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Abstract

In this thesis, we present a method of achieving a diffraction-limited

focal spot size when a collimated laser beam is focused down with a

high NA lens (NA = 0.55, f = 4.51 mm). We use a spatial light mod-

ulator to correct for optical aberrations due to the focusing optics. We

analyze the transverse beam profile at the focus of the high NA lens

using the knife-edge method. The beam waist radius, peak intensity,

and beam cross-sectional area are taken as the figure of merit for an

optimization algorithm to improve focusing. In this thesis, we report

on the setting up of lenses and a razor blade mounted onto a piezo-

driven stage to perform the automated knife-edge measurement. An

optimization algorithm based on Zernike polynomials that we devel-

oped manages to reduce the waist radius. Reconstruction of the Gaus-

sian beam intensity profile at the focus after optimization shows an

increase in the peak of the light intensity. For the largest input beam

used in our experiment (win = 1.96 mm), the two dimensional area

optimization algorithm yields a peak intensity improvement of 17.6 %

(x-axis) and 16.3 % (y-axis) compared to the uncorrected beam.



1 Introduction

In the past two decades, research in the field of quantum information has seen

tremendous growth [1, 2]. By making use of properties such as superposition

and entanglement, algorithms can greatly reduce computational complexity and

outperform their classical counterparts, some examples of which include Shor’s

algorithm for the factorization of large numbers [3] and Grover’s algorithm for

database searching [4]. For these quantum algorithms to be practically useful,

quantum computing platforms need to scale up [5].

One feasible design is to construct a distributed quantum network consisting

of stationary nodes, formed by quantum emitters which process and store infor-

mation, and flying qubits, formed by photons which play the role as the carriers

of information [6]. Numerous physical systems have been suggested as candi-

dates for the implementation of a large scale quantum network, such as Rydberg

atoms [7, 8], trapped ions [9, 10], nitrogen-vacancy centres [11], quantum dots [12]

and trapped atoms [13, 14]. Here we will focus on single trapped neutral atoms.

One of the major stumbling blocks of this system lies in achieving efficient

transfer of quantum information from a photonic qubit to an atomic qubit. One

common method of enhancing the atom-light interaction is to place atoms in a

high-finesse cavity [15]. An alternative approach is to couple a single trapped atom

to the light field focused by a large numerical aperture (NA) lens [16]. Motivated

by the fact that the absorption cross-sectional area of an atom is on the order of the

square of the resonant transition wavelength, which is smaller than the possible

attainable diffraction-limited spot size of a focused beam, efforts are devoted to

maximize the overlap of incident light and the radiation emission mode of a single

atom [17]. Theoretically, it has been shown that it is possible to reach a near-

deterministic absorption of single photons for dedicated focusing geometries, for
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example by using a parabolic mirror as a mode converter [18].

We could characterize the interaction strength between single atoms and light

based on the extinction of a probe laser. The total transmitted electric field is a

superposition of the collected probe field and the field scattered by the atom. The

phase difference between these two fields will result in destructive interference,

which leads to an extinction of the transmitted beam. For a numerical aperture

of one (focusing from half solid angle) and an incoming field in the dipole radiation

mode, complete extinction in the forward direction is predicted [19]. Some of the

important milestones of extinction measurements are recorded in Table 1. The

first transmission spectrum of a single atom was observed for a 198Hg+ ion. The

absorption probability of the probe photons in that experiment was estimated to

be around 2.5×10−5 [20]. Recent experiments on single molecules and semicon-

ductor quantum dots reported an extinction up to 22% [21, 22]. In our lab, the

maximum extinction experimentally achieved in a setup in which the focusing

optics covered most of the solid angle (adapting a 4π microscopy technique with

lenses of NA = 0.75) demonstrated an extinction of around 36.6%, which is a

factor of 2 from the theoretical limit of 75% [23]. Similarly, exceptionally high

coupling efficiency of a trapped 174Yb+ ion is reported when illuminated with

laser focused with parabolic mirrors from a nearly full solid angle [24, 25].

Although substantial attenuation of the forward travelling beam has been re-

ported, the interaction strengths observed with these configurations still fall short

of their theoretical limits. It has been hypothesized that the residual temperature

of the cooled single atom could be a limiting factor for atom-light interaction. For

our setup described in [23], extrapolation from experimental results has shown

that only a moderate improvement of interaction strength is expected by cooling

to the motional ground state of atom [28]. Here we focus on the second pos-
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Table 1: State of the art of atom-light coupling in free space. For experiments
where only the extinction ε is reported, the coupling efficiency Λ, which describes
the spatial mode overlap between the input probe mode and the atomic dipole
mode, is calculated with ε = 4Λ(1− Λ) [26].

Experimental system Year Extinction ε Coupling efficiency Λ
Trapped ion [20] 1987 ≤0.1% ≤0.025%

Quantum dot [22] 2007 12% 3.1%
Molecule in matrix [21] 2008 22% 5.8%

Trapped atom (lens NA = 0.55) [27] 2008 10% 2.6%
Trapped ion (parabolic mirror) [24] 2014 27% 7.2%
Trapped atom (lens NA = 0.75) [23] 2017 36.6% 10.2%
Trapped ion (parabolic mirror) [25] 2017 47.3% 13.7%

sible experimental limitation due to the imperfections (non-ideal behaviours) of

the focusing optics which cause distorted spherical wavefronts, leading to weak

atom-light interaction.

In this thesis we are correcting the aberrations due to non-ideal optical ele-

ments by using a spatial light modulator (SLM) to achieve a diffraction-limited

focal spot size. The general strategy is to analyze the field intensity distribution

at the focus of a high NA lens and to apply aberration corrections to the incoming

beam. As the first step, we study the transverse beam profile of a focusing beam

in free space without a single atom.

• Method to characterize the beam waist: We started the experiment by char-

acterizing the beam with one-dimensional knife-edge measurement, and this

serves as the starting point for this thesis. We later have present a two-

dimensional knife-edge technique to obtain transverse beam waist radii along

two orthogonal directions.

• Method to reduce the beam waist: A scheme for correcting the aberrations

based on beam waist measurement is applied using a SLM. An optimization

algorithm is employed to obtain a spatial phase pattern that can minimize
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the beam waist radius at the focus. The beam profile at the end of opti-

mization is carefully studied.

Thesis Outline

This thesis is organized as follows. Section 2 reviews the paraxial Gaussian model

used to describe a laser beam profile. In Section 3, we present the knife-edge

technique to characterize the beam waist. In particular, we study the waist ra-

dius and M2 factor that we obtained at the focus for different incident beam

waists. In Section 4, we measure the beam waist along one transverse direction

and discuss how wavefront aberrations can be corrected via the introduction of a

SLM. To verify that reduced beam waist radius corresponds to improved focusing,

we also describe another optimization scheme based on reconstructed intensity.

In Section 5, we present the two-dimensional knife-edge measurement to better

characterize the focal spot of laser beam. Finally, Section 6 summarizes the thesis

and suggests avenues for future investigation.
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2 Gaussian Beam Model

This section presents the Gaussian beam model for describing beam intensity

profiles used in our experiment. The passage of a Gaussian beam through a

perfect lens and the assumptions made are also discussed [29].

2.1 Beam Propagation

Consider a linearly polarized, monochromatic, and cylindrically symmetric Gaus-

sian laser beam with electric field amplitude described by

~E(r, z) = ~E0
w0

w(z)
exp
(
− r2

w(z)2

)
exp
(
− i
(
kz + k

r2

2R(z)

))
, (1)

where r and z are the radial and axial directions of the beam in cylindrical coor-

dinates; k the wave number; w(z) the beam radius at position z, defined as the

radius at which the electric field amplitude drops to 1/e of its axial value; w0 the

waist radius at the focus and R(z) is the radius of curvature of the wavefront of

the beam at position z.

One important question is how rapidly an ideal Gaussian beam expands as it

propagates away from the waist region. The variation of beam radius w(z) along

the propagation direction is given by

w(z) = w0

√
1 +

(
z − z0
zR

)2

, (2)

where zR =
πw2

0

λ
is the Rayleigh length, λ denotes the wavelength of laser beam,

and z0 is the location of the focus. The evolution of radius of curvature R(z) is

given by

R(z) = (z − z0)
[
1 +

(
zR

z − z0

)2 ]
. (3)
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From Eq. 1, one can see that the geometric dependence of a Gaussian beam’s

electric field is governed by w(z) and R(z), which are both functions of position

(z − z0) and Rayleigh length zR.

