
EXPERIMENTAL IMPLEMENTATION OF

HIGHER DIMENSIONAL ENTANGLEMENT

NG TIEN TJUEN

(B.Sc. (Hons.)), NUS

A THESIS SUBMITTED FOR THE DEGREE OF

MASTER OF SCIENCE

PHYSICS DEPARTMENT

NATIONAL UNIVERSITY OF SINGAPORE

2013



ii



Declaration

I hereby declare that this thesis is my original work and it has

been written by me in its entirety. I have duly acknowledged all

the sources of information which have been used in the thesis.

This thesis has also not been submitted for any degree in any

university previously.

Ng Tien Tjuen

1 October 2013

ngtientjuen_sign1.eps


Acknowledgements

Firstly, I would like to extend my heartfelt thanks and grati-

tude to my senior Poh Hou Shun, whom I have the pleasure

of working with on various experiments over the years. They

have endured with me through endless days in the laboratory,

going down numerous dead ends before finally getting the ex-

periments up and running. Special thanks also to my project

advisor, Christian Kurtsiefer for his constant guidance over the

years. Thanks also goes out to Cai Yu from the theory group

for proposing this experiment and Chen Ming for giving me

valuable feedback on the experimental and theoretical skills.

A big and resounding thanks also goes out to my other fellow

researchers and colleagues in quantum optics group. Thanks to

Syed, Brenda, Gleb, Peng Kian, Siddarth, Bharat, Gurpreet,

Victor and Kadir. They are a source of great inspiration, sup-

port, and joy during my time in the group.

Finally, I would like to thank my friends and family for their

kind and constant words of encouragement.



Contents

1 From Quantum Theory to Physical Measurements 1

1.1 Aim of this Thesis . . . . . . . . . . . . . . . . . . . . . . . 3

2 Theoretical Background 5

2.1 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Bell Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 CGLMP Inequality . . . . . . . . . . . . . . . . . . . 9

2.2.2 Derivation of the 4-Dimensional CGLMP Inequality . 14

3 Generation of Entangled Photon Pairs 19

3.1 Entangled Photon Pairs . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Second-Order Non-linear Optical Phenomena . . . . 20

3.2 Generation of Polarization-Entangled

Photon Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 Longitudinal and Transverse Walk-Off . . . . . . . . 23

3.2.1.1 Compensation of Longitudinal (Temporal)

Walk-Off . . . . . . . . . . . . . . . . . . . 23

3.2.1.2 Compensation of Transverse (Spatial) Walk-

Off . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Characterization of Polarization-Entangled Photon

Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Generation of Energy-time Entanglement . . . . . . . . . . . 27

3.3.1 Time-bin Entanglement . . . . . . . . . . . . . . . . 29

3.3.2 Characterization of Energy-time Entangled Photon

Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Entanglement in a High-Dimensional Bipartite System . . . 32

iii



CONTENTS

4 Implementation of Sources of 2-Dimensional Entangled Pho-

ton States 35

4.1 Photon Pairs Collection . . . . . . . . . . . . . . . . . . . . 36

4.2 Characterization of Detector Efficiency . . . . . . . . . . . . 39

4.3 Polarization-Entangled Photons . . . . . . . . . . . . . . . . 42

4.3.1 Polarization Correlation . . . . . . . . . . . . . . . . 44

4.4 Energy-time Entangled Photons . . . . . . . . . . . . . . . . 46

4.4.1 Consideration of Interferometer Type . . . . . . . . . 46

4.4.2 Schematic of Setup for Generation Energy-Time En-

tangled Photons . . . . . . . . . . . . . . . . . . . . . 48

4.4.3 Matching the Interferometer Path Length Differences 49

4.4.4 Coincidence Time Window . . . . . . . . . . . . . . . 55

4.4.5 Energy-time Correlation . . . . . . . . . . . . . . . . 58

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Violation of the 4-Dimensional CGLMP Inequality 63

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Implementation of 4-Dimensional Entangled Photons . . . . 64

