime

After loading the atoms, we switch off the cooling and repump light. The quadruple

magnetic field is also switched off to disperse the MOT. We wait for a period of τ and

switch on the cooling lasers to detect the presence of the trapped atoms. Figure 5-9

shows the survival probability as a function of τ . We determine a 1/e lifetime of

230(30) ms from an exponential fit.

80



0

50

100

150

200

 0  50  100  150  200

(b)

p
h

o
to

e
v
e

n
ts

 i
n

 1
0

m
s

time (ms)

0

50

100

150

200

250

 0  50  100  150  200

(a)
p

h
o

to
e

v
e

n
ts

 i
n

 1
0

m
s

time (ms)

Figure 5-8: Samples of fluorescence of trapped atoms in the cavity mode. (a)
The fluorescence of single atoms exhibits a clear telegraph signal characteristic. (b)
Representative traces of short-lifetime atoms (blue) and two atoms (red).
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Figure 5-9: Lifetime of single atoms in the dipole trap without cooling light for a
duration τ . The solid line represents an exponential fit with a 1/e lifetime of 230(30)
ms.
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Chapter 6

Determining the atom-cavity

interaction

In this chapter, we cover an experiment to determine the interaction strength between

a single 87Rb atom and a fundamental transverse mode (LG00) of the near-concentric

cavity via a direct spectroscopic measurement. For this purpose, the cavity length is

chosen such that the frequencies of the transverse modes are not degenerate, prefer-

ably with a transverse mode spacing larger than the cavity linewidth of 99(1)MHz.

Therefore, we choose the cavity length to be 1.7 µm shorter than the critical point

at which the transverse mode spacing is 112(18)MHz. We stabilize the cavity such

that a transverse LG00 mode is near-resonant with the 5S 1/2, F=2 → 5P3/2, F=3

transition. We discuss methods of probing the atom-cavity system in section 6.1. To

obtain the cavity spectrum, we need to detune the probe laser frequency in a range

of at least one to two times of the cavity linewidth, while the probe power must

be maintained constant. Such detuning range is not technically trivial as conven-

tional methods of using acoustic optical modulators (AOM) mostly support a range

from 50MHz for a single pass configuration to 100MHz for a double pass configu-

ration. We then present two techniques for detuning the laser frequency in a range

of ±100MHz with constant optical power. Next, we describe an optical setup and

an experimental procedure to obtain the atom-cavity spectrum. The experimental

procedure consists of a control scheme to stabilize the near-concentric cavity in all

directions and an experiment sequence of trapping and probing atoms. Subsequently,
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we present and analyze the transmission and reflection spectrum in section 6.5. We

observe a two-peaked structure of the cavity transmission and reflection spectra from

which we determine an atom-cavity coupling strength g0 = 2π × 5.0(2)MHz and the

single-atom cooperativity C0 = g20/(2κγ) = 0.084(4).

6.1 Methods of probing the atom-cavity interac-

tion

The radiative coupling between an atom and a cavity field alters the energy structure

and the dynamic response of both systems. Consequently, either steady-state response

(frequency domain) or transient response (time domain) of the atom-cavity system

can be probed to determine the atom-cavity coupling constant g0. In the transient

response method, a short probe pulse excites either the atom or the cavity, and the

subsequent decay of the cavity field is recorded. In the strong coupling regime, the

cavity decay shows an oscillation in response to a sudden reduction of the cavity field,

in contrast to the otherwise exponential decay of the empty cavity. This oscillation of

the cavity field is a physical manifestation of a reversible energy exchange between the

cavity mode and the atom at the rate of 2g0. Significant ringing can be observed only

when more than one oscillation occurs before the energy of the system is dissipated to

the environment. This is equivalent to the fundamental consideration of the condition

for strong coupling that the coherent interaction must dominate the other irreversible

decay channels. Probing either the atom or the cavity in this regime yields similar

information about the properties of the composite atom-cavity system.

In the regimes of weak and intermediate coupling, the presence of one system per-

turbs the other. Similar to the free-space scenario, the atom emission into the cavity

mode is an exponential decay but with a modified rate; the emission rate Γcav can

be either enhanced or suppressed depending on the relative size of cavity parameters

(g0, κ, γ). Such modification was predicted by [Purcell et al., 1946, Kleppner, 1981]

and observed in [Goy et al., 1983]. In the broad cavity limit where κ≫ γ, the decay

rate Γcav is given by

Γenh =
2g20
κ

. (6.1.1)
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Therefore, the coupling strength can be induced from the linewidth of the atomic

emission spectrum [Heinzen et al., 1987].
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Figure 6-1: Modifications of the cavity field by a single atom observed via two
different probing methods: (a) the cavity transmission spectrum and (b) the decay of
the cavity field. In the strong coupling regime with (g0, κ, γ) = 2π × (20, 11, 3) MHz
(blue solid lines), evidence of the normal modes are a distinctive doublet of the
spectrum and the ringing of the cavity decay. In contrast, there is lineshape splitting
but no ringing for the case of (g0, κ, γ) = 2π × (12, 50, 3) MHz (solid red lines). For
comparison, the empty-cavity case is shown and indicated by dashed black lines.