One has to take note that real laser beams are not ideal Gaussian beams. To

account for the beam divergence due to non-Gaussian modes, we introduce the

beam quality factor M2 [30]. One modifies the waist evolution (Eq. 2) to

w(z) = w0

√
1 + (

z − z0
zR

M2)2 . (4)

The M2 term here is defined as the ratio of measured to ideal beam divergence.

For a perfect Gaussian beam, M2 = 1. Physical beams generally have M2 > 1.

2.2 Beam Focusing

For the purpose of our study, we suppose that the Gaussian beam traverses a

perfect lens with focal length f , i.e., we assume that the lens is aberration free

and not affected by the aperture size. In this experiment, we work with low

to moderate focusing (focusing parameter u, defined in Eq. 11, is smaller than

0.5). Therefore, when the propagation direction of light deviates slightly from

the optical axis, the light path can be approximated with the lowest order terms

of divergence angle. This is referred to as the paraxial approximation, which is

valid when the incident beam size is much smaller than the focal length f . The

validity of the paraxial approximation is further discussed in Section 3.4. Under

the paraxial approximation, the change in electric field after passing through a

lens is denoted by

~E ′ = eikr
2/2f ~E , (5)
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Focusing lens

2win

2wo

z=f

Figure 1: Focusing of a Gaussian beam by an ideal lens. win: waist radius right
before the lens. w0: waist radius at the focal point. The two radii are related by
Eq. 6.

where ~E ′ is the electric field immediately after a lens. Here we use prime to

represent beam properties in the image space. One important feature of ~E ′ is

that it remains Gaussian, with w′ = w and 1
R′

= 1
R
− 1

f
where w and R ( w′ and

R′ ) are the beam radius and the radius of curvature right before the lens (after

the lens).

The beam radius is at its minimum near the focus. By manipulating Eq. 2 we

are able to relate the beam radius at the lens win and beam radius at the focus

w0:

win = w0

√
1 + (

fλ

πw2
0

)2 .

Near the focus, w0 and λ are on the same order while f � w0. The expression

above can be further simplified, which gives

win '
fλ

πw0

. (6)

where win is the beam radius before the lens and f is the focal length.
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Aperture Effects

All real optical systems have finite apertures. When a laser beam is truncated by

an aperture, the beam profile at the focal point is no longer a Gaussian, but a

convolution of an Airy pattern and Gaussian. The aperture effect is more severe

if the beam radius is close to the aperture size. We can characterize this effect by

the fraction of power blocked by the aperture (clipping κ), defined as

κ =

∫∞
RCA
| ~E(r)|22πrdr∫∞

0
| ~E(r)|22πrdr

= e−2R
2
CA/w

2
in , (7)

where RCA is the clear aperture (CA) radius of the main focusing lens. For beam

sizes in this experiment, κ due to finite aperture of lens is low (less than 3.5 %).

κ in our experiment is further discussed in Section 3.4.

Validity of the Scalar Wave Approximation

For a large numerical aperture lens, one has to take polarization into account. In

fact, the electric field was treated as a scalar field in previous discussions. In the

example of a beam which is initially linearly polarized, immediately after the lens,

the polarization for each ray has a different radial polarization component. As

the electric field with different polarizations does not simply add up, a vectorial

focusing theory is required. Studies have shown that the transverse beam profile

is elongated in the polarization direction [31]. We measure the beam waist in the

same direction as the polarization vector in the experiment as to not underestimate

the beam size.
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3 Knife-edge Measurement

This section describes the scanning knife-edge technique that is used to experi-

mentally measure the beam waist radius. The experimental arrangement is also

shown. We vary the input beam waist radii and determine the resulting beam

waist radii at the focus of an aspheric lens.

3.1 Principles

The simplest method to characterize the transverse beam profile of a laser beam

would be to use a camera, and evaluate the light intensity at each individual

pixel. However, typical camera pixels have dimensions of about a few microme-

ters and hence, this technique cannot be applied for focal spots that are less than

a micrometer. Applicable methods include the knife-edge, point scan, convolution

scan, and slit method. Both the point and convolution scan require fluorescence

labeled latex beads and fluorescent sheets [32] which are not adaptable to an au-

tomated waist optimization experiment. For the slit method, the beam is probed

with a small slit of width ∆. The Gaussian profile is constructed from the amount

of light transmitted through the small slit. This method requires the slit width

to be roughly 20 times smaller than the waist radius [33], which is experimentally

unachievable (∆ ' 40 nm). Here, we have decided to use the knife-edge scanning

technique, which is a well known method that is capable of performing submicron

waist measurements [34].

The operation principle of this method is based on an opaque knife pad or

razor blade which is line-scanned through the transverse cross-section of the beam

under study. While the blade moves transversely to block the beam in one axis, the

power of the transmitted light beam is continuously recorded by a photodetector.
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The transmitted power when the razor blade moves along the x-axis is given by

the integration of the Gaussian electric field amplitude given in Eq. 1:

Pz(x) =
ε0
2

∫ x

−∞

∫ ∞
−∞
| ~E|2dx′dy′

= P0

{1

2
+

1

2
erf
[√2(x− x0)

w(z)

]}
, (8)

where P0 is the total power of laser beam. The beam profile can be tomographi-

cally reconstructed from knife-edge measurement performed in different transverse

directions.

z

x

Razor

Photodetector

Figure 2: Simplified scheme for the measurement of laser beam radius using the
knife-edge technique.

Experimentally, even if the razor blade completely blocks the beam, the pho-

todiode still measures a small background signal. Hence, we modify the previous

equation (Eq. 8) to

Pz(x) = P0

{1

2
+

1

2
erf
[√2(x− x0)

w(z)

]}
+ Cp , (9)

where Cp is a constant that can be determined when the beam is completely

blocked which accounts for the background light.
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3.2 Experimental Setup

The schematic diagram of our optical setup is shown in Figure 3. The heart of

our setup consists of two identical aspheric lenses of NA = 0.55, f = 4.51 mm

(Thorlabs C230 TMD-B) mounted in a confocal arrangement. A laser beam is

delivered from a single mode fiber and collimated with a triplet fiber optic coupler

(Thorlabs TC18FC-780) which outputs a beam with waist radius of 1.96 mm. A

telescope in confocal arrangement is placed before the aspheric lenses to manipu-

late the input beam radius. The linearly polarized Gaussian laser beam focused

by the first lens (test lens) is then recollimated by the second lens (collimating

lens). We choose to work with a laser wavelength of 780 nm because this wave-

length drives the cycling transition between 52S1/2 and 52P3/2 of 87Rb that is used

for the cooling and trapping of Rubidium atoms. A sharp razor blade (Gillette

7 o’clock Super Stainless Razor Blade), mounted onto a piezo-driven motorized

translation stage (P-611.3S NanoCube PI XYZ Piezo Stage) driven by E-625 Piezo

Servo Controller, is placed near the focus of the test lens to block the beam par-

tially. Our piezo system has a travel range of 100µm with a typical resolution of

1 nm. For each axis, the translation stage is integrated with a micrometer that

allows the coarse positioning of the blade with a resolution of 5µm. The blade

moves transversely in the focal place (x-direction) to cut the beam, and along the

beam propagation direction (z-direction) to access the waist region. The trans-

mitted light after the collimating lens is detected using a silicon p-i-n photodiode

(Hamamatsu S5107).

Initially, the beam waist radius measured using the knife-edge method was

always two to three times larger than the theoretical prediction for an ideal Gaus-

sian beam. The beam quality factor M2 measured was consistently smaller than 1,

approximately 0.7 which was found due to a wrong calibration of the piezo trans-
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z

x

y

780nm laser

Test lens

f=4.51mm f=4.51mm

Collimating lens

Razor

Motorized

translation

stage

Mirror

Mirror

Photodetector

780nm laser

BS

TelescopeSingle mode �ber

Triplet collimator Polarizer

win wf

Photodetector

f1 f2

Figure 3: Schematic depiction of the knife-edge measurement with a demagnify-
ing telescope. A photodetector measures the transmitted beam cut by a razor
blade. The position of the blade is calibrated using a Michelson interferome-
ter. The magnification of the telescope determines the incident beam waist. BS:
Beamsplitter.

lation stage. The blade was translated at step sizes of 0.23µm instead of 0.25µm.

