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Abstract

We aim to use a spatial light modulator to minimize the focal spot

size of a laser beam by pre-correcting the optical aberrations. The

beam waist radius, taken as a figure of merit, is measured using the

knife-edge method before and after the optimization. In this thesis,

we report on the setting up of lenses and a razor blade mounted onto

a piezo-driven stage to measured the beam waist radius. Optimiza-

tion algorithm based on Zernike polynomials manages to reduce the

waist radius. The reconstruction of beam profiles shows that the light

intensity increases at the end of optimization, which confirms that the

focusing is improved.
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1 Introduction

Atom-light interaction has received a considerable amount of interest in recent

years for its essential role in different quantum communication and computation

protocols [1]. One of the major stumbling blocks in these protocols lies in achieving

efficient transfer of quantum information from a photonic qubit to an atomic qubit.

The canonical approach to increase the interaction strength of an atom with

incoming light is to place a high-finesse cavity around the atom [2, 3]. By having a

large cavity finesse or a small mode volume, the electrical field strength of a single

photon is greatly enhanced by multiple reflections between two highly reflective

mirrors, resulting in a high atom-field coupling strength. Although this method

has seen tremendous success over the years, working with such cavities is still

a technological challenge. Most cavity quantum electrodynamics experiments in

the optical domain are employing cavities based on delicate dielectric coatings

which are technically hard to fabricate [4]. Besides, there are also challenges in

stabilizing the cavities against vibrations, which makes it experimentally difficult

to scale up such schemes to the desired quantum networks.

An alternative approach is to consider an atom-light interface in free-space in

which the atom interacts with the full continuum of field mode spectrum. The

concept of this technique is simply to strongly couple a single atom to incoming

light field with the help of a large numerical aperture (NA) lens [5]. Motivated

by the fact that the absorption cross section of an atom is of the order of the

square of the optical wavelength, which is close to a diffraction limited spot size

of a focusing lens, studies are well under way [6]. A recent theoretical research on

this matter predicts that it is possible to reach deterministic absorption of single

photons for dedicated focusing geometries [7].

In the majority of the experiments, interaction strength is characterized by
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Table 1: State of the art of coupling single atoms and photons in free space.
Experimental system Year Extinction Coupling efficiency

Trapped ion [9] 1987 ≤0.1%
Quantum dot [11] 2007 12%

Molecule in matrix [10] 2008 22%
Trapped atom [15] 2008 10%

Trapped ion (parabolic mirror) [13] 2014 7.2%
Trapped atom [12] 2017 36.6%

Trapped ion (parabolic mirror) [14] 2017 13.7%

transmission measurements. The total field measured is a superposition of the

recollimated incident field and the field scattered by the atom. There is a phase

difference between these two fields; hence we will see destructive interference which

leads to an extinction of the beam. For a numerical aperture of one (focusing from

half solid angle) and an incoming field resembling dipole radiation, complete ex-

tinction in the forward direction is predicted [8]. Some of the important milestones

of extinction measurements are recorded in Table 1. The first transmission spec-

trum of a single atom was observed for a 198Hg+ ion. The absorption probability

of the probe photons in that experiment was estimated to be about 2.5×10−5 [9].

Recently performed experiments on single molecules and semiconductor quantum

dots reported a signal contrast up to 22% [10, 11]. Substantial attenuation of the

forward traveling beam has been reported occasionally, the maximum extinction

achieved was about a factor of 5 below the optimum value, until an experiment

in which the focusing optics covers most of the solid angle (adapting from 4π mi-

croscopy technique) demonstrates an extinction of around 36.6% [12]. Similarly,

exceptionally high coupling efficient of a trapped 174Yb+ ion and light focused

with parabolic mirrors are reported when illuminating with from half and nearly

full solid angle [13, 14].