5.2.1 Optimizing the Quality of the Interferometers . . . . 66

5.2.2 Phase Shift Compensation . . . . . . . . . . . . . . . 67

5.2.3 Quality of the 4-dimensional Entangled State . . . . 70

5.2.4 Piezoelectric Actuator . . . . . . . . . . . . . . . . . 70

5.2.5 Stabilizing the Interferometers . . . . . . . . . . . . . 72

5.3 Measurement Settings . . . . . . . . . . . . . . . . . . . . . 74

5.4 Experimental Results & Conclusions . . . . . . . . . . . . . 77

6 Final Remarks 79

Bibliography 81

iv



Summary

This thesis documents my research on setting up a source of polarization

and energy-time entangled photons. The photon pairs are produced by

a spontaneous parametric down-conversion (SPDC) process. I will focus

on the preparation and characterization of these sources. The goal of this

research is to produce high-dimensional entanglement which can be used

for various quantum communication protocols and fundamental tests of

quantum physics. The combination of polarization and energy-time degrees

of freedom allows us to prepare hyperentanglement with a dimensionality

of 4. The choices of the degrees of freedom of the experimental setup are

discussed in detail.

The non-classical correlations from entangled photon pairs are useful for

studying the dimensionality of a system without assumptions as in most

theoretical models. For certain systems it is possible to determine the

presence of entanglement in higher dimensions by appealing to a dimen-

sion witness like the CGLMP inequality. In the last part of the thesis, I

will present results from a dimension witness experiment carried out and

conclude with some remarks on the remaining issue known to be restricting

the quality of the source.
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Chapter 1

From Quantum Theory to

Physical Measurements

The development of quantum mechanics driven by Bohr, Heisenberg, Pauli,

Schrödinger et al. in the beginning of the 20th century has suggested

a strange and weird picture which is not directly accessible in daily life.

The probabilistic description of the properties of physical objects (mo-

mentum, position,...) is in contradiction with the deterministic nature of

classical physics, whereby these properties have well-defined values. Quan-

tum theory contains observables which correspond to measurable physical

quantities. Heisenberg’s uncertainty principle states that there are specific

pairs of physical observables which cannot be determined with absolute

certainty [1]. There is no analogue of this principle in classical physics.

Quantum theory predicts the phenomenon whereby two particles re-

main perfectly correlated over arbitrarily large distances. This is called

entanglement and was described as a “spooky action at a distance” by

Einstein. A physical system consisting of two or more entities cannot be

described by only considering each of the component entity alone. Instead,

a full description of this physical system is only possible by considering the

system as a whole. Entanglement has proven to be suitable for perform-

ing tasks which were impossible according to classical mechanics. Unlike

the classical bit which only allows one value; either state 0 or 1 to be

stored, the quantum bit or qubit can be prepared in a superposition state:

1



1. FROM QUANTUM THEORY TO PHYSICAL
MEASUREMENTS

α|0〉 + β|1〉, where |α|2 + |β|2 = 1. The probability amplitudes α and β

are generally complex numbers. A two level quantum system is an im-

plementation of qubits, which is an essential building block for quantum

information [2]. Entanglement provides the fundamental key component

for the development of quantum information, a fusion between the fields of

quantum physics, information theory, computation, and communication.

The experimental realization of quantum information sciences in recent

years was demonstrated with several quantum protocols. The develop-

ment of quantum algorithms such as the Shor algorithm [3, 4] and Grover

search [5, 6] improve the efficiency of information processing. Quantum in-

formation sciences also secure transmission of classical information (quan-

tum cryptography) [7, 8], transfer of quantum states between distant lo-

cations (quantum teleportation) [9, 10] and an increase in communication

channel capacity (dense coding) [11, 12]. These applications provided a

boost to research in experimental quantum systems. Various degrees of

freedom available in quantum systems are used to encode qubits. Some

of these first experiments used the polarization [13, 14, 15, 16], energy-

time [17, 18, 19], time-bin [20, 21], and orbital angular momentum [22, 23]

of photons to encode the photonic qubit. The photonic qubits are easily

and accurately manipulated using linear and non-linear optical devices be-

cause these techniques require classical optics which have been studied in

detail.

The amount of information being transmitted and processed is a fun-

damental resource in quantum communication and computation. A high-

dimensional entangled state can transmit more information than conven-

tional two-dimensional systems. This reduces the noise threshold limiting

the security of quantum key distribution (QKD) protocols [24, 25, 26, 27].