On the other hand, the steady-state response can be obtained with spectroscopic

measurements. A weak coherent probe beam is coupled to the cavity, and the cav-

ity transmission is recorded as the probe frequency is tuned across the atom-cavity

resonance. A manifestation of a significant atom-cavity coupling is a modification of

the cavity spectrum. In the case of strong coupling, the cavity transmission spectrum

exhibits two distinct Lorentzian lineshapes centered at normal mode frequencies ω+

and ω−. Hence, the atom-cavity coupling strength can be induced from the spectrum

as 2g0 = ω+−ω−. However, the observation of the splitting does not infer the normal-

mode ringing observed in the transient response. In other words, the appearance of

the doublet is only a necessary condition for the strong coupling.

The transient response method requires probing the cavity at only one frequency

detuning. This has the advantage of a short measurement duration, and is favorable
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to experiments that are challenging to be kept stable over long periods of time, such

as with the near-concentric cavity in this work. However, in the weak and intermedi-

ate coupling regimes, the effect of the atom-cavity coupling on the cavity field is less

evident in the time domain than in the frequency domain. After the mirror contam-

ination (see section 3.4), the optimal atom-cavity parameters of the near-concentric

cavity are predicted to be (g0, κ, γ) = 2π × (12, 55, 3)MHz. A theoretical prediction

of the transmission spectrum and cavity field decay for these parameters is shown

in Fig. 6-1 (red solid lines), in comparison to the strong coupling case (blue solid

lines) and the empty-cavity case (dashed black lines). In the transient response, us-

ing Eq. 2.2.3, we predict the cavity decay rate only slightly increases from 3.18 ns

for the empty-cavity case to 3.35 ns for the coupled atom-cavity case; whereas the

splitting can be observed clearly in the cavity spectrum. Therefore, a spectroscopic

measurement was selected to determine g0 in our experiment.

6.2 Wide-range detuning of laser frequencies

The near-concentric cavity has a linewidth of 99MHz. Hence, the probe frequency

detuning has to be on the order of ±100MHz with respect to the atom-cavity reso-

nance. Besides, the optical power of the probe laser that couples to the cavity must

be constant across the detuning range. This can be a technical challenge for the laser

system involved. In this section, we describe two solutions to this technical problem.

6.2.1 Detuning by AOM

Experiments frequently employ acoustic-optic modulators (AOM) to detune laser

frequencies. As the AOM has a limited operating bandwidth, the diffracted optical

power drops significantly at large detuning frequencies. Here, we employ a feedback

algorithm to keep the optical power of the diffracted beam constant across the detun-

ing range. With an improvement in the speed of the control loop, this method can

also be used to continuously stabilize the lasers power

The probe laser frequency ωp is locked to the 5S 1/2, F=2 ←→ 5P3/2, F=3 of

the D2 line in 87Rb using the transfer modulation spectroscopy [McCarron et al.,

2008] (ωp = ωa). Also, the near-concentric cavity length is set to be near-resonant
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Figure 6-2: Schematic drawing of a double-pass AOM setup for large detuning of laser
frequencies. The optical power after the single-mode fiber is detected and compared
to a set point. A control program adjusts the RF power to the AOM to minimize
their difference. Lenses have a focus of 150 mm, and their positions orthogonal to
the laser beam can be adjusted to compensate for the beam deflections. Red arrows
indicate laser beams; black triangles indicate the flow of electronic signals. BB: beam
blocks.

with this atomic transition (ωc ≈ ωa). To detune ωp, we employ two AOMs in a

double-pass configuration with +1 and -1 order outputs. The optical layout of one

AOM setup is shown in Fig. 6-2. After the AOM setups, the probe laser frequency is

ωp = ωa + ωRF1− ωRF2 ≈ ωc + ωRF1− ωRF2. The probe-cavity detuning is controlled

by setting the difference of the AOM frequencies (ωRF1 − ωRF2). A single-mode

optical fiber separates the two AOM setups to decouple their optical alignments.