In connection with the absorption of single photons, the crucial role of the
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solid angle has been highlighted above. However, the interaction strengths ob-

served with these configurations have fallen short of their theoretically expected

capabilities. It has been suspected that the thermal motion of atom in free space

could be a limiting factor for atom-light interaction. A study has shown that only

a moderate improvement of interaction strength is promised by cooling to the

motional ground state of atom [16]. We are also limited by the imperfections of

optical elements in the experiment. In general, the efficiency of photon absorption

is proportional to the extent to which the incoming light mode resembles an elec-

tric dipole wave. However, the real lenses are not ideal lenses; as a consequence,

the aberrations of the focusing optics lead to distorted spherical wavefront, spread

out foci and weak atom-light interaction.

The general strategy is to analyze the focusing lens and to apply aberration

corrections to the incoming beam. Since the beam profile at the focal point is

studied using the knife-edge method, we do not load atom between the aspheric

lenses. A scheme for correcting the aberrations based on beam waist measurement

is applied using a spatial light modulator (SLM). A control algorithm is employed

to obtain a spatial phase pattern that can minimize the beam waist near focus.

The beam profile at the end of optimization is carefully studied.

This thesis is organized as follows. In Section 2, the model used to describe

laser beam is given. In Section 3, we present the measurement of beam waist

radius using the knife-edge technique. Our experimental setup is also discussed,

including the waist radius and M2 factor that we obtained at the focus for different

incident beam waists. In Section 4, we discuss how wavefront aberrations are being

corrected. Results of our optimization scheme are also shown. Finally, Section 5

contains summarizing remarks.
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2 Paraxial Gaussian Beam Model

We describe the Gaussian beam model used in our experiment. The passage of

the Gaussian beam through a perfect lens and the approximations applied are

also discussed. Particularly, we obtain the beam waist radius at the focal point

as a function of incident beam waist radius.

2.1 Propagation of Gaussian Beams

In the heart of our study, we consider a linearly polarized, monochromatic, radially

symmetric Gaussian laser beam with electric field described by

~E(r, z) = ~E0
w0

w(z)
exp
(
− r2

w(z)2

)
exp
(
− i
(
kz + k

r2

2R(z)

))
, (1)

where r and z represent the radial and axial component from the beam in cylin-

drical coordinate; k is the wave number; w(z) is the beam radius at position z,

defined as the radius at which the electric field amplitudes drop to 1/e of its axial

value; w0 represents the waist radius; R(z) is the radius of curvature of the beam’s

wavefront at position z.

The variation of beam radius w(z) along the propagation direction is given by

w(z) = w0

√
1 +

(
z − z0
zR

)2

, (2)

with the Rayleigh length zR =
πw2

0

λ
where λ denotes the wavelength of laser beam.

z0 is the location where the beam radius is at its minimum. The evolution of

radius of curvature R(z) is given by

R(z) = (z − z0)
[
1 +

(
zR

z − z0

)2 ]
. (3)
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One can see that the geometric dependence of a Gaussian beam’s electric field

is governed by w(z) and R(z), which are both functions of position (z − z0) and

Rayleigh length zR (or waist radius w0).

2.2 Focusing with Lenses

For the purpose of our study, we suppose that the Gaussian beam traverses a

perfect lens with focal length f , i.e., we assume the lens is aberration free and not

affected by the aperture size. When the propagation direction of light deviates

only slightly from the optical axis, the light path can be expressed with only the

lowest order terms of divergence angle. This small angle approximation is the

paraxial approximation. We work with low to moderate focusing in the experi-

ment, which is the regime where parabolic approximation still holds. Hence, the

change in electric field after passing through a lens is denoted by

~E ′ = eikr
2/2f ~E, (4)

where ~E ′ is the electric field immediately after a lens. Here we use prime to

represent electric field properties in the image space. One important feature of

~E ′ is that it remains Gaussian, with w′ = w and 1
R′

= 1
R
− 1

f
where w′ and R′ are

the beam radius and the radius of curvature right after the lens; w and R are the

beam radius and the radius of curvature right before the lens.