Furthermore, high-dimensional entangled states also lower the threshold

of the detection efficiency for loophole free Bell experiments [28] which

demonstrate the phenomenon of entanglement in quantum mechanics and

it shows that the results cannot be explained by local realistic theories.

The dimensionality of a system, i.e. the number of independent degrees of

freedom needed to completely describe it, is one of the most basic concepts

in science. Most theoretical models place assumptions on the dimension-

ality of a system. It would be desirable to assess the dimensionality of a

2



1.1 Aim of this Thesis

system without assumptions. The challenge is to assess the dimension of a

set of states without referring to the internal working of the device. One

such class of measurements are the dimension witnesses. They provide a

lower bound on the dimensionality of a system by appealing to statistics

from specific measurements [29]. The analysis of higher-dimensional en-

tanglement becomes complex, both theoretically and experimentally. It is

not easy to distinguish between classical and quantum correlations in a

higher-dimensional systems. Moreover, the number of operations needed

to determine properties of the state increases with the number of dimen-

sions. In practice, a large number of resources are needed to investigate

high-dimensional entanglement. Hence, it is both interesting and relevant

to investigate how much one can learn about high-dimensional entangle-

ment from a limited set of measurements. The study and experimental

realization of higher dimensional entanglement will be the main focus of

this work.

1.1 Aim of this Thesis

In this thesis, we aim to experimentally prepare a 4-dimensional hyper-

entangled state (ququad) by entangling the polarization and energy-time

degrees of freedom of photons generated from spontaneous parametric down-

conversion (SPDC). The generated ququad is then used to test the 4-

dimensional CGLMP inequality [30]. Violation of this inequality will allow

us to set the lower bound of the dimension of the Hilbert space describing

the system.

In Chapter 2, we first review the theoretical framework of the CGLMP

inequality and describe its possible application as a dimensional witness.

We then continue in Chapter 3 with a detailed overview on the process of

SPDC. This is followed by an experimental study of the polarization and

energy-time entangled source of photon pairs in Chapter 4. Lastly in Chap-

ter 5, we will present an experiment violating the 4-dimensional CGLMP

inequality before ending with some final remarks about the remaining issues

limiting this experiment in Chapter 6.

3
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Chapter 2

Theoretical Background

In this chapter we will cover the basic theory behind entanglement followed

by a brief description of Bell’s inequalities. This is followed by an indepth

overview of the CGLMP inequality. Finally, we will present a detailed

derivation of the maximum violation of the CGLMP inequality for a 4-

dimensional (ququad) maximally entangled state. In so doing, we will also

demonstrate the viability of using the CGLMP inequality as a dimensional

witness for the 4-dimensional entangled state.

2.1 Entanglement

A state |ψ〉 in the Hilbert space H = HA ⊗HB is called separable when:

|ψ〉A ∈ HA and |ψ〉B ∈ HB such that |ψ〉 = |ψ〉A ⊗ |ψ〉B. Otherwise the

state is called entangled. Only quantum mechanics allows the existence

of entangled states because they exhibit correlations that have no classical

analogue. The finite-dimensional bipartite quantum system is a system

composed of two distinct subsystems, i.e. |ψ〉 = α|i〉A|i〉B + β|j〉A|j〉B,
whereby the states {|i〉A, |j〉A} ∈ HA and {|i〉B, |j〉B} ∈ HB with (i, j) =

{0, 1}, with a dimensionality of N = 2 in the Hilbert space. A measurement

on the system HA instantly determines the measurement outcome on the

system HB with absolute certainty. Quantum systems consisting of two

or more entities can no longer be described by considering each of the

component entities in isolation. A full description of such a composite

5



2. THEORETICAL BACKGROUND

quantum system is only possible by considering the system as a whole.

The term “entanglement”, used in quantum mechanics to describe this

inseparable relationship between quantum systems, was introduced by

Schrödinger in 1935. He believed that entanglement was one of the most

important aspects of the quantum world, describing it as “the characteris-

tic trait of quantum mechanics, the one that enforces its entire departure

from classical lines of thought.” [31]. The introduction of entanglement was

shortly after Einstein, Podolsky, and Rosen (EPR) formulated a thought

experiment that attempted to show that quantum theory is incomplete [32].