An algorithm adjust the RF power applied to the AOM to minimize the difference

between measured values and a setpoint. We choose the setpoint low enough such

that the RF power does not exceed the saturation power to prevent thermal damages

of the AOMs. The ratio of the standard deviation and the average of the diffracted

optical power shows a value of σP ≈ 2% for one double-pass AOM setup (see Fig. 6-

3). Also shown in the figure is the measured optical power without the compensation

algorithm. Using two double-pass AOMs with the compensation algorithm, the probe

laser frequency can be detuned in a range of±100MHz with σP ≈ 2%. A disadvantage

of this setup is that the overall diffraction efficiency is 6% after two double-pass AOMs.
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Figure 6-3: Detuning laser frequency by AOMs. The optical power of the first
order diffracted beams coupled to a single mode fiber is monitored as the RF driving
frequency is detuned. (a) The case of one AOM in the double-pass configuration.
The deviation of the diffracted optical power is about 25% without the compensation
algorithm (blue trace), and reduced to about 2% with the compensation algorithm
(red trace). (b) Optical output after two double-pass AOM. A deviation of about
2% in the diffracted optical power is observed for a detuning range of ±100 MHz.

6.2.2 EOM sideband locking

The sideband-locking technique presented in section 4.1.1 can be applied to detune the

probe laser frequency. The optical setup of the probe laser is similar to the lock laser

setup, except that we lock the first order sideband to the atomic transition instead to

the transfer cavity (ωp+ωsb = ωa). We choose the sideband frequency to be centered

at 400MHz (ωsb = 400+ δω), and shift up the frequency of the unmodulated beam of

the probe laser by 400MHz using a double pass AOM. Consequently, the frequency

of the unmodulated beam that couples to the near-concentric cavity can be set as

ωp = ωa + δω. Using this technique, we can obtain the detuning range of more than
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200MHz. Figure 6-4 shows the cavity reflection and transmission spectrum obtained

by detuning the probe frequency. The good agreement between the measured cavity

spectra and the fits to Lorentzian lineshapes suggests that the optical power of the

probe beam is constant across the detuning range of 240MHz.
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Figure 6-4: Normalized cavity reflection (a) and transmission (b) spectrum. The
cavity length is stabilized while the probe beam frequency is detuned using the EOM
sideband locking technique. Solid lines are fits based on Lorentzian lineshapes. η is
the cavity coupling efficiency, and Tmax is the cavity resonant transmission.

6.3 Atom-light interaction setup

6.3.1 Optical setup

We operate the near-concentric cavity at the critical distance of 1.7 µm (d = 2Rc −
lcav = 1.7 µm). The cavity length is set to be resonant with the shifted atomic

transition (∆ca = ωc − ωa = 0). The probe beam is linearly polarized and coupled
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Figure 6-5: Optical setup. A near-resonant 780 nm probe laser couples to the cavity
to characterize the light-atom interaction. The transmitted and reflected light is
coupled into single-mode fibers connected to avalanche photodetectors. The cavity
length is stabilized close to the concentric length. The intracavity field at 810 nm
provides also a far-off-resonant standing-wave dipole trap for the atoms. BS: beam
splitter with 70% reflectivity; DM: dichroic mirror; PZT: 3D-piezo actuator stack;
PD: photodiode; MOT: magneto-optical trap; D1(2): avalanche photodetectors.

to a fundamental mode of the cavity. We detune the probe frequency to obtain the

cavity reflection and transmission spectra (see Fig. 6-5). The probe laser power is set

low so that the intra-cavity photon number is less than one. Hence, the excitation of

the atom-cavity system can be limited to the first excitation manifold of |n = 1,±〉
(see Fig. 2-1).

The transmission and reflection of the probe field are coupled into single-mode

fibers connected to avalanche photodetectors (APDs) with a detection efficiency of

48.7(1)% for D1 and 45.2(1)% for D2. The atomic fluorescence from the MOT cooling

beams into the cavity mode is also collected into the same fibers and detected at these

two APDs. The probe and trap lasers are combined at the input and separated at

the cavity transmission by dichroic mirrors. Several interference filters at 780 nm are

used to block 810 nm light from reaching the detectors.

6.3.2 Measurement sequence

As outlined in chapter 4, the near-concentric cavity is sensitive to the transverse

misalignment which can lead to several undesired effects in a spectroscopy experiment,

such as reduction of cavity transmission, excitation of transverse modes, and shifting
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of positions of trapped atoms. To measure g0 accurately, the cavity alignment and

cavity length must be stabilized throughout the measurement of the atom-cavity

spectrum.