The beam radius is at its minimum near the focus. By manipulating Eq. 2 we

are able to relate beam waist at the lens win and beam waist at the focus w0:

win = w0

√
1 + (

fλ

πw2
0

)2.
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Focusing lens

2win

2wo

Figure 1: Gaussian beam passing through a lens. win: waist radius right before
the lens. w0: waist radius at the focal point. The two radii are related by Eq. 5

Near the focus, w0 and λ are on the same order while f � w0. The expression

above can be further simplified, which gives

win '
fλ

πw0

. (5)

One has to take note that polarization is not taken into account in previous

derivations. In fact, the electric field was treated as a scalar field. In the concrete

example of a beam which is initially linearly polarized, immediately after the lens,

the polarization needs to be modified since each ray has a focusing radial com-

ponent. As light with different polarizations does not simply add up, a vectorial

focusing theory is required. Nevertheless, studies show that the beam is elongated

in the polarization direction and we measure beam waist in the same direction in

the experiment to not underestimate beam size [17].
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3 Knife-edge Measurement

In this section, we describe the scanning knife-edge technique that is used to

measure the waist radius of light beam. The experimental arrangement is also

shown. We vary the input beam waist radii and measure the resulting focused

beam waist at the focal point.

3.1 Basics of Knife-edge

There are several methods for beam characterization, including the knife-edge,

point scan, convolution scan and slit. Both point scan and convolution scan re-

quire fluorescence labeled latex beads and fluorescent sheets which are not adapt-

able to the automated waist optimization experiment [18]. For the slit method,

the beam is probed with a small slit of width ∆. The Gaussian profile is con-

structed from the amount of light transmitted through the small slit. This method

requires the slit width to be a factor of 20 smaller than the waist radius, which is

practically too small for our experiment (∆ ' 40nm) [19]. Here we have decided

to use the knife-edge scanning technique, which is a well known process that is

capable of performing submicron waist measurements [20].

The operation principle of this method is based on an opaque knife-pad or

razor-blade which is line-scanned through the transverse cross-section of a beam

under study. While scanning, the power of the transmitted light beam that is

not blocked by the knife-pad is recorded by a detector. The beam profile can be

tomographically reconstructed from the photo-current curves resulting from scans
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performed under different directions. The transmitted power is

Pz(x) =
ε0
2

∫ x

−∞

∫ ∞
−∞
| ~E|2dx′dy′

= P0

{1

2
+

1

2
erf
[√2(x− x0)

w(z)

]}
. (6)

z

x

Razor

Photodiode

Figure 2: Simplified scheme for the measurement of laser beam radius using the
knife-edge technique. The shadow caused by the razor is left blank. x-axis:
perpendicular to propagation direction. z-axis: along beam propagation direction.

In experiment, even if the razor blade completely blocks the beam, the pho-

todiode still measures a small background signal. Hence, we modify the previous

equation (Eq. 6) to

P (x) = P0

{1

2
+

1

2
erf
[√2(x− x0)

wz

]}
+ Cp, (7)

where Cp is a constant that can be predetermined when no light goes through.

3.2 Experimental Setup

The schematic diagram of our optical setup is shown in Figure 3. The heart

of our setup consists of two identical aspheric lenses of NA = 0.55, f = 4.51

mm (Thorlabs C230) mounted in a confocal arrangement. The linearly polarized

Gaussian laser beam is focused by the first lens (test lens) then fully collected by

the second lens (collimating lens). We choose to work with 780nm laser because
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this wavelength drives the closed transition between 52S1/2, F=2, mF = −2 and

52P3/2, F=3, mF = −3 of 87Rb. A sharp razor blade, mounted onto a piezo-

driven motorized translation stage (P-611.3 NanoCube PI XYZ Piezo Stage) is

placed near the focus to block the beam partially. The blade moves transversely

in the focal place (x-direction) to cut the beam, and along the beam propagation

direction (z- direction). The transmitted light is detected behind the lenses using

a p-i-n photodiode (Hamamatsu S5107).