At the time when the EPR paper was written, the Heisenberg’s uncertainty

principle [1], which states that complementary properties of a particle such

as its position and momentum cannot be ascertained simultaneously with

absolute precision, was already known. However, Einstein believed there

exists an underlying physical reality, in which all the physical objects must

have well defined position and momentum and evolve according to deter-

ministic classical laws.

The EPR paper considered the case of a pair of spatially well separated

(no longer interacting) particles A and B, which have previously interacted.

Due to the conservation of momentum, these particles have perfectly corre-

lated momenta and positions. Thus the wavefunction of the pair of particle

cannot be written as a product of the wavefunctions of the individual par-

ticles.

If the momentum of particle A is measured, the momentum of particle

B is determined with certainty due to the momentum correlation. Simi-

larly, if the position of particle B is measured, the position of particle A

is determined with certainty due to the position correlation. Thus both

the complementary properties of the two particles are known with absolute

precision. This is in contradiction with the uncertainty principle, a fun-

damental principle of quantum theory. EPR tried to set up a paradox to

conclude that the quantum mechanical description of physical reality given

by wave functions is not complete and thus suggests that quantum theory

is incomplete as well.

In order to fully account for the joint properties of the particles under

the framework of classical physics, the EPR paper proposed that additional

parameters must be supplemented into the description of physical objects.

6



2.2 Bell Inequalities

The possible explanation is that the information about the outcome of all

possible measurements was already present in both systems. Since the out-

come of a measurement was claimed to be known before the measurement

takes place, there must exist something in the real world, hidden variables,

which predetermine the measurement outcomes.

2.2 Bell Inequalities

In 1964, John S. Bell proposed the Bell inequality [33, 34] which allows

the predictions of quantum mechanics and hidden variable theories to be

distinguished. In brief, the original thought experiment proposed by Bell

is that of a spin-1/2 system interacting at their joint emission point and

propagating in opposite directions. The idea is based on arguments about

measurement probabilities that result from classical correlations alone and

imposes an upper limit for it. Quantum mechanics predicts stronger corre-

lations and thus will violate this classical limit, demonstrating that predic-

tion from quantum mechanics is in general incompatible with local hidden

variable theory.

The most widespread version of Bell’s inequality used in experimental

tests is the one from Clauser, Horne, Shimony and Holt known as the CHSH

inequality which requires only two measurement settings per observer [35].

This can be implemented experimentally by measuring the polarization cor-

relations of an entangled pair of photons. The CHSH inequality, as with

Bell’s original inequality includes experimentally determinable quantities

to be measured. The spin-1/2 system is a bipartite system, with two mea-

surement settings and two possible outcomes on each side. The correlation

function is determined experimentally by averaging the outcomes of two

local observables giving the probability of obtaining a particular outcome.

The CHSH inequality includes a parameter S which is defined by

S = E(θ1, θ2)− E(θ1, θ
′
2) + E(θ′1, θ2) + E(θ′1, θ

′
2), (2.1)

where E(θ1, θ2) is the correlation function for measurements with only two

7



2. THEORETICAL BACKGROUND

possible outcomes. This is given by

E(θ1, θ2) = P (↑↑ |θ1, θ2) + P (↓↓ |θ1, θ2) − P (↑↓ |θ1, θ2) − P (↓↑ |θ1, θ2),
(2.2)

where P (↑↑ |θ1, θ2) is the probability of obtaining spin-up for both parti-

cles with measurement settings θ1 and θ2 respectively (Fig. 2.1). A value of

|S| ≤ 2 does not allow us to distinguish the prediction of quantum corre-

lation from that of classical correlation. A quantum correlation will result

in the violation of this inequality. On the other hand a theoretical absolute

maximum violation of the CHSH inequality with a value of |S| = 2
√
2 can

be obtained with a maximally entangled 2-dimensional state. It can also

be shown that this maximum violation of CHSH inequality decreases with

the increase in the dimensionality of the entangled state. This feature ren-

ders the CHSH inequality ineffective as a test for the dimensionality of an

entangled state; it is impossible to distinguish between a violation due to a

higher dimensional entangled state and lower dimensional non-maximally

entangled state.