Thus, preceding to the experimental stage of loading and probing single atoms, we

introduce an automatic control scheme to stabilize the resonant transmission and the

resonant frequency of the cavity. The scheme consists of two verification stages (see

Fig. 6-6): one for the resonance lock and one for the transverse lock. Each verification

stage measures a cavity parameter and compares it against a predefined threshold.

Depending on the result of the comparison, compensation actions can take place to

minimize the difference between the parameter and the threshold. There are three

possible outcomes for each verification stage:

• Pass: The comparision output is True and no adjustment is required.

• Adjust: The comparision output is False. An algorithm is activated to adjust

the cavity.

• Fail: The adjustment can fail for two reasons: (1) the updated comparision

output remains to be False even after the adjustment, and (2) there is no im-

provement on the cavity parameter after a certain number of adjustment steps.

In the following, we describe each experimental stage shown in Fig. 6-6 with more

details.

Transverse lock

In this stage, the transverse stabilization of the cavity is carried out (see Sec. 4.2).

The stabilization algorithm triggers if the resonant cavity transmission is below the

transmission of the optimally aligned cavity. To avoid the “infite looping” of the

mirror’s position, we limit the number of adjustments steps to be around 50, which is

5 times of the average steps taken to optimize the transmission. The algorithm will

stop if it exceeds the allowable number of steps. In addition, we set the frequency of

the transverse lock stage high enough that the cavity transmission rarely drops below

90%.
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Figure 6-6: Experimental control scheme. The transverse alignment and resonance
of the near-concentric cavity are verified at two stages: the resonance lock and the
transverse lock. The main experiment proceeds only when both stages pass without
adjustment.

Resonance lock

We observe that the resonant frequency of the near-concentric cavity slightly changes

as we adjust the transverse position of the cavity mirror. We attribute this coupling

between the radial and longitudinal movement of the cavity to the misalignment

between the optical cavity axis and the z-axis of the piezo movement. We address this

problem with an algorithm that detects an offset of the cavity resonance and corrects

for that offset accordingly. First, the cavity spectrum is obtained by detuning the

probe frequency. Next, we determine the cavity frequency ωc2 from a fit of the cavity

spectrum to the Lorentzian function, and compare it against the atomic transition

ωa. If ωc2 = ωa, the control scheme terminates the resonance lock and proceeds to the
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next stage. Otherwise, the cavity frequency need to be shifted by ∆c = ωc2 − ωa. As

the cavity length is stabilized to the lock laser, the cavity frequency can be changed by

adjusting the lock laser frequency. Therefore, to set the cavity back on resonance, the

control scheme detunes the lock laser frequency by −∆c via the sideband’s frequency

(see section 4.1).

Atom loading and spectrum measurement

In these stages, we implement an experimental sequence that traps and probes single

atoms (see section 6.3.3 for more details). The process of loading atoms and probing

the cavity at one frequency detuning takes about 10 minutes for about 200 single-

atom events; whereas a typical transverse drift of the near-concentric cavity is on the

order of 30 minutes (see Fig. 4-7). This leads to a need to stabilize the cavity in

the same amount of time. Therefore, we repeat the probing for three different probe

frequency detuning before repeating the verification stages all over again.

Reset

In the event that any of the verification stages fails to proceed, the reset stage sets

all experimental parameters to initial values. This setting is to prevent the control

system from driving the piezo actuator to extreme positions.

6.3.3 Experimental sequence of trapping and probing

After the verification stages, the experiment enters the stage of loading and probing

single atoms. The probing is implemented with a measurement sequence shown in

Fig. 6-7. The photoevents detected at the APD D1 caused by the fluorescence of the

atoms trigger the experimental sequence. Subsequently, the cooling beams and the

magnetic field are switched off to disperse the MOT. This is followed by a sequence

of alternating 1 ms pulses of probing and 1 ms pulses of laser cooling. The cooling

pulses are employed to mitigate the heating of the atoms caused by the probing

pulses. In addition, the detected photoevents during the cooling cycle are used to

check presence of the atoms in the trap. The optical power of the dipole trap remains

constant through out the experiment.
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Figure 6-7: Timing sequence of trapping and probing single atoms. After the detec-
tion of single atoms, the quadrupole magnetic field and repumping beam are switched
off to disperse the MOT. This is followed by an experimental cycle that alternates
between 1 ms of probing the cavity transmission, and 1 ms of laser cooling. A probe
pulse with 50 ms duration is used to measure the empty-cavity transmission and
reflection.