Hence, we calibrated the position of razor blade via a Michelson interferometer.

Along with the razor blade, a mirror is attached to the translation stage. The

mirror plays the role as a reflector for one of the interferometer arms which pro-

vides an accurate position calibration of the blade in the direction perpendicular

to the beam, as shown in Figure 3.

The photodetector power reading recorded as the razor is being translated

across the beam is fit to

V (x̃) = A+B cos(
2π

λ
2αx̃+ φ) , (10)

where x̃ is the input position. A, B, α and φ are all fitting parameters. α is

the calibration factor that gives the real position αx̃ (see Figure 4). The same

calibration is also conducted along y and z directions.

We determine the calibration factors for the three piezo axes and construct a

12



 0.2

 0.4

 0.6

 0.8

 1

 46  48  50  52  54

p
h
o
to

d
e
te

c
to

r 
re

a
d
in

g
 (

V
) 

input position (µm)

Figure 4: Typical interferometer fringes data for a single knife-edge cut along
x-direction. The best fit gives α = 0.754± 0.003. Blue dots: data measured by a
photodetector, red line: fit to Eq. 10.

lookup table that converts input voltages to their correct positions.

3.3 Waist Measurement

To extract the beam waist parameter with the knife-edge method, the change in

transmitted power of the laser beam is measured as the razor is being translated

across the beam. The razor is scanned across a 10.6-µm range at intervals of

75 nm along x-direction. The beam radius is then determined by fitting the data

with the transmitted power error function (Eq. 9). An example is illustrated in

Figure 5. Approximately 30 of these x-directional cuts are recorded at intervals
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Figure 5: Typical transmitted power measured by the photodetector for a single
knife-edge cut along x-direction. The fit to Eqn. 9 gives w = 0.999 ± 0.005µm.
Error bars represent the ambient light noise and laser intensity noise (taken to be
2 % of transmitted power).
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Figure 6: Beam radius near focal point, the best fit gives the waist radius and M2,
which are determined to be w0 = 0.962± 0.003µm and M2 = 1.160± 0.004. Blue
dots: fitted waist along x-direction (Eq. 9), red line: fit to waist evolution (Eq. 4).
Error bars represent one standard deviation of propagated fitting uncertainties.
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of 0.23µm along the beam propagation direction centered around the focal point.

To obtain the minimum beam waist, the waist measurements from each of these

cuts are fit to Eq. 4. One of such fit is shown in Figure 6.

3.4 Varying the Aperture Utilization of the Lens

We expect that lens errors would be more severe for beams that utilize a larger

portion of the clear aperture because the rays passing through the edge of the lens

could be focused down to a different focal position compared to the rays passing

through the center. Nevertheless, to get stronger focused light fields, the beam

diameter of the collimated laser beam reaching the lens needs to be larger. To

describe the strength of focused light fields, we introduce the focusing parameter

u [27], defined as

u =
win
f

. (11)

For this experiment, we have chosen different input waists while keeping the focal

length of test lens f = 4.51 mm fixed. To arrive at different input laser beam

radii of the collimated beam, a telescope consisting of two planoconvex lenses

with focal lengths f1 and f2 needs to be set up. The four settings that were used

in the experiment are summarized in Table 2.

Table 2: Summary of initial settings (calculated) for varying the input beam waist.

Telescope setting Magnification win (mm) u wf (µm) clipping
f1 (mm) f2 (mm) κ (%)

100 50 0.5 0.98 0.217 1.14 10−4

125 75 0.6 1.18 0.261 0.95 0.01
100 75 0.75 1.47 0.326 0.76 0.26
100 100 1.0 1.96 0.435 0.57 3.5

16



3.4.1 Alignment Procedures

To obtain a flat wavefront for the incident beam right before the aspheric lenses,

we autocollimate the beam [35], as shown in Figure 7: one lens of the telescope is

attached on a translation stage that moves along the beam propagation direction.

A mirror is placed right before the aspheric lenses in order to back-couple the

beam into single mode fiber. The amount of light being back-coupled into the

fiber is measured with a photodetector (Photodetector 1) and the telescope length

L is adjusted such that the confocal arrangement maximizes the back-coupling.

During the autocollimation procedure, we observe two telescope lengths L that

maximize the back-coupling: one corresponds to the desired confocal arrangement

L = f1 +f2, the other one focuses the laser beam at the position of Mirror 3. The

two cases can be differentiated by observing the laser spot size near Mirror 3 and

we always choose to work in the confocal arrangement.

After the autocollimation, the tip and tilt of the two mirrors placed before

the aspheric lenses (Mirror 1 and Mirror 2) are also tuned to minimize the beam

quality factor M2 as well as to ensure that the reduced chi squared of the fit to

error function is close to one.

3.4.2 Preliminary Results

The measured waist radius and the beam quality factor M2 for four focusing

parameters (different input waist radii) using the knife-edge method is shown in

Figure 8. In general, the measured waist radii are larger than those predicted

using the paraxial Gaussian model, especially for a larger focusing parameter u

(Eqn. 11). We also see that the beam quality factor M2 becomes larger as the

focusing parameter u increases. To confirm that the larger than expected waist

radii are not due to the breakdown of paraxial approximation, we also compare
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BS780nm laser
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f=4.51mm f=4.51mm
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TelescopeSingle mode �ber

Polarizer
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Mirror 3

Photodetector 1

L

Figure 7: Schematic depiction of the autocollimation procedures to obtain flat
wavefront for the incident beam illuminating the aspheric lenses. Telescope lens
with focal length f1 is attached on a translation stage to vary telescope length L
in order to maximize back-coupling measured with Photodetector 1. Laser beam
along dashed path is blocked by Mirror 3 that is placed right before the aspheric
lenses during autocollimation. BS: Beamsplitter.

our measurements with the predictions given by the model described in [17]. We

observe that the waist radius predicted under paraxial approximation is roughly

10 % smaller than the prediction of the full model. However, the measured waist

radii are still large compared to the prediction of the full model, particularly for

a larger focusing parameter u.

There are a few possible reasons for this behaviour. First, as the input waist

gets larger, it becomes more comparable with the clear aperture of the test lens

(2RCA = 5.07 mm). From Table 2 we see that there is a significant clipping κ

(0.26% to 3.5%) when the focusing parameter u is greater than 0.3; hence, we

expect the beam to be less Gaussian for larger focusing parameters due to diffrac-

tion at the lens edges. Besides, the beam can also be distorted by aberrations

present in the optical system. The setup contains many elements, none of which

are perfect. These deformations of optical elements cause aberrations in the beam.

It is of our interest to study if the waist radius at the focus of the aspheric lens

can be further reduced if the aberrations are corrected.
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Figure 8: Waist radius and M2 as a function of focusing parameter u. Red dots:
data measured with the knife-edge technique. Black solid line: theoretical results
for a paraxial ideal Gaussian beam. Black dashed line: theoretical results for
the full model described in [17]. Error bars represent standard deviation of 10
repeated measurements. Error bars in top panel are smaller than symbol size.
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4 One-dimensional Optimization

This section describes the minimization of focal beam spot size by correcting

optical aberrations using a spatial light modulator (SLM). To this end, we vary

the spatial phase pattern on the SLM to alter the wavefront of the collimated

beam before the main focusing element. As the first step, we characterize the

focal beam spot size based on knife-edge measurement of the beam radius in one

transverse direction as described in the previous section. We optimize the focusing

based on the minimization of the beam radius at the focus by varying the phase

pattern supplied to the SLM using iterative gradient descent. We then compare

the results of two optimization strategies; one based on the minimization of beam

radius, the other one based on the maximization of peak intensity at the focus.

4.1 Spatial Light Modulator

Spatial light modulators (SLMs) are liquid crystal devices that allow dynamic

manipulation of the spatial phase of the light field. A SLM is fabricated with

nematic liquid crystals, aligned in a homogeneous configuration. Nematic liquid

crystal molecules tend to align together in one general direction. Due to the elon-

gated structure and orientation, the liquid crystals act together as an anisotrophic

dielectric. More precisely, the long axis of the molecules determines the slow axis

of liquid crystals, which is responsible for the birefringence of the liquid crystal

molecules.