In 1982, a direct test of CHSH Bell type inequalities was carried out by

Alain Aspect et. al. [36] whereby the result obtained supported the pre-

dictions of quantum mechanics. It is worth noting that all current exper-

imental tests of Bell’s inequalities take place with imperfect experimental

devices which allow for loophole arguments. The experiments often have

low detection efficiency (detection loophole) and the two measurement par-

ties are not placed sufficiently far apart (locality loophole). These loopholes

have been covered in separate experiments [37, 38] but no experiment to

date has been performed to simultaneously address these two loopholes.

The extent to which quantum states can violate a given Bell inequality

was investigated soon after that since it is impossible in practice to prepare

pure entangled states with no noise. The strength of the violation de-

creases if there is a mixture of noise which reduces quantum correlations.

Therefore, a stronger violation corresponds to the most robust quantum

correlations against a mixture of noise. In 2000, the investigation of the

violation of local realism by two entangled N -dimensional systems by Kas-

zlikowski et al. [39] was proved to be stronger for increasing values of N .

Hence, quantum correlations get more robust against a mixture of noise as

8



2.2 Bell Inequalities

Figure 2.1: A spin-1/2 system with two measurement settings θ1, θ1 and

two outcomes ↑, ↓ on each side. The four different combinations of settings

give a total of 16 coincidence measurements which are used for calculating

the Bell inequality.

the dimension of the system N increases.

2.2.1 CGLMP Inequality

In 2002, a set of Bell’s inequalities known as the CGLMP inequality was

proposed by Daniel Collins, Nicolas Gisin, Noah Linden, Serge Massar,

and Sandu Popescu [30]. Within the framework of quantum mechanics, a

strong violation of such an inequality indicates that the state is not only

entangled, but also that the entanglement is of a particular dimensional

system. These inequalities are generalised for arbitrary high-dimensional

bipartite systems with two measurement settings and d outcomes on each

side. In a bipartite system, suppose that one of the parties, Alice, can carry

out two possible measurements, A1 or A2, and that the other party, Bob,

can also carry out two possible measurements, B1 or B2. Each measurement

may have d possible outcomes: A1, A2, B1, B2 = 0, ..., d − 1, see Fig. 2.2.

The CGLMP expression has the form,

Id ≡
⌊d/2⌋−1
∑

k=0

(

1− 2k

d− 1

)

{[P (A1 = B1 + k) + P (B1 = A2 + k + 1)

+P (A2 = B2 + k) + P (B2 = A1 + k)]

−[P (A1 = B1 − k − 1) + P (B1 = A2 − k)

+P (A2 = B2 − k − 1) + P (B2 = A1 − k − 1)]},
(2.3)

9
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2. THEORETICAL BACKGROUND

where P (Aa = Bb + k) is the probability that the measurements Aa and

Bb have outcomes that differ by k modulo d,

P (Aa = Bb + k) ≡
d−1
∑

j=0

P (Aa = j, Bb = j + kmod d). (2.4)

with d ≥ 2. For any values of d, the measurements with Id(LHV) ≤ 2

is an upper bound on the correlations between measurement results under

the assumption of local hidden variable (LHV) theory. For two outcomes

Figure 2.2: A d dimensional quantum system with two measurement set-

tings and d outcomes on each side. The four different combinations of set-

tings give in total of 4d2 coincidences which are used for calculating the

CGLMP inequality.

d = 2, the Bell expression is written as,

I2 = [P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2) + P (B2 = A1)]

−[P (A1 = B1 − 1) + P (B1 = A2) + P (A2 = B2 − 1)

+P (B2 = A1 − 1)]

10
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2.2 Bell Inequalities

= P (A1 = 0, B1 = 0) + P (A1 = 1, B1 = 1) + P (A2 = 0, B1 = 1)

+P (A2 = 1, B1 = 0) + P (A2 = 0, B2 = 0) + P (A2 = 1, B2 = 1)

+P (A1 = 0, B2 = 0) + P (A1 = 1, B2 = 1)− P (A1 = 0, B1 = 1)

−P (A1 = 1, B1 = 0)− P (A2 = 0, B1 = 0)− P (A2 = 1, B1 = 1)

−P (A2 = 0, B2 = 1)− P (A2 = 1, B2 = 0)− P (A1 = 0, B2 = 1)

−P (A1 = 1, B2 = 0)

= E(A1, B1) + E(A2, B2) + E(A1, B2)− E(A2, B1)

= S,

which is equivalent to the CHSH expression (Eq. 2.1).