780nm laser
Test lens

f=4.51mm f=4.51mm

Collimating lens

Photodiode

Razor

Motorized

translation

stage

Mirror

Mirror

Photodiode

780nm laser

BS

Figure 3: Schematic depiction of the knife-edge technique. A photodiode measures
the transmitted beam cut by a razor blade. The position of the blade is calibrated
using an interferometer. BS: Beamsplitter.

3.3 Waist Measurement

To extract beam waist parameter with the knife-edge method, the change in

transmitted power of the laser beam is measured as the razor is being scanned

across the beam. Each of such single knife-edge cut is scanned across a 10.6µm

range at intervals of 0.75µm along x-direction. The beam size is then determined

by fitting the calibrated data with the modified transmitted power error function

(Eq. 7). An example is illustrated in Figure 5. Approximately 30 of these single
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Figure 4: Typical interferometer fringes data for a single knife-edge cut along
x-direction. The best fit gives α = 0.754± 0.003. Blue dots: data measured by a
photodiode, red line: fit to Eq. 9.

x-directional cuts are recorded at intervals of 0.23µm along the beam propagation

direction centered around the focal point. To obtain the minimum beam waist,

the waist measurements from each of these cuts have to be fitted with Eq. 2.

However, real laser beams are not ideal Gaussian beams. To account for the

beam divergence led by the non-Gaussian modes, the beam quality factor M2

needs to be introduced. One modifies the waist evolution (Eq. 2):

w(z) = w0

√
1 + (

z − z0
zR

M2)2. (8)
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Figure 5: Typical knife-edge data for a single knife-edge cut along x-direction, the
best fit gives w = 1.28± 0.01µm. Blue dots: data measured by a photodiode, red
line: fit to error function (Eq. 7).
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The M2 term here is defined as the ratio of measured and ideal beam divergences.

For a perfect Gaussian beam, M2 = 1. Physical beams generally have M2 > 1.

One of such fit is shown in Figure 6.

At the early stage of the experiment, the beam waist radius measured using

the knife-edge method was always two to three times larger than the theoretical

prediction for an ideal Gaussian beam. M2 measured was consistently smaller

than 1, approximately 0.7. We found out that it was due to the PI piezo stage not

moving the razor at the right scale. Thus, The position of razor blade is calibrated

using an interferometer. Along with the razor blade, a mirror is attached to the

opposite side of the translation stage. The mirror plays the role as a reflector for

one of the interferometer arms which provides an accurate position calibration of

the blade in the direction perpendicular to the beam, as shown in Figure 3.

The photodiode reading is recorded as the razor is being scanned across the

beam and is fitted with

V (x̃) = A+B cos(
2π

λ
2αx̃+ φ), (9)

where x̃ is the input position. A, B, α and φ are fitting parameters. α is the

calibration factor that gives the real position αx̃. The same calibration is also

conducted along the z-direction.

3.4 Setting up Telescopes

We would like to examine the field near the focus for different focusing parameters

u, defined as

u =
win
f
. (10)
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Figure 6: Beam radius near focal point, the best fit gives the waist radius and
M2, which are determined to be w = 1.066 ± 0.002µm and M2 = 1.133 ± 0.006.
Blue dots: fitted waist along x-direction, red line: fit to waist evolution (Eq. 8).
Error bars represent one standard deviation of propagated fitting uncertainties.

For this, we have chosen different input waists while keeping the focal length of

test lens f = 4.51mm fixed.

A schematic outline of our experiment is shown in Figure 7. A laser beam is

delivered from single mode fiber and collimated with a triplet fiber optic coupler

(Thorlabs TC18FC-780) which outputs a beam with waist radius of 1.96mm. To

manipulate the input waists, a telescope consisting of two planoconvex lenses with

focal lengths f1 and f2 in confocal arrangement is placed before the aspheric lenses

to (de-)magnify our beam. The four settings that were used in the experiment
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780nm laser

Test lens

f=4.51mm f=4.51mm

Collimating lens

Photodiode

Razor

Motorized

translation

stage

Mirror

Mirror

Photodiode

780nm laser

BS

Telescope

Single mode �ber

Triplet collimator
Polarizer

Figure 7: Schematic depiction of the knife-edge measurement with a telescope
introduced. The magnification of the telescope decides the incident beam waist.