For our SLM, when there is no applied electric field, the slow-axis of the liq-

uid crystal molecules is aligned with the horizontal axis of the SLM. Horizontally

polarized light incident on the SLM experiences the refractive index of the extraor-

dinary axis. As the voltage applied to the liquid crystals increases, the torque on
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the molecules increases, causing the molecules to align with the electric field. The

alignment of the liquid crystal molecules in turn controls the phase shift of each

pixel. Therefore, to modify the phase, the polarization of the input beam must

be linear and horizontal relative to the axes of SLM.

4.1.1 Implementations

In our experiment, we use a LCD-based reflection SLM (Meadowlark Optics, XY

P512L series). On the SLM, there are 512 × 512 = 262144 active pixels over

an 12.8× 12.8 mm2 array. The pixel pitch size is 25× 25µm2. Each pixel can be

independently controlled to modify the phase up to 2π with 16 bits of voltage

resolution.

780nm laser

Polarizer

SLM

(a) Head-on method

780nm laser

Polarizer

SLM

(b) Small off-axis angle method

Figure 9: Optical setup to incorporate a SLM.

There are two common ways to incorporate a SLM into an optical setup. One

method is to send light head-on to the SLM with a beamsplitter in order to

reduce crosstalk effects due to the beam impinging on the SLM at an angle, thus

illuminating more than one pixel region. In the case of a 50/50 beamsplitter, half

of the light sent to the beamsplitter illuminates the SLM. The modulated light is

then divided into two beams by the beamsplitter again and hence, we collect only

one-fourth of total light power. The other method separates in- and outcoming
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beam in an off-axis configuration. In this configuration, a laser beam is directed

onto the SLM at a small off-axis angle, such that most of the modulated light can

be collected. For our SLM, the thickness of the LCD layer is about 2.5µm. We

keep the off-axis angle to be smaller than 11◦, which corresponds to a 0.57µm

displacement in the liquid crystals, to minimize inter-pixel crosstalk. A schematic

outline of our experiment with the SLM is shown in Figure 10. One has to keep in

mind that the SLM can only modulate the phase of light that is linearly polarized

along the horizontal axis defined by the SLM. Therefore, we use a polarizer to

ensure the correct polarization of light incident on the SLM.

To modulate the spatial phase accurately, each SLM device is shipped with

two customized documents:

1. Lookup table for linearization: Each of the SLM pixels can be set with 216 =

65536 discrete voltage states. The response of the liquid crystal molecules

to the applied voltage is not linear. To account for this, an additional step

needs to be included to convert input pixel values to voltage states that yield

linear output phase response. For our SLM, the conversion is illustrated in

Figure 11.

2. Surface correction phase mask: Due to the manufacturing process, the SLM

screen surface is not flat; it is slightly curved with a peak-to-valley deviation

of 1.28λ at λ = 780 nm. The non-flatness results in wavefront distortion of

the laser beam, even when a spatially uniform phase mask is uploaded to the

SLM. The manufacturer provides us a surface correction phase mask that

can compensate for this offset. With the surface correction phase mask,

the SLM functions like a flat mirror. This surface correction phase mask is

always added to the phase patterns that we display on the SLM.
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Figure 10: Optical setup to minimize beam waist with SLM and knife-edge mea-
surement. A phase pattern is uploaded to the SLM to correct the wavefront errors.
BS: Beamsplitter. SLM: Spatial light modulator.
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sion is done with a lookup table to linearize the output phase response ranging
from 0 to 2π (0 to 216 − 1 = 65535).
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4.2 Zernike Polynomials

We use Zernike polynomials (or Zernike modes) to express the phase patterns

uploaded to the SLM, because they form an orthogonal basis on a unit disk and

the lowest orders describe common phase patterns associated with typical lens

aberrations [36]. Each of these Zernike modes is represented by two non-negative

integer numbers {n,m}. There are two classes of Zernike modes: even and odd,

which signify the cosine and sine dependence of the polar angle, respectively. We

denote the even modes as Zm
n , and odd modes as Z−mn . In polar coordinates, their

expression is given by

Zm
n (ρ, φ) = Rm

n (ρ)cos(mφ), (even modes)

Z−mn (ρ, φ) = Rm
n (ρ)sin(mφ), (odd modes)

Rm
n (ρ) =

n−m
2∑

k=0

(−1)k(n− k)!

k!(n+m
2
− k)!(n−m

2
− k)!

ρn−2k, (12)

and where n,m satisfy n ≥ m and m = n, n−2, n−4, ... (n−m must be even). To

simplify the enumeration, we combine the two indices n and m to one single-index

mode number j. The relation is given by

j = 1 +
n(n+ 2) +m

2
.

We also group the Zernike polynomials into different orders according to their

spatial frequency. The order number of Zernike polynomials is given by the in-

dex number n with the order number Norder = n + 1 ; n = 0 is equivalent to

Norder = 1. Larger order number of Zernike polynomials corresponds to higher

spatial frequency. Polynomials from order 1 to order Norder are given by the first

Norder(Norder + 1)/2 Zernike modes.
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In general, the polynomials are used to describe common aberrations and

misalignment such as tip, tilt, defocus, astigmatism, coma, and spherical aber-

rations [37, 38]. Table 3 contains information about the first six Zernike modes.

We begin with determining the position of the center of laser beam on the

SLM screen (xc, yc) and the characteristic radius Rc (Rc ' 2win). The phase

pattern used to drive the SLM is composed of the default surface correction phase

mask and Zernike polynomials rescaled to a pixel area with a radius of Rc, corre-

sponding to the beam that passes through the aperture of the focusing lens, i.e.,

ρ =
√

(x2 + y2)/R2
c . The determination of xc, yc and Rc is further discussed in

Section 7.1.

4.3 Waist Optimization

In order to correct for aberrations of the focusing lens, which are likely to be

dominated by long-range deviations of its ideal phase transformation properties,

a method needs to be applied to correct these deviations. This is where the

Zernike polynomials become a useful basis.

4.3.1 Gradient Search Algorithm

The additional phase mask Φ applied to the SLM can be expressed as a linear

combination of different Zernike terms:

Φ =
N∑
i=1

aiZi , (13)

where ai is the weight of i-th Zernike mode. One has to take note that it is practi-

cally impossible to go through an infinite number of Zernike expansions. Besides,
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Table 3: First six Zernike modes. The colour of phase pattern represents a phase
of 0 (blue) to π (white).

Mode number j {n,m} indices Polynomial Aberration type Phase visualization
1 {0,0} 1 Piston

2 {1,-1} 2ρ sinφ Vertical Tilt

3 {1,1} 2ρ cosφ Horizontal Tilt

4 {2,-2}
√

6ρ2 sin2φ Oblique Astigmatism

5 {2,0} 3(2ρ2 − 1) Defocus

6 {2,2}
√

6ρ2 cos2φ Vertical Astigmatism
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the Zernike polynomials have a higher spatial frequency for larger indices while

the lens aberrations are expected to be of low spatial frequency, it is reasonable to

restrict the order of the Zernike polynomials for an optimal phase compensation

to N terms.

Waist minimization is an optimization problem; we are looking for the optimal

weights of each of the Zernike terms given by

arg min
{ai}Ni=1

w(Φ) .

We implemented a gradient search algorithm to vary the weights of Zernike

modes one at a time. Here we choose the deterministic gradient descent for its

simplicity. Assuming that the Zernike modes are decoupled, this algorithm also

allows us to extract the contribution of each mode directly from the change in

waist radius during the iterations. Implementation of stochastic optimization

algorithms is possible to explore larger search space.

Our scheme can be summarized as follows:

1. Initialization: A knife-edge measurement is performed to measure the beam

radius. A full measurement includes nx = 9 single knife-edge cuts along

x-direction (perpendicular to optical axis) at different z positions along the

propagation direction. To speed up the optimization run, coarser step size

of ∆x = 0.2µm is applied. The smallest waist radius is recorded.