Indeed, as the dimension of the Hilbert space increases, the maximal

violation found for a maximally-entangled state

|Φ+
d 〉 =

1√
d

d−1
∑

j=0

|j〉A ⊗ |j〉B, (2.5)

increases. It is important to note for a given d, |Φ+
d 〉 does not give the max-

imum violation [40, 41, 42]. A larger violation or equivalently a stronger

resistance to noise, is found for non-maximally entangled states except

when d = 2 [40]. In this thesis, we focus on the 4-dimensional bipartite

system with two measurement settings on both parties. Alice performs two

possible measurements, A1 or A2, and Bob performs two possible measure-

ments, B1 or B2. Each measurement has 4 possible outcomes or d = 4.

For d = 4, the CGLMP expression thus contains 64 probabilities as one

might expect and the measurement of the CGLMP inequality becomes in-

creasingly hard as the dimension of the output increases.

The computation of this high-dimensional Bell’s inequalities has been

the subject of several studies in recent years. Numerical studies [43, 44]

have provided an unexpectedly simple expression for this CGLMP expres-

sion. Let P oaob
AB (sa, sb) be the joint probability of Alice’s outcome oa with

the measurement setting sa and Bob’s outcome ob with the measurement

setting sb, where o = 1, ..., d and s = 1, 2 for two measurement set-

tings. Suppose Alice and Bob have mA and mB possible measurement set-

tings that would each generate dA and dB outcomes, respectively. Denote

m ≡ (mA,mB) and d ≡ (dA, dB), a compact description of the number of

11



2. THEORETICAL BACKGROUND

local measurement settings and the number of possible outcomes for each

local measurement. A simplified and equivalent CGLMP expression Im;d

with two measurement settings mA = mB = 2 and d possible outcomes,

dA = dB = d is defined as [45],

I22dd(LHV) =
d−1
∑

oa =1

d−oa
∑

ob =1

P oaob
AB (1, 1) +

d−1
∑

oa =1

d−1
∑

ob = d−oa

[P oaob
AB (1, 2) + P oaob

AB (2, 1)

−P oaob
AB (2, 2)]−

d−1
∑

oa =1

P oa
A (1)−

d−1
∑

ob =1

P ob
B (1) ≤ 0. (2.6)

For two outcomes d = 2, the above expression is written as,

I2222(LHV) = P 11
AB(1, 1) + P 11

AB(1, 2) + P 11
AB(2, 1) + P 11

AB(2, 2)

−P 1
A(1)− P 1

B(1) ≤ 0, (2.7)

which is known as the CH74 [46] inequality developed by Clauser and Horne

in 1974. The distinction of this inequality is that it involves the measure-

ment of non-joint probabilities. The CHSH inequality can be derived from

the CH74 by adding the fair sampling assumption. The CH74 inequality

is immune to fair sampling of the events and detection efficiency of the

experiment. The I2222 contains only the measurement with one outcome

P 1
A(1) or P

1
B(1), so whether or not the total measurement outcomes 1 and

2 represents a fair sample of the total events emitted from the source is

irrelevant. Fair sampling takes into account no detection and double detec-

tion events in Alice and Bob’s outcomes. It is considerably more general

compared to the CHSH inequality but is difficult to implement in practice.

This is because one would need ideal detectors to measure the total events

received by Alice (Bob) in order to establish the quantity P 1
A(1) (P 1

B(1)),

however such events may not necessary show any outcome event on Bob’s

(Alice’s) measurement.

The CGLMP expression Eq. 2.3 is equivalent to the I22dd expression

Eq. 2.7. The details of the proof can be found in [45]. These two inequalities

are related as follows,

I22dd =
d− 1

2d
(Id − 2). (2.8)

I22dd ≥ 0 implies that local hidden variables are incompatible with quantum

12



2.2 Bell Inequalities

predictions. In the presence of white noise, the quantum state becomes

ρ(p) = p|Φ+
d 〉〈Φ+

d |+ (1− p)
Id ⊗ Id

d2
, (2.9)

where I is the d dimensional identity matrix and p is the weight of the

d dimensional maximally entangled state in the mixture. The CGLMP

expression is certainly violated if p > 2
Id(QM)

= pw.