6.4 Resonant probing

One of the most prominent effects of atom-light interaction is the extinction of res-

onant optical fields by a single atom [Gerhardt et al., 2007, Tey et al., 2008]. This

effect can be observed in the atom-cavity system if the detunings are less than the

normal-mode splitting (∆c,(a) ≤ g0). In the context of cavity QED, the extinction

ratio can be defined to be the ratio between the atom-cavity transmission and the

resonant transmission of the empty cavity. Figure 6-8 shows detected photo-events

at the APD D1 at resonance (∆c,(a) = 0). An individual atom is loaded into the

cavity mode and triggers the measurement sequence at t = 0. In the presence of the
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trapped single atom, the fluorescence signal increases while the cavity transmission

of the probe field reduces. At t ≈ 100 ms, the atom escapes from the trap, and the

signals simultaneously revert to the values of the empty cavity.
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Figure 6-8: Effect of single atoms on cavity transmission. An experimental sequence
with a duration of 200 ms consists of interleaving 1 ms pulses of cooling (red/upper)
and probing (blue/bottom). Error bars represent one standard deviation determined
from the measured count rates, assuming Poissonian counting statistics.

We obtain the measurement for the transmission from many loading events of

which we post-selected those where a single atom is observed (see section 5.3 for the

post-selection mechanism). We observe a maximum extinction ratio of 39%. We

normalize the data to the steady-state cavity transmission after the atoms escape

from the cavity mode. The average of cavity transmission can be modelled as

Tavg = 1− T0exp(−t/τp), (6.4.1)

where τp is the lifetime of atoms and T0 denotes the reduction of the transmission

immediately after the triggering. From a fit of the cavity transmission to Eq. 6.4.1,

we determine τp to be 9.2(7) ms.
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Figure 6-9: Average of the cavity transmission when single atoms are loaded into the
cavity mode. The probe frequency is tuned to the atom-cavity resonance to observe
the highest extinction of the transmission. The average of the resonant extinction
ratio is determined to be 39% from a fit indicated by the solid line.

6.5 Normal mode splitting

The single atom–cavity coupling strength g0 can be determined from the cavity trans-

mission and reflection. Since our objective is to probe the linear response of the com-

posite atom-cavity system, we restrict the intra-cavity intensity of the probe field to

be much lesser than the critical photon number n0. In this condition, the atom is

not saturated by the cavity field and hence the dynamical evolution is restricted to

the excitation of the first manifold (see Eq. 2.2.6). For a weak coherent beam, the

coefficients for intensity transmission T (ω) and reflection R(ω) are given by

T (ω) =

∣

∣

∣

∣

κT (i∆a + γ)

(i∆c + κ) (i∆a + γ) + g20

∣

∣

∣

∣

2

, (6.5.1a)

R(ω) =

∣

∣

∣

∣

1− 2κT (i∆a + γ)

(i∆c + κ) (i∆a + γ) + g20

∣

∣

∣

∣

2

, (6.5.1b)

with a cavity field decay rate through each mirror κT = Tπc/lcav [Reiserer and Rempe,

2015].

The atom-light interaction is revealed in the reflection and transmission spectrum
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obtained by tuning the frequency of the probe laser. When an atom is present, the

spectra show the onset of the normal-mode splitting (Fig. 6-10, red circles). For each

probe detuning, approximately 250 single-atom events are collected. From a fit of

the transmission spectrum to Eq. 6.5.1a, we obtain an interaction strength g0 = 2π×
5.0(2)MHz, and a frequency offset ωoff = ωc − ωa = 2π × 3.4(3)MHz between cavity

and atomic resonance. We attribute this frequency offset, which is equal to 3.4% of

the cavity linewidth, to the drifting of the lock laser frequency. The amplitude of the

fit function T (ω) is set to the independently determined maximum transmission of the

empty cavity. From g0, the cavity linewidth 2κ = 2π × 99(1)MHz, and the natural

transition linewidth 2γ = 2π × 6.07MHz, we obtain the single atom cooperativity

C0 = g20/(2κγ) = 0.084(4).
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Figure 6-10: Onset of the normal-mode splitting in the a) reflection and b) transmis-
sion spectrum when an atom is trapped in the FORT. Red solid lines are fits based
on Eq. 6.5.1a. For comparison the empty cavity reflection/transmission is shown in
gray.

The reflection spectrum is analyzed in a similar way by fitting to Eq. 6.5.1b. For
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this, we obtaing0 = 2π×4.6(4)MHz, the frequency offset ωoff = 2π×4.4(7)MHz, and

the reflected power far away from the atom/cavity resonance. The fits of Eq. 6.5.1a-

6.5.1b to the transmission and reflection reproduce the observed values well (Fig. 6-10,

solid lines), and lead to similar values for the atom-cavity coupling constant g0 and

the frequency offset ωoff.