2. With the initial values of ai = 0 for all i ∈ [1, N ], the weight is varied one

by one starting from mode i = 1 to i = N with a weight step size ∆a of

±0.2 in a unit of 2π phase. For each new weight, the waist is remeasured

and recorded along with the best weights. The next iteration is based on

the best weights of previous iterations.
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3. Step two is repeated twice. When the search reaches the last mode i = N ,

the following iteration starts from mode i = 1 again.

The parameter N in the search algorithm is important because if N is too

small, the SLM may not be able to compensate for certain aberrations; but if

N is too large, which means higher search space dimension, it takes a longer

time to complete the algorithm (one Zernike mode takes one minute in average).

N = 10, 21, 36, 45 and 91 (correspond to Zernike modes up to order 4, 6, 8, 9, 13)

are tested by comparing their convergence after two full cycles. We found that

when N ≥ 36, the algorithm converges to same waist after two full cycles, which

implies that Zernike term Zi is much less significant for i > 36. N = 10 and 21

do not reduce the waist as much as N = 36; thus we set N = 36 for the rest of

this section. This choice is further discussed in Section 7.2.

4.3.2 Results and Discussions

Figure 12 shows the results of the gradient search optimization to minimize the

beam radius for different focusing parameters u. All of the four optimization runs

have the same behaviour: the waist radius reduces drastically within the first 10

iterations and then tapers off. The beam radius is close to convergence during the

second cycle since the waist change is actually smaller than the fit error (iterations

range between 37 and 72).

Beam radius and M2 of the corrected beam for different focusing parameters

u are also illustrated in Figure 14. Compared to Figure 12, the error bars in

Figure 14 are much smaller because coarser step size of ∆x = 0.2µm is applied

during the iterations to speed up the optimization (while the beam radii in Fig-

ure 14 are measured with ∆x = 75 nm). The beam radius decreases significantly

in all of the four cases, which demonstrates improved focusing with the SLM.

29



 0.8

 1

 1.2

 0  20  40  60

u=0.326

b
e
a
m

 r
a
d
iu

s
 (

µ
m

)

Iteration

 

 

 

 0  20  40  60

u=0.435

Iteration

 0.8

 1

 1.2

    

u=0.217

b
e
a
m

 r
a
d

iu
s
 (

µ
m

)

 

 

 

    

u=0.261

Figure 12: Optimized waist radius as a function of iteration steps. The initial
waist radii are shown in Figure 8. Error bars represent one standard deviation of
propagated fitting uncertainties.
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Figure 13: Zernike decompositions of the phase mask for different magnifications.
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Figure 14: Waist radius and M2 as a function of focusing parameter u. Black solid
line: theoretical prediction for a collimated ideal Gaussian beam under paraxial
approximation. Black dashed line: theoretical prediction for the full model de-
scribed in [17]. Red dots: beam waists when SLM performs as a flat mirror (with
no correction phase pattern uploaded). Blue dots: beam waists with optimization
algorithm. Error bars represent one standard deviation of 10 repeated measure-
ments. Error bars in the top panel are smaller than symbol size.
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Figure 15: Contour plot of phase patterns that yield the smallest beam radius
near focus at the end of optimization for different focusing parameters u. The
colour represents a phase of 0 (white) to ±π (blue).
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Here we observe two different optimization behaviours. For a magnification of 1.0

which corresponds to a focusing parameter u of 0.435, the beam radius is reduced

while maintaining its Gaussian profile as M2 stays rather close to 1.0. On the

other hand, contrary to our expectation, for magnifications of 0.5 (u = 0.217) and

0.6 (u = 0.261), the algorithm does not yield optimized points near the black line

which corresponds to theoretical prediction. The optimization scheme succeeded

in reducing the waist radius for magnifications of 0.5 and 0.6 below the diffraction

limit of a collimated Gaussian beam traversing ideal lens. The fairly large value

of M2 (M2 = 1.22±0.04 for magnification of 0.5, M2 = 1.27±0.02 for magnifica-

tion of 0.6) suggests that the SLM deforms the Gaussian beam while minimizing

beam radius. This postulate is also supported by Zernike decompositions of phase

pattern applied onto the SLM, as plotted in Figure 13 for each focusing param-

eter u. The large amplitude for mode number 4 and 5, which correspond to the

astigmatism mode and (de)focusing mode, indicates that the SLM modifies the

beam divergence in order to obtain smaller beam radius at the focus. Besides,

we notice that all the optimized beam radii values fall to similar values, that are

around 0.8µm, for all focusing parameter u. We conjecture that this is due to the

finite resolution of the SLM which has a pixel pitch size of 25× 25µm.

The optimized phase patterns for different focusing parameters u are shown

in Figure 15. We observe that the spatial variation of the phase patterns is only

significant in x-direction, since the optimization uses only the waist radius in x-

direction at the focus as an optimization parameter. This implies that this method

could only compensate for the lens error along the axis of optimization.

To confirm that the light intensity at the focal spot does increase at the end

of optimization, we measure via the knife-edge method the intensity profile along

x-direction reconstructed from the discrete gradient of photodiode reading (see
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Figure 16: Intensity profile reconstructed from the discrete gradient of photodi-
ode reading. The intensity is normalized with respect to the intensity peak of
beam profile before optimization. Red dots: light intensity before the waist op-
timization. Blue dots: light intensity at the end of waist optimization. Error
bars (smaller than symbol size) represent one standard deviation of 10 repeated
measurements.
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Section 4.4.1) with respect to x-position of the razor near the focal point. Fig-

ure 16 shows the intensity profile reconstructed for different magnifications. We

observe that peak intensity increases by 30 % for magnification = 0.5 and 0.6. For

larger magnification, the improvement is less obvious (increase by 5 %).
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4.4 Intensity Optimization

4.4.1 Intensity Reconstruction

As shown in Section 4.3, it is possible to improve the focusing by manipulating

the phase of the collimated laser beam before the focusing lens by using the beam

radius at the focus as an optimization parameter. For the purpose of enhancing

atom-light interaction, we are interested in the light intensity at the focal point

instead of its distribution over the focal plane. This is because the atom-light

interaction is determined by the product of the dipole moment and the electric

field at the location of the atom, which can be considered point-like on the length

scale of an optical wavelength for any focused light field. It is therefore natural to

reconstruct the intensity distribution from transmitted power and maximize the

peak intensity during an optimization run. Besides, we observed that the beam

intensity distributions possess small side lobes in some runs. These undesired

features could distort the error function fit and overestimate the beam waist.

To extract peak intensity from the knife-edge measurement, we reconstruct

the intensity profile from finite differences of transmitted power given by

I(x) ∝ d

dx
P (x) ' ∆P (x)

∆x

= I0e
−2(x−x0

w
)2 , (14)

where I0 is intensity amplitude, x0 is the center x-position, and w is the focal

waist radius. In this expression, P (x) is the transmitted power when the razor

blade moves along the x-axis obtained from Eqn. 9.

In the next section, we describe a modified optimization scheme based on the

maximization of the peak intensity of laser beam.
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4.4.2 Experimental Setup

We employ the knife-edge technique with finer step sizes of 0.15µm (as compared

to 0.2µm used in waist optimization) in the transverse direction so that the finite

difference approximates the gradient with smaller errors. Lens errors give rise to

side lobes in the intensity transverse profile which impact the fit to a Gaussian

function. Figure 17 shows one such example. To avoid the side lobes, we use only

a subset of the gradient data that lies within the range ± 0.45µm around the peak,

and fit them to Eqn. 14. Five of such Gaussian profile reconstructions are recorded

at the intervals of 0.76µm along the beam propagation direction centered around

the focal point. One notices that the product I(z)w(z) is constant because it is

proportional to the optical power. A simplification is applied to Eq. 2 to obtain

I(z) =
If√

1 + ( z−z0
zR

)2
, (15)

where If is the peak intensity and z0 is focal z-position. The Gaussian profile

reconstructions are fit to Eq. 15 to give the peak intensity. Using the peak intensity

as the optimization parameter, the optimization employs the same gradient search

algorithm described in Section 4.3.1.