Table 2.1 shows the summary of different types of violation with two

measurement settings and d outcomes. It has been shown that the maxi-

mum CGLMP violation Imax
d (QM) does not correspond to maximally en-

tangled input states [40, 47]. I
|Φ+

d 〉
d is the maximum violation for an input

state |Φ+
d 〉 which is maximally entangled. I

|Φ+
d 〉

22dd is the corresponding best

known I22dd violation given in Eq. 2.8. Below the threshold weight pw, no

violation is expected. For d ≥ 2, Imax
d (QM) increases suggesting a larger

Table 2.1: CGLMP Id(QM) and I22dd violation [45].

d Imax
d (QM) I

|Φ+
d 〉

d I
|Φ+

d 〉
22dd pw

2 2.8284 2.8284 0.20711 0.70711

3 2.9149 2.8729 0.29098 0.69615

4 2.9727 2.8962 0.33609 0.69055

5 3.0157 2.9105 0.36422 0.68716

6 3.0497 2.9202 0.38342 0.68488

7 3.0776 2.9272 0.39736 0.68326

8 3.1013 2.9324 0.40793 0.68203

9 3.1217 2.9365 0.41622 0.68108

10 - 2.9398 0.42291 0.68032

100 - 2.9668 0.47856 0.67413

1000 - 2.9695 0.48427 0.67351

∞ - 2.9698 0.48491 0.67349

violation could be possible by increasing the dimension of the system. The

pw values indicate that the CGLMP violation of higher dimensional systems

are more resistant to noise.
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2. THEORETICAL BACKGROUND

The violation of Bell-type inequalities indicate that a local hidden vari-

able model cannot fully describe the situation and this can be seen as a

non-classical property of quantum correlations. The violation also depends

on the details of the particular Bell-type inequality that is tested. The

CGLMP inequalities are generalised for arbitrary high-dimensional bipar-

tite systems only. A high violation of CGLMP inequalities indicates that

the state is entangled and the entanglement is of a particular dimension-

ality. The numerical proof shows the CGLMP violation is higher for an

entangled state in a higher dimension even though the state is not maxi-

mally entangled.

In this thesis, we use the CGLMP inequality as a dimension witness

for our ququad experiment. The idea of dimension witness is that there

exists an upper bound of CGLMP violation if we restrict ourself to lower

dimensional systems. In this particular case, the maximum violation of I2244

with qutrits, is strictly lesser than ququads. The maximal violation of I2244

with qutrits could be shown to identical to Imax
2233 = 0.304951 [48, 49]. To

summarize, for two measurement settings and four outcomes on each side,

if the bound Imax
2233 ≤ 0.304951 is violated, the dimension of the entangled

system under investigation is at least 4.

2.2.2 Derivation of the 4-Dimensional CGLMP In-

equality

In this section, we describe the detailed steps to obtain I2244 = 0.33609

(in Table 2.1) for a 4-dimensional maximally-entangled state by using the

CGLMP expression in Eq. 2.6. This I2244 will be useful later for comparison

with our experimental results to verify if we indeed have a 4-dimensional

maximally-entangled state. For the purpose of our derivation here, we start

off by writing a 4-dimensional maximally entangled state,

|Φ〉 =
1

2
(|00〉+ |11〉+ |22〉+ |33〉) , (2.10)
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2.2 Bell Inequalities

with the definitions:

|0〉 = (1, 0, 0, 0)T

|1〉 = (0, 1, 0, 0)T

|2〉 = (0, 0, 1, 0)T

|3〉 = (0, 0, 0, 1)T

The detection probability (coincidence) between outcome |k〉A,a and |l〉B,b

is written as

P kl
AB(a, b) = Tr(|k〉A,a|l〉B,b〈k|A,a〈l|B,b ρ). (2.11)
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2. THEORETICAL BACKGROUND

The corresponding density matrix is written as (for ease of reading, the

zero is replaced by a single dot)

ρ = |Φ〉〈Φ| =












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




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


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
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
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1
4
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























































.