The experimentally obtained value for g0 is lower than expected for a clean two-

level atom from the cavity geometry g0 =
√

3λ2cγ/(4πV ) = 2π × 12.1MHz. We

attribute this partly to the fact that in this experiment, the atom is prepared by

the MOT beams in a random spin state mF of the 5S 1/2, F=2 manifold before

the transmission is probed with a linearly polarized probe field. Averaging over the

corresponding Clebsch-Gordan coefficients, we estimate that the atom-cavity coupling

should be a factor
√
2 larger for a circularly polarized probe field driving an atom

prepared in the 5S 1/2, F=2, mF=2 on a transition to the 5P3/2, F=3, mF=3 state.

Another factor that may affect the coupling strength is the location of the single

atoms in the cavity mode. The single atoms are loaded to random antinodes of the

standing-wave dipole trap. At these different loading sites, the atoms have different

interaction strength with the resonant cavity mode (see Fig. 6-11). This aspect can

be taken into account by including a position-dependent factor to coupling strength

g(~r) ≡ g0|ψ(~r)|, where ψ(~r) = sin kz exp [−(x2 + y2)/w2
0] is the cavity-mode function.

Hence, averaging over many loading events results in an effective coupling strength

of g = g0
∑

ψ(~ri)/N ≤ g0, where N is the number of loading events.

To assess the theoretical dependence of g on the atomic positions, we perform a

Monte-Carlo simulation that assigns the atoms to random trapping sites. To simplify

the model, we treat the atoms as point-like particles. In addition, we restrict the

potential loading site to be inside a range of 2zR about the cavity center. Outside of

the Rayleigh range, the dipole trap intensity reduces by more than four times; trap

depth is consequently less than 300 µK. Therefore, the probability of loading atoms

outside of the the Rayleigh range is minimal and can be excluded from our model.

The antinodes of trap and probe cavity modes are assumed to be coincident at the

cavity center. A simulation of N = 2000 trials shows that the majority of the atoms

strongly couple to the cavity (see Fig. 6-12). This can be intuitively explained based

on the observation that the cavity-mode function along the cavity axis varies little
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Figure 6-11: Demonstration of variation of the atom-cavity coupling strength. Single
atoms are loaded into the bottom of the intracavity dipole trap formed by a 810-nm
standing wave (Top). At the bottom is the corresponding atomic positions in the
lattice of the resonant cavity mode at 780 nm.

around the its maximum. An analogy is observed in the probability distribution of

classical harmonic oscillator; this system spends more time near its classical turning

points, where it moves more slowly. We run the simulation with 200 sets with each

set contains N = 200 loading events. We find the average of the simulated coupling

strength to be g = 0.64g0 = 2π × 5.4MHz, which is in good agreement with the

experimentally determined g0 = 2π × 5.0MHz.

To experimentally verify this hypothesis in our experiment, we turn to the analysis

of the fluorescence of the atoms. The fluorescence of the atoms collected by the cavity

depends on the atom positions and hence atom-cavity coupling strength [Kuhn et al.,

2002]; the faster the atoms scatter the cooling light into the cavity the stronger their

coupling to the cavity is. In support of this assertion, we post-selected the atoms into

three types based on their detected fluorescence Pfl in an unit of counts/ms: Pfl1 ≥ 20

, 17 ≤ Pfl2 ≤ 20, and 13 ≤ Pfl3 ≤ 17. The post-selected transmission spectra are

shown in Fig. 6-13. We determine the atom-cavity coupling strength of each type by

fitting the spectra to Eq. 6.5.1a: g1 = 2π × 5.6(2)MHz, g2 = 2π × 5.2(2)MHz, and
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Figure 6-12: Simulation of variation of the atom-cavity coupling strength for N=2000
atom loading events. (a) Atoms are randomly assigned to different trapping sites.
This results in the distribution of the normalized coupling strength g/g0 shown in
(b).

g3 = 2π × 4.9(2)MHz. The post-selected atoms of the band 1 show an increase in

g0 of 12%. However, it still below the theoretical limit of g0 = 2π × 8.5MHz for a

linearly probe field driving an unpolarized atom. We attribute this discrepancy to

other factors that potentially reduce the coupling strength such as the temperature

of the atoms and the overlapping between the trap and the resonant cavity mode,

which can be addressed in near future experiments.
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Figure 6-13: Cavity transmission spectra for three types of single-atoms indicated
by red dots: Pfl ≥ 20 counts/ms, blue squares: 17 ≤ Pfl ≤ 20 counts/ms, black
triangles: 13 ≤ Pfl ≤ 17 counts/ms. The solid line is predicted spectrum for the
effective coupling strength g. The dash line is a theoretically predicted spectrum for
the maximum coupling strength.
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Chapter 7