One should note that optical power drifts over time. It is therefore necessary to

compare the light intensity at the focus relative to the total optical power incident

on the aspheric lens at the same time. To achieve this goal, slight modifications

are done to the knife-edge setup, as illustrated in Figure 18. We divide the beam

into two paths with a beamsplitter: one is focused with the aspheric lenses for

knife-edge measurement, the other is used to monitor the optical power. From this

point onwards, we always refer relative intensity as the ratio of intensity measured

after the aspheric lens to that before the aspheric lens.
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Figure 17: Intensity profile reconstructed from the discrete gradient of photodiode
reading after optimization for focusing parameter u of 0.326, with a side lobe (3 %
amplitude with respect to the peak intensity) on the right side of the peak. The
intensity is normalized to the peak intensity. Red line represents a fit to a Gaussian
function. Error bars (smaller than symbol size) represent one standard deviation
of 10 repeated measurements.
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Figure 18: Simplified schematic depiction of the modified knife-edge measure-
ment setup. A beamsplitter is added to measure the instantaneous beam power.
Relative intensity refers to dVout

dx
/Vin. BS: Beamsplitter.
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4.4.3 Results and Discussions

We applied the intensity optimization algorithm to the SLM for three different

focusing parameters: u = 0.217 (magnification of 0.5), u = 0.326 (magnification of

0.75) and u = 0.435 (magnification of 1.0) of the incoming beam. Figure 19 shows

the results of the optimization and the final Zernike amplitudes. We observe a

similar behaviour during the convergence process: the relative intensity increases

drastically within the first 10 iterations of low order Zernike modes. The relative

intensity comes close to convergence during the second cycle with the intensity

improvement being smaller than the fit error (iterations range between 37 and

72).

We have also put the settings back to the same initial values before the in-

tensity optimization and started again with the waist optimization algorithm for

comparison. At the end of optimization, the full beam profile (beam waist radius

as well as M2) and relative peak intensity are measured and are compared to the

initial values. The summary of the results are shown in Figure 20. We observe

that both optimization schemes managed to reduce the beam radius significantly.

The intensity optimization algorithm yields a slightly larger beam waist than the

waist optimization. For u = 0.217, once again the scheme has brought the waist

radius below the diffraction limit of a collimated paraxial beam traversing an

ideal lens. On the other hand, the reconstructed relative peak intensity for both

waist optimization and intensity optimization are fairly similar despite the small

difference in beam waist. In terms of beam quality factor M2, we see the same

behaviour as observed previously for the waist optimization algorithm: for smaller

focusing parameters (u = 0.217 and u = 0.326), there is a trade-off between beam

quality factor and smaller beam waists. For u = 0.435, M2 value is unusually

large compared to the value obtained previously. From Figure 19, we see that the
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Figure 19: Top: optimized relative intensity as a function of iteration steps. The
relative intensity has been normalized to the initial relative intensity. Error bars
represent one standard deviation of propagated fitting uncertainties. Bottom:
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Figure 20: Plot of beam radius, peak relative intensity and M2 as a function of
focusing parameter u. Black solid line: theoretical prediction for a collimated
ideal Gaussian beam. Red dots: beam waists when the SLM performs as a flat
mirror (with no correction phase pattern uploaded). Blue dots: beam waists
with intensity optimization algorithm. Green dots: beam waists with waist opti-
mization algorithm. Error bars represent one standard deviation of 10 repeated
measurements. Error bars in the top two panels are smaller than symbol size.
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Figure 21: Relative intensity profile reconstructed from the discrete gradient of
photodiode reading. Top three panels compare the relative intensity between waist
optimization and uncorrected focusing optics. Bottom three panels compare the
relative intensity between intensity optimization and uncorrected focusing optics.
The focusing parameter u is 0.217 (left), 0.326 (middle) and 0.435 (right). The
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optimization. Both optimizations seem to give a better improvement for small u.
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at the end of intensity optimization. Green dots: light intensity at the end of
waist optimization. Error bars (smaller than symbol size) represent one standard
deviation of moving average.
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Figure 22: Transverse beam profiles having the same wx but different wy. One
dimensional optimization based on wx cannot distinguish these two transverse
cross-sections.

Zernike amplitudes for mode 2 and 3 are more significant for u = 0.435 compared

to smaller u values, which indicates that the initial settings could be slightly off

for u = 0.435, leading to larger M2 value.

With the optimized phase mask uploaded on the SLM, the reconstructed in-

tensity profile along x-direction is reconstructed for both schemes, as shown in

Figure 21. We sample the transmitted optical power at intervals of 75 nm over

a range of 8µm. To smoothen the graph, we plot the moving average of the re-

constructed intensity over every 20 points. The improvement in peak intensity is

42 %, 20 % and 14 % for u = 0.217, 0.326 and 0.435, respectively.

In conclusion, both waist optimization and intensity optimization produce

similar results and lead to improved focusing with the SLM. One drawback on

this approach is that the knife-edge measurement only measures the beam radius

along one axis. Since we do not implement any constraint on the other axis, the

beam radius along the other axis may not reduce. In other words, the algorithm

squeezes the beam in the direction of optimization but expands in the other. One

example is shown in Figure 22. To investigate this hypothesis, we generalize this

idea to obtain a two-dimensional optimization scheme.
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5 Two-dimensional Optimization

5.1 Two-dimensional Knife-edge Method

The spatial structure of a focused laser beam can only be fully characterized

by the one-dimensional knife-edge technique described earlier if the laser beam

possesses cylindrical symmetry. In practice, a laser beam can be elliptical, and

thus the knife-edge measurement in one single transverse direction is not sufficient

to describe the focal beam spot area. Similarly, lens errors do not need to have

rotational symmetry.

Taking the one-dimensional optimized beam transverse profile based on the

intensity optimization algorithm described in Section 4.4 as an example, for a

magnification of 1.0, the beam radius in the x-axis is reduced from 0.97± 0.02µm

to 0.79± 0.02µm after correction. To investigate the change in beam radius in

y-direction, we rotate the blade after optimization in x to perform the knife-

edge measurement in the y-axis. We observe that the beam radius in the y-axis

measured in one run (initialized at wy =1.02± 0.02µm) for repeated intensity

optimization runs ranges from 0.9µm to 1.5µm, which indicates that the phase

mask for the optimization algorithm in the x-direction could negatively influence

the beam radius in the transverse y-direction. From this we conclude that the

one-dimensional optimization scheme does not necessarily reduce the focal beam

spot area. Therefore, we seek to characterize the beam profile based on beam

radii in two transverse orthogonal directions.

Table 4: Measured beam radii in transverse directions for three intensity opti-
mization runs in x-direction at same initial setting.

Initial Run 1 Run 2 Run 3
wx (µm) 0.97± 0.02 0.79± 0.02 0.80± 0.02 0.79± 0.02
wy (µm) 1.02± 0.02 0.96± 0.02 1.30± 0.04 1.42± 0.04
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A few approaches to characterize the transverse beam profile have been pro-

posed and demonstrated in the literature. Some in-situ measurements involve the

fabrication of straight knife-edges on two sides. Naber first succeeded to fabricate

a tetrahedral tip (T tip) that can be used for knife-edge measurement [39]. The

idea is to form an ultra-sharp common corner (T tip) by breaking off a piece of

glass from a cover slide such that the tip has three orthogonal edges. The edges

of these glass fragments are reported to have a radius of curvature of about 5 nm.

By applying the same concept, Xie et al. constructed a double knife-edge device

from a polished silicon wafer [40]. A silicon wafer is opaque to 780-nm light. By

breaking the wafer twice successively along the symmetry axes without touching

the fracture edges, the fracture edges which encloses a 90◦ angle can lead to an

ultra-sharp tip. The other method is based on nanoparticle scanning [41]. This

approach uses a single fluorescent nanoparticle as a probe to detect the intensity

distribution in the focal plane of an objective.

Here, we take a simple approach. We constructed a compound knife that

is capable of measuring the laser beam waist along two orthogonal transverse

directions. We assembled two surgical scalpels (Scalpel Number 22, Hallmark

Surgical) to form a L-shape blade. One could attach one scalpel on top of the

other perpendicularly, but in this case the two blades would not be coplanar and

their offset in the propagation direction of the beam would be on the order of

the thickness of a scalpel (a few millimetres). Consequently, the piezo cannot

access the beam radii of both directions at same z-location, since the maximum

travelling range of the piezo is around 100µm. To solve this problem, we grind

the tip of one scalpel flat and attach this new flat edge to the blade of the other

scalpel so that the two blade planes lie in the same transverse plane. After several

trials, we obtained a working compound knife of which the distance between the
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Figure 23: Photograph showing the compound knife consisting of a pair of orthog-
onally attached scalpels that measures the beam radii in the x and y directions
based on knife-edge method.

two blade planes is determined to be around 31± 1µm (see Figure 23) that is

calibrated by comparing the z offset of the x and y minimum beam radii .