Table 2: Details of the initial settings in our experiment.
Telescope setting Magnification win (mm) u wf (µm) Clipping (%)

f1 = 100mm, f2 = 50mm 0.5 0.98 0.217 1.14 10−4

f1 = 125mm, f2 = 75mm 0.6 1.18 0.261 0.95 0.01
f1 = 100mm, f2 = 75mm 0.75 1.47 0.326 0.76 0.26
f1 = 100mm, f2 = 100mm 1.0 1.96 0.435 0.57 3.5

are summarized in Table 2.

Due to finite clear aperture (CA), the beam profile at the focal point is no

longer a Gaussian, but a convolution of Airy pattern and Gaussian. The aper-

ture effect is more severe if the beam radius is close to aperture size; and it is

characterized by clipping, defined as
∫∞
Rap
| ~E(r)|22πrdr/

∫∞
0
| ~E(r)|22πrdr (fraction

of power blocked by the aperture), where Rap is the aperture radius. For beam

sizes in this experiment, the clipping due to finite CA of lens is low. It is also

summarized in Table 2.

To obtain a flat wavefront right before the test lens, we autocollimate the beam:

one lens of the telescope is attached on a translation stage that moves along the

beam propagation direction. A mirror is placed right before the aspheric lenses in

order to back-couple the beam into single mode fiber. The amount of light being
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back-coupled into the fiber is measured with a photodiode and the telescope length

is adjusted such that the confocal arrangement maximizes the back-coupling. The

tip and tilt of the two mirrors which deliver the beam through the aspheres are

also tuned to maximize goodness of error function fit as well as to minimize M2.

Figure 8 shows the measured waist radius and M2 for four focusing parameters

(different input waist) using knife-edge method. In general, the measured waist

radii are larger than those predicted using paraxial Gaussian model, especially for

a larger focusing parameter u. We also see that M2 becomes larger as focusing

parameter u increases. There are a few possible reasons for this behavior. First,

as the input waist gets larger, it becomes more comparable with the clear aperture

of test lens (2RCA = 5.07 mm). From Table 2 we can see that there are significant

clippings when focusing parameter u is greater than 0.3; hence, we can expect the

beam to be less Gaussian for larger focusing parameters. Besides, the beam can

also be distorted by aberrations present in the optical system. The setup contains

many elements, none of which are perfect. These deformations of optical elements

cause aberrations in the beam. It is of our interest to study if the waist radius

can be further reduced if the aberrations are corrected.
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Figure 8: Waist radius and M2 as a function of focusing parameter u. Red dots:
data measured with the knife-edge technique. Black solid line: theoretical results
for a paraxial ideal Gaussian beam. Error bars represent one standard deviation
of 10 repeated measurements. Error bars in top panel are smaller than symbol
size.
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4 Waist Optimization

We aim to minimize the focal spot size by pre-correcting the optical aberrations

using as spatial light modulator (SLM). To this end, we vary the spatial phase

pattern on he SLM and measure the beam waist using the knife-edge method.

4.1 Spatial Light Modulator

In this section, we introduce a device, called a spatial light modulator (SLM) which

can alter the phase of laser beam spatially, and use it to pre-correct the aberrations

of the optical system. In our experiment, we use a LCD-based reflection spatial

light modulator (SLM) from Meadowlark Optics XY P512L series. On the SLM,

there are 512 × 512 = 262144 active pixels. Each pixel can modify phase up to 2π.