Conclusion and outlook

7.1 Conclusion

High finesse cavities with sub-mm length provided a testbed to investigate atom-

light interactions in a regime that classical models and perturbation theories are no

longer valid. Apart from fundamental studies, simple quantum information tasks

were demonstrated using these cavities as individual building blocks [Weber et al.,

2009, Ritter et al., 2012, Reiserer, 2014]. The demonstrated systems have a typical

size of one to few atoms interacting with one cavity mode. To fully harness the power

of quantum technologies, the system size must be scaled up by either increasing the

number of qubits per block or by connecting individual blocks into a coherent net-

work [Kimble, 2008]. As a result, there is an ongoing research quest to explore other

cavity designs which are easier to scale, or allow to integrate cavity QED with other

physical platforms [Hunger et al., 2010, Nguyen et al., 2017, Cox et al., 2018]. This

thesis contributes to this quest through the experimental demonstration of sizable

atom-cavity coupling in near-concentric cavities. To conclude, let me briefly assess

what has been achieved, what technical improvement can be made, and what research

directions can be taken in the near future.

A great deal of effort of our research team was dedicated to developing techniques

of stabilizing and positioning cavity mirrors in the near-concentric regime. As shown

in chapter 3, we observe that the transverse positions of two cavity mirrors need to

be aligned to an accuracy of less than 10 nm. This requirement of alignment makes
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traditional methods of cavity construction and stabilization unsuitable. Through a

combination of cavity mirror design and the technique of stabilizing the cavity in three

dimensions, we demonstrate that the near-concentric cavity can be operated reliably

at the last resonance length with a 780 nm laser, which corresponds to a stability

parameter g = −0.999962(2). Furthermore, the cavity linewidth (δν = 22MHz) and

the coupling efficiency (η = 38%) of the fundamental mode are similar to the design

values.
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Figure 7-1: Atom-cavity coupling strength obtained in some existing experiments
with Fabry-Perot optical resonators. The respective theoretical predictions for cou-
pling strength in other experiments are represented by red dots; [1] Kimble’s group
[McKeever et al., 2003], [2] Chapman’s group [Fortier et al., 2007], [3] Axel Kuhn’s
group [Barrett et al., 2018], [4] Rempe’s group [Neuzner et al., 2016]. Coupling
strength obtained in the near-concentric cavity presented in this thesis: [5] experi-
mental observation, [6] theoretical prediction.

The second part of the thesis focuses on trapping single atoms in the cavity. To

date, trapping single neutral atoms in the cavity has required a sophisticated optical

setup to trap and deliver an atom to the cavity [Maunz et al., 2005, Fortier et al.,

2007]. In our work, making use of a large spacing between the cavity mirrors, we

can prepare a MOT cloud at the center of the cavity. By utilizing the lock laser as
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an intra-cavity dipole trap, we observe the fluorescence of trapped single atoms in

the cavity and determine the probability of loading single atoms from the MOT to

the cavity to be 30%. Without any additional cooling methods, we observe a trap

lifetime of 230 ms.

It may be surprising that any sizable atom-cavity coupling can be achieved with

a cavity length of millimeters. In this thesis, the cavity has a length of 11mm, and

by operating the cavity in the near-concentric regime, we observe a doublet of the

atom-cavity transmission spectrum, from which we determine a coupling strength

g0 = 5.0(2)MHz. This coupling strength is comparable to what can be obtained with

sub-mm length optical cavities (see Fig. 7-1). However, the unexpected contamination

of the mirrors increased the cavity linewidth to 99(1)MHz over time. This reduced

the single-atom cooperativity from an ideal value of 0.96 to a measured value of

0.084(4) for unpolarized atoms. Though the strong coupling regime has not been

reached in this experiment, we expect that a single-atom cooperativity above unity

can be reached by modestly increasing the finesse to F = 1000 and performing the

probing on a cyclic transition.

7.2 Outlook

7.2.1 Rapid deterministic loading of single atoms

With the advances in laser-cooling techniques, there has been considerable progress

in trapping individual atoms in the optical cavities. Starting with a MOT cloud,

experiments in cavity QED often rely on a probabilistic process of loading single atoms

into the cavity from either free-falling atoms or an atomic fountain. By reducing the

atom loading rate, the mean number of atoms inside the cavity can be limited to

less than one. However, Poissonian statistics of the loading process indicates that the

probability of having more than one atom does not vanish. Deterministic loading of

single atoms is necessary for some applications of cavity QED system such as single

photon sources.