5.2 Validity of the Measured Area

We assume that the laser beam has an elliptical Gaussian envelope in X and Y

directions, described by beam waists wX (semi-major axis) and wY (semi-minor

axis).

Since the optical power flowing through the focal plane is conserved, in order to

maximize the beam intensity, we need to minimize the transverse area of the laser

beam. The contour of the beam waist radius can be described by X2

w2
X

+ Y 2

w2
Y

= 1,

where (X, Y ) represents focal plane basis defined by the elliptical axes. The

elliptical cross-sectional area is then given to be πwXwY .
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y

x

Figure 24: Elliptical cross-section of laser beam. The semi-major and semi-minor
axes are aligned along (X, Y ). The knife-edge transversal basis (x, y) is assumed
to be rotated counterclockwise through an angle θ with respect to (X, Y ).

In practice, the two major axes and the measurement axes do not coincide.

Figure 24 shows one such example. Here, (x, y) represents the knife-edge transver-

sal basis that is rotated away from the elliptical axes.

We let θ denote the angular tilt between the two bases, the coordinate trans-

formation follows

X = x cosθ − y sinθ

Y = y cosθ + x sinθ , (16)

and the transmitted power measured by knife-edge technique along x-axis is given

by

Px ∝
∫ x

−∞

∫
R

exp
[
− 2
(X2

w2
X

+
Y 2

w2
Y

)]
dxdy

=

∫ x

−∞

∫
R

exp
[
− 2
((x cosθ − y sinθ)2

w2
X

+
(y cosθ + x sinθ)2

w2
Y

)]
dxdy

∝
∫ x

−∞
exp
[
− 2
( x2

w2
X cos2θ + w2

Y sin2θ

)]
dx. (17)
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It shows that measurement in blade basis still takes the form of an error function,

with beam waist (in x-direction) wx =
√
w2
X cos2θ + w2

Y sin2θ. Similarly, for a

knife-edge measurement performed in y-direction, we obtain wy =
√
w2
Y cos2θ + w2

X sin2θ.

One can show that

w2
xw

2
y = w2

Xw
2
Y +

sin22θ

4
(w2

X − w2
Y )2 . (18)

Our estimation is always larger or equal to the real cross sectional area πwXwY ,

with the maximum estimation error bounded by π
(w2

X−w
2
Y )

2
. For the case of wX =

wY , the cross section of the laser beam is circular and our estimation is equal to

the real cross sectional area.

5.3 Experimental Setup

For this experiment, we focus only on the case where focusing parameter is the

greatest (u = 0.435, magnification = 1.0) as this provides the tightest focus to

maximize atom-light interaction. In order to avoid additional aberrations and

to simplify the setup, we remove the telescope, as shown in Figure 25. We also

remove the collimating lens after the knife, which is used only for laser alignment

purposes. To measure the transmitted optical power, we place a photodetector

right after the compound knife.

Alignment procedure

Since the initial beam radius affects the convergence speed of an optimization run,

we follow a set of alignment steps in order to obtain the same starting point.

To ensure that the laser beam hits the center of the test lens, we first try to

maintain the roundness of the beam spot after passing through the aspheric lens.
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780nm laser

Photodetector

Knife

Motorized

translation

stage

Mirror

MirrorPhotodetector

780nm laser

BS

Single mode �ber

Triplet collimator Polarizer

SLM

f=4.51mm
Test lens

Figure 25: Optical setup to minimize beam waists in the x and y directions
with SLM and 2-D knife-edge measurement. A phase pattern is uploaded to the
SLM to correct the wavefront errors. The compound knife translates in x and
y directions to measure beam radii wx and wy. BS: Beamsplitter. SLM: Spatial
light modulator.

We use a second aspheric lens that is confocal to the test lens to recollimate the

beam and monitor the recollimated beam spot shape. As shown in Figure 26, we

adjust the beam direction and position on the test lens via the two mirrors before

the aspheric lenses so that the beam spot exiting the collimating lens approximates

a Gaussian transverse profile.

We then translate the compound knife. To define a consistent coordinate for

the piezo stage, we manually move the compound knife in x and y directions to

slightly crop the beam with its inner corner by tuning the translation stage and

set this position to be (x = 50µm, y = 50µm). In this setting, the blade position

(x = 0µm, y = 0µm) corresponds to being fully open (all light can be transmitted

through) and (x = 70µm, y = 70µm) corresponds to being fully closed (no light

passes through). While ensuring that the distance between the two blade planes

are fixed, we program a single knife-edge cut to include a cut along both transverse
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f=4.51mm
Test lens

780nm Gaussian beam

re�ected from a SLM

f=4.51mm
Collimating lens

Mirror 1 Mirror 2

Camera

2f

Figure 26: To ensure that the laser beam hits the center of the test lens, the
recollimated beam leaving the collimating lens is monitored with a camera. Mirror
1 and mirror 2 are adjusted so that the beam spot exiting the collimating lens
approximates a Gaussian transverse profile.

zx

y
laser beam

compound knife

)

Figure 27: Laser beam transverse cross-section on the focal plane. In current
setting, the coordinate of the compound knife’s corner (x, y) is set such that all
light can be transmitted through. We vary x (y) for a fixed y(x)-position to obtain
the beam radius in x(y)-direction. (X,Y ) corresponds to the principal axes of the
elliptical beam.
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Figure 28: Beam radius in the y direction wy with the knife edge at different
x-positions. Error bars represent one standard deviation of propagated fitting
uncertainties. When the blade position is larger than 50µm, the corner effect
starts to intervene. The large uncertainty for position larger than 60µm signifies
clipping from the non-measuring scalpel.

x and y directions at intervals of 75 nm for a range of 10.6µm. Consequently, we

minimize the beam quality factor M2 in two transverse directions by fine-tuning

the beam direction and position.

Due to the variation of the edge sharpness of the blade, we vary the blade

locations (x, y) to obtain the best initial beam radii by manipulating the initial

position of the knife. Figure 28 shows the influence of different starting points on

the measured beam waist radius.
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Optimization Scheme

We restate the optimization problem as

minimize w =
√
wxwy. (19)

The area is then given by A = πwxwy = πw2, where w is the geometric mean of

wx and wy.

At the early stage of the experiment, from 1.00 ± 0.01µm the area optimiza-

tion successfully reduced the geometric mean waist to 0.85 ± 0.01µm, which

corresponds to an improvement of 15 % in waist reduction compared to the initial

beam radius. However, with the phase mask obtained from the area optimization,

the reconstructed peak intensity yields only about a 5 % improvement for both

transverse axes. Further investigation shows that during the optimization run,

the SLM changes the divergence of laser beam slightly, which increases the clip-

ping κ and decreases the transmitted power through the lens. This is especially

significant for our chosen focusing parameter u = 0.435, the incident beam waist

is comparable with the clear aperture of the aspheric lens (κ = 3.5 %). This is

consistent with an observation in microscopy that overfilling apertures for confocal

microscopy helps to focus light to a smaller focal spot size [42].

In order to compensate for the power drop due to the change in beam diver-

gence, we modify the optimizing signal by multiplying the ratio of transmitted

power to incident power as a weight,

minimize w̃ =

√
wxwy

Ptrans/Pin

, (20)

w̃ represents the weighted geometric mean of waist radii.
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Figure 29: Optimization of beam waist at different z positions. Red dots: waist
data measured along x-axis. Blue dots: waist data measured along y-axis. Black
dots: geometric mean of wx and wy weighted with the relative power of the
transmitted beam. Error bars represent one standard deviation of propagated
fitting uncertainties. Error bars in top panel are smaller than symbol size.
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Our new optimization scheme can be summarized in the following way:

1. Move the razor to a fixed z-position close to the focus.

2. Measure the initial w̃ with two-dimensional knife-edge method.

3. Iterate over Zernike modes (N = 36) for two cycles to minimize w̃.

4. Repeat from step 1 at different z-positions.

5.4 Results and Discussions

Figure 29 summarizes the results of the area optimization at different z-positions.