Before any additional phase is applied to the SLM, it functions like a mirror. To

modify the phase, the polarization of the input beam must be linear and horizontal

relative to the SLM. We use a polarizer to ensure the corect polarization of the

light. Hence, the SLM must be introduced after a polarizer, as illustrated in

Figure 9

To describe the phase pattern uploaded to the SLM, we introduce the set of

Zernike polynomials. The phase pattern is expanded in terms of Zernike polyno-

mials.
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f=4.51mm f=4.51mm

Collimating lens
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Figure 9: Schematic depiction of the knife-edge measurement with a SLM in-
troduced. A phase pattern is uploaded to the SLM to pre-correct the wavefront
errors. BS: Beamsplitter. SLM: Spatial light modulator.
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4.2 Zernike Polynomials

Mathematically, the Zernike polynomials (or Zernike modes) form a basis of poly-

nomials that are orthogonal on a unit disk. By definition, each of these Zernike

modes is represented with two integer numbers {n,m}. There are two classes of

Zernike modes: even and odd. We can write the even modes as Zm
n and the odd

modes as Z−mn ; in polar coordinate, their expression is given by

Zm
n (ρ, φ) = Rm

n (ρ)cos(mφ), (even modes)

Z−mn (ρ, φ) = Rm
n (ρ)sin(mφ), (odd modes)

Rm
n (ρ) =

n−m
2∑

k=0

(−1)k(n− k)!

k!(n+m
2
− k)!(n−m

2
− k)!

ρn−2k, (11)

where n,m are nonnegative integer, n ≥ m and m = n, n−2, n−4, ... (n−m must

be even). In this experiment, we convert the two indices n and m to a single-index

mode number j to facilitate the enumeration. The relation is given by

j = 1 +
n(n+ 2) +m

2
.

In general, the polynomials are a standard basis for the description of optical

aberrations with the various terms of Zernike expansion corresponding to common

aberrations and misalignment such as tip, tilt, defocus, astigmatism, coma and

spherical aberrations [21, 22]. Table 3 contains information about the first six

Zernike modes.
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Table 3: First six Zernike modes. The colour of phase pattern represents a phase
of 0 (blue) to π (white).
Mode number j {n,m} indices Polynomial Aberration type Phase visualization

1 {0,0} 1 Piston

2 {1,-1} 2ρ sinφ Vertical Tilt

3 {1,1} 2ρ cosφ Horizontal Tilt

4 {2,-2}
√

6ρ2 sin2φ Oblique Astigmatism

5 {2,0} 3(2ρ2 − 1) Defocus

6 {2,2}
√

6ρ2 cos2φ Vertical Astigmatism
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4.3 Gradient Search Algorithm

The additional phase mask applied to the SLM Φ can be expressed as a linear

combination of different Zernike terms:

Φ =
N∑
i=1

aiZi, (12)

where ai is the weight of i-th Zernike mode. Since it is practically impossible to

go through countably infinite number of Zernike expansions, the search space is

restricted to encompass N terms.

Waist minimization is an optimization problem; we are looking for the optimal

weights of each of the Zernike terms given by

arg min
{ai}Ni=1

w(Φ).

We have performed a gradient search algorithm in which the weights of Zernike

modes are varied one at a time to find a solution. The scheme can be summarized

as follows: without any additional phase being applied, SLM plays the role of a

flat mirror. A knife-edge measurement is performed (a full measurement includes

nx = 9 single knife-edge cuts along x-direction (perpendicular to optical axis) at

different z position along the propagation direction), the minimum waist radius

is recorded. After initialization, the weight is varied one by one starting from

mode i = 1 with a weight step size ∆a of ±0.2 (1 corresponds to 2π phase), for

each new weight the waist is measured and recorded along with the best weights.

The next iteration is based on the best weights of previous iterations. When the

search reaches the last mode i = N , the following iteration starts from mode i = 1

again. The algorithm completes after two full cycles.
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Figure 10: Optimized waist radius as a function of iteration steps. The initial
waist radii are shown in Figure 8. Error bars represent one standard deviation of
propagated fitting uncertainties.