The single-atom conveyor belt is a method that transports a desired number of

atoms into an optical cavity [Fortier et al., 2007]. In this technique, a few atoms

trapped from a high-gradient MOT are transferred to and stored in an optical trap
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outside the cavity. The number of the atoms is monitored based on atomic fluo-

rescence. The atoms gradually evaporate until one atom remains in the trap, which

triggers the process of delivering the single atom to the cavity. As the certainty in the

number of atoms was ensured by adopting a strategy of “waiting” and monitoring,

this may hinder the atom loading rate, which is necessary to employ the cavity QED

for practical applications.

Near-concentric cavities permit another approach. By setting the cavity length

closer to the critical length, the cavity beam waist can be reduced to a value that

makes the collisional blockade possible for individual lattice sites [Schlosser et al.,

2002]. In the collisional blockade regime, the number of trapped atoms is sub-

Poissonian; either zero or only one atom is trapped. Together with heralding this

one atom, the deterministic loading of single atoms in the cavity can be achieved.

In addition, operating the MOT inside the cavity accelerates the loading process by

eliminating the need to transport single atoms to the cavity.

7.2.2 Deep optical dipole traps

Deep optical traps allow precise localization of atoms and a long atom lifetime in

the trap [Neuzner et al., 2015]. In the presence of heating processes induced by

scattering photons, the atoms are evaporated out of the trap after N ≈ 2mU0/p
2

scattering events on average, where m is the atomic mass, U0 is the trap depth, and

p is the photon momentum. In experiments that employ intra-cavity dipole traps,

laser-induced damaging and heating of the mirrors set a limit for the maximum trap

depth. In near-concentric cavities, the quick divergence of the cavity mode leads to

a large beam waist on the cavity mirrors. This reduces the laser intensity incident

on the mirrors for a given intra-cavity optical power. In addition, small cavity beam

waists of few micrometers can be employed to implement a microscopic intra-cavity

dipole trap with high transverse confinement.

7.2.3 Single atoms coupled to multiple cavity modes

Most experiments in cavity QED so far have focused mainly on single mode cavities.

On the theoretical side, inclusion of more than one cavity mode is predicted to lead
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to stronger atom-light interactions and a few intriguing effects. Examples include

an increase in the capture range of cavity cooling and an enhancement of resolution

of atom-cavity microscopes [Hood et al., 2000, Vuletić et al., 2001]. Recently, cavity

QED with more than one mode was realized with different polarization modes induced

by birefringence of mirror coatings [Puppe et al., 2004]. In this case, the number of

modes is inherently limited to two. Atom-cavity coupling with more than two modes

has been demonstrated with an atomic ensemble in confocal cavities [Wickenbrock

et al., 2013]. However, in the experiments with confocal cavities, the single-atom

coupling strength is sub-MHz, and only transverse modes with the same parity are

degenerate. On the other hand, near-concentric cavities with frequency-degenerate

transverse modes can be employed to investigate the interaction of single atoms with

several electromagnetic field modes in the strong coupling regime.

7.2.4 Ion traps in near-concentric cavities

The Nobel prize in physics in 2012 was shared by Serge Haroche and David J.

Wineland for their development of cavity QED and trapped ions, respectively. The

two new experimental platforms allow precise manipulation of individual quantum

systems with different advantages. Trapped atomic ions have long coherence times,

and their electronic states can be detected with almost 100% quantum efficiency, us-

ing quantum shelving methods. Entanglement of multiple ions in the same trap is

achieved via coupling the internal states of ion and collective motional modes. On the

other hand, cavity QED provides an efficient light-matter interface. To combine these

two platforms for future applications such as quantum network nodes and quantum

simulation with larger number of qubits, a single ion must be trapped inside the cavity

and strongly coupled to a single cavity mode. Despite the potential applications, the

strong coupling regime with ions has not been achieved yet. This is mainly because

trapping an ion in an optical cavity is technically challenging. The dielectric mirror

surfaces can accumulate charge and hence affect the trapping potential. In addition,

excess space in the vicinity of the cavity is required to set up electrodes. Therefore,

optical cavities with sub-mm lengths are not considered and other types of cavities

must be explored for this application. Fiber cavities reduce the amount of dielectric

material in the vicinity of the ions and offer small mode volumes to obtain the strong
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coupling regime [Steiner et al., 2013]. Here, near-concentric cavities provide both

strong coupling strength and large ion-dielectric separation, which is about 5.5mm

for the cavity presented in this thesis.
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