The initial beam radii as the z-position is varied along the focus are shown in

the top panel. At each z-position, an area optimization run is applied once to

minimize the weighted geometric mean of waist radii. Points in bottom panel at

the same z-position then correspond to the optimized beam radii. We observe

that there is a local minimum for the optimized beam waist, which stays close to

the original focus. This is due to the fact that we are using an aspheric lens that

is designed to minimize spherical aberration.

As seen in Figure 29, the area optimization algorithm gives the smallest beam

radii at the focus z = 0. We then set z = 0 and study the beam profile cor-

responding to this optimization run. The optimization and Zernike amplitudes

after minimizing the beam spot are shown in Figure 30. The beam waists along

the two axes follows a slow decline during the first cycle. The waist radii were

initialized at 1.02µm (1.31λ) and 0.97µm (1.24λ) in x and y directions; they were

both optimized to 850 nm (1.09λ). One sees an abrupt drop in beam waist at the

iteration 41 (related to Zernike mode 5). We hypothesize that the (de)focusing

mode (Zernike mode 5) is the dominant aberration mode. The difference in beam
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waists between two axes also decreased from 90 nm to 10 nm, resulting in smaller

ellipticity of the optimized beam at the focus.

We observe an improvement of 17 % and 12 % in beam radii for the x and y

transverse axes, respectively. To confirm that the intensity is also improved, we

reconstruct the intensity profile at the focus before and after the area optimiza-

tion, as illustrated in Figure 31. A fit to a Gaussian function is performed on

the reconstructed intensity data around the peak (±0.61µm) to obtain the peak

intensity. We observe an intensity improvement of 17.6 % (x-axis) and 16.3%

(y-axis).

Furthermore, we measure the full transverse beam profile at the focus with

the best phase mask obtained with area optimization at the focus. The result is

compared with the beam profile without optimization in Figure 32. This shows

that the focal point does not change after optimization. This might be due to

the fact that an aspheric lens is designed to have minimum spherical aberrations.

Besides the improvement in beam waist radii, M2 is also reduced from 1.38± 0.02

to 1.224± 0.005 (x-axis) and from 1.16± 0.04 to 1.03± 0.01 (y-axis). This implies

that after the area optimization run, the transverse beam profile approximates

better an ideal Gaussian transverse profile.
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Figure 30: Top: optimized waist as a function of iteration steps. Red dots: waist
data measured along x-axis. Blue dots: waist data measured along y-axis. Black
dots: geometric mean of wx and wy weighted with relative power. Error bars
represent one standard deviation of propagated fitting uncertainties. Bottom:
Zernike decompositions of the phase mask.
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Figure 31: Intensity profile reconstructed from the discrete gradient of photode-
tector reading along the x-(left panel) and y-transverse axes (right panel) at the
focus. The intensity is normalized with respect to the peak of beam profile be-
fore optimization. Red dots: light intensity before the area optimization. Blue
dots: light intensity at the end of area optimization. Solid lines represent their
respective Gaussian fit (Eqn 14), the best fit for the optimized beam radius shows
17.5± 0.6 % (along x-axis) and 16.3± 0.4 % (along y-axis) intensity improvement.
Error bars (smaller than symbol size) represent one standard deviation of moving
average.
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Figure 32: Beam radius in x-(left panel) and y-axes (right panel) as z is varied
along the focus. Red dots: waist data before optimization. Blue dots: waist
data after optimization. Black lines: best fit to the waists (Eq. 4) which gives
the waist radius and M2. (a): Initial: wf = 994 ± 4 nm, M2 = 1.38 ± 0.02;
optimized: wf = 838± 2 nm, M2 = 1.224± 0.005. (b): Initial: wf = 956± 5 nm,
M2 = 1.16 ± 0.04; optimized: wf = 824 ± 3 nm, M2 = 1.03 ± 0.01. Error bars
represent one standard deviation of propagated fitting uncertainties.
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6 Conclusion and Ongoing Work

In this thesis, we investigated methods of improving the focusing properties of a

high NA lens by pre-correcting optical aberrations in two dimensions via the intro-

duction of a spatial light modulator (SLM). We used an automated beam profiling

method based on the knife-edge method to analyze the transverse beam profile

at the focus of the high NA lens. Several optimization schemes were proposed to

generate the optimal phase pattern.

With an aspheric lens with numerical aperture (NA) of 0.55 and focal length

of 4.51 mm, preliminary results of two one-dimensional optimizations show that

focusing of laser beam can be improved using a SLM. The focal waist radius w0

and beam quality factor M2 before and after the optimization are measured and

compared. For small focusing parameters, the optimized beam waist radii are

smaller than the theoretical predictions for a collimated Gaussian beam at the

expense of having larger beam quality factor M2. The reconstructed intensity

profile shows a 30 % improvement in the peak intensity of the optimized beam for

small focusing parameters. For larger focusing parameters, we still see a 14 % to

20 % improvement in the peak intensity.

Further investigation show that one-dimensional waist and intensity optimiza-

tion algorithms do not always ensure the reduction in the focal spot size. We have

developed an automated two-dimensional beam characterization method which

can measure beam waist radii along two orthogonal axes. The new optimization

scheme based on the weighted geometric mean of the beam radii demonstrates

about 17.0± 0.4 % improvement in the peak intensity at the focus averaged over

both axes.

From the observed improvement in intensity, aberration correction with the

help of a SLM promises only a moderate improvement for atom-light efficiency.
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One outcome of the work in this thesis is therefore that there is still one other

physical reason for not obtaining the atom-photon coupling beyond the thermal

motion of atom and the residual imaging aberrations. Nevertheless, it is of our

interest to extend the scheme to optimize atom-light interaction efficiency in the

setup with trapped atoms in the near future.
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7 Appendices

7.1 SLM settings

7.1.1 Determination of Beam Position

We fashion the SLM as a knife-edge to determine the position of the center of

the laser beam on the SLM screen (xc, yc). Similar to how a physical knife-edge

obstructs the transmission of light, we upload a region of random phase shift on

the SLM to scatter part of the light incident on the SLM. By varying the area

of the random phase shift region, the transmitted power of laser beam is fit to

Eqn. 9 to determine the center position as well as the input beam radius.

Figure 33: Phase masks uploaded to the SLM to determine center position. (a)
fully reveals the beam and gives maximum transmitted power of laser beam. (b)-
(f) varies the area of the random phase shift region to approximate a translating
knife-edge.

62



7.1.2 Characteristic Radius

The phase mask generated based on Zernike polynomials takes the form of a disk.

The radius of this disk on the SLM needs to meet with the effective aperture of the

aspheric lens in order to correct its aberrations. To determine this characteristic

radius, we compare the optimized weighted geometric mean of beam radii based

on two-dimensional area optimization algorithm with different radii input on the

SLM. We observe the best beam radii reduction when r = 100 pixels (which

corresponds to 2.5 mm SLM radius for input beam radius win of 1.96 mm).
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Figure 34: Optimization of the geometric mean of the beam radii at the focus
with different sizes of phase mask. Red dots: waist data measured in x-axis.
Blue dots: waist data measured in y-axis. Black dots: geometric mean of wx and
wy weighted with relative power. Error bars represent one standard deviation of
propagated fitting uncertainties.
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7.2 Zernike Dimension

For each Zernike mode, the waist optimization algorithm typically takes 50 s of

computational time. There is a trade-off between computational time and num-

ber of Zernike modes iterated over. Since higher orders of Zernike polynomials

are less significant in beam radius optimization, we test the convergence of area

optimization on N = 10, 21, 36, 45 and 91 (correspond to order 4, 6, 8, 9, 13 of

Zernike polynomials) Zernike modes over two full cycles to determine the min-

imum number of Zernike modes required for convergence. We observe that the

optimization algorithm reaches the convergence of w ' 850 nm for N > 36.
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Figure 35: Optimization of the geometric mean of the beam radii at the focus
with different number of Zernike modes. Red dots: waist data measured in x-
axis. Blue dots: waist data measured in y-axis. Black dots: geometric mean of wx
and wy weighted with relative power. Error bars represent one standard deviation
of propagated fitting uncertainties.
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