The parameter N in the search algorithm is important because if N is too

small, SLM might not be able to compensate for certain aberrations; but if N

is too large, which means higher search space dimension, it takes longer time to

complete the algorithm. N = 10, 20, 36, 45 and 91 have been tested by comparing

their convergence after two full cycles. We found that when N ≥ 36, the algorithm

converges to same waist after two full cycles, which implies that Zernike term Zi

is much less significant for i > 36. N = 10 and 20 do not bring the waist down as

much as N = 36; thus we keep N = 36 fixed for the rest of the discussions.
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Figure 11: Waist radius and M2 as a function of focusing parameter u. Black solid
line: theoretical prediction for a paraxial ideal Gaussian beam. Red dots: data of
beam waist when SLM performs as a flat mirror. Blue dots: data of beam waist
at the end of waist optimization. Error bars represent one standard deviation of
10 repeated measurements. Error bars in top panel are smaller than symbol size.

4.4 Results and Discussions

Figure 10 demonstrates the results of gradient search optimization to minimize

beam waist for different focusing parameter u. All of the four optimization runs

follow the same trend; the waist radius reduces drastically within the first 10

iterations, then the improvement becomes quite moderate. The beam waist is

close to convergence during the second cycle since the waist change is actually

smaller than the fit error (iterations range between 37 and 72).

The characteristics of the corrected beam for different focusing parameter u

are also illustrated by Figure 11. The beam waist decreases significantly in all

23



Figure 12: Contour plot of phase patterns that yield the smallest waist radius
near focus at the end of optimization for different magnifications. The colour
represents a phase of 0 (white) to π (blue).
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of the four cases, which demonstrates improved focusing with the SLM. Here we

observe two different optimization behaviours. For magnification 1.0 (u = 0.435),

the beam waist reduces while maintaining its Gaussian profile (M2 stays rather

close to 1.0) . On the other hand, contrary to our expectation, in the case of

small magnifications (u = 0.217 and u = 0.261), the algorithm does not solely

apply wavefront correction for aberrations (which should yield optimized points

near the black line). The scheme has actually managed to bring the waist radius

of the first two points (magnification = 0.5 and 0.6) below the diffraction limit

of a paraxial beam traversing ideal lens. The fairly large value of M2 suggests

that the SLM has actually deformed the Gaussian beam to achieve exaggeratedly

small beam waist. The phase pattern applied onto the SLM for each focusing

parameter u is plotted in Figure 12.

We want to confirm that the light intensity at the focal spot does increase at

the end of optimization. Thus, the beam profile along x-direction is reconstructed

from the discrete gradient of photodiode reading with respect to x-position of the

razor near the focal point. Figure 13 shows the beam profile reconstructed for

different magnifications. We observe approximately 30% improvement in light in-

tensity for magnification = 0.5 and 0.6. For larger magnification, the improvement

is less obvious.
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Figure 13: Beam profile reconstructed from the discrete gradient of photodiode
reading. The intensity is normalized with respect to the peak of beam profile
before optimization. Red dots: light intensity before the waist optimization. Blue
dots: light intensity at the end of waist optimization.
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5 Conclusion and Ongoing Work

We have demonstrated that focusing of laser beam can be improved using a SLM.

The focal waist radius w0 and beam parameter M2 before and after the optimiza-

tion are measured and compared. For small focusing parameters, the optimized

beam waist radii are smaller than the theoretical predictions for a collimated

Gaussian beam at the expense of having larger M2. The intensity profile recon-

structed shows 30% improvement in light intensity of the optimized light for small

focusing parameters.

Currently, the waist radius is obtained from a single knife-edge cut across the

beam along one direction. To maximize the light intensity at the focal point, we

need to take into account both transverse directions on the focal plane. In the

near future, we will implement a scheme that minimizes the focal spot size based

on the waist radii along the two transverse directions using a SLM. Finally, we

will extend the scheme to optimize atom-light interaction efficiency in the setup

with trapped atoms.
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