Referring to the CGLMP expression in Eq. 2.6, we consider d = 4 and

this expression is written as

I2244(QM) =
3

∑

k=1

4−k
∑

l=1

P kl
AB(1, 1) +

3
∑

k=1

3
∑

l=4−k

[P kl
AB(1, 2) + P kl

AB(2, 1)−

P kl
AB(2, 2)]−

3
∑

k=1

P k
A(1)−

3
∑

l=1

P l
B(1)

= P 11
AB(1, 1) + P 12

AB(1, 1) + P 13
AB(1, 1) + P 21

AB(1, 1)

+P 22
AB(1, 1) + P 31

AB(1, 1) + P 13
AB(1, 2) + P 22

AB(1, 2)

+P 23
AB(1, 2) + P 31

AB(1, 2) + P 32
AB(1, 2) + P 33

AB(1, 2)

+P 13
AB(2, 1) + P 22

AB(2, 1) + P 23
AB(2, 1) + P 31

AB(2, 1)

+P 32
AB(2, 1) + P 33

AB(2, 1)− P 13
AB(2, 2)− P 22

AB(2, 2)

−P 23
AB(2, 2)− P 31

AB(2, 2)− P 32
AB(2, 2)− P 33

AB(2, 2)

−P 1
A(1)− P 2

A(1)− P 3
A(1)− P 1

B(1)− P 2
B(1)− P 3

B(1).

(2.12)

For simplicity, we write the coefficients of the joint probability in a compact

manner via Table 2.2 with each of the entries representing the coefficient
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2.2 Bell Inequalities

of the joint probability. There are 24 joint probabilities shown in the table.

Table 2.2: Coefficients of the joint probabilities.

P 1
B(1) P 2

B(1) P 3
B(1) P 4

B(1) P 1
B(2) P 2

B(2) P 3
B(2) P 4

B(2)

P 1
A(1) 1 1 1 . . . 1 .

P 2
A(1) 1 1 . . . 1 1 .

P 3
A(1) 1 . . . 1 1 1 .

P 4
A(1) . . . . . . . .

P 1
A(2) . . 1 . . . -1 .

P 2
A(2) . 1 1 . . -1 -1 .

P 3
A(2) 1 1 1 . -1 -1 -1 .

P 4
A(2) . . . . . . . .

Table 2.3: Coefficients of all the probabilities with swapping of Bob’s out-

come.

-1 -1 -1 . . . . .

-1 1 1 1 . 1 . . .

-1 . 1 1 . 1 1 . .

-1 . . 1 . 1 1 1 .

. . . . . . . . .

. 1 . . . -1 . . .

. 1 1 . . -1 -1 . .

. 1 1 1 . -1 -1 -1 .

. . . . . . . . .

We then perform a swap of Bob’s outcomes shown in Table 2.3 with -1

representing the coefficient of the probability of P k
A or P l

B shown in Eq. 2.12.

The six additional terms, namely P 1
A(1), P

2
A(1), P

3
A(1), P

1
B(1), P

2
B(1) and

17



2. THEORETICAL BACKGROUND

Table 2.4: Coefficients of all the probabilities with added joint probabilities

P 14
AB(1, 1), P

24
AB(1, 1), P

34
AB(1, 1), P

44
AB(1, 1), P

41
AB(1, 2), P

42
AB(1, 2), P

43
AB(1, 2)

and P 44
AB(1, 2).

-1 -1 -1 -1 . . . .

-1 1 1 1 1 1 . . .

-1 . 1 1 1 1 1 . .

-1 . . 1 1 1 1 1 .

-1 . . . 1 1 1 1 1

. 1 . . . -1 . . .

. 1 1 . . -1 -1 . .

. 1 1 1 . -1 -1 -1 .

. . . . . . . . .

P 3
B(1) are practically impossible to measure. As an example, with the

condition P 14
AB(1, 1) + P 24

AB(1, 1) + P 34
AB(1, 1) + P 44

AB(1, 1) − P 4
B(1) = 0, we

added the coefficients of this condition into Table 2.4 [50].

The coefficients of the non-joint probabilities in the Table 2.4 are taken

care by the conditions, −P 1
A(1)−P 2

A(1)−P 3
A(1)−P 4

A(1) = 1 and −P 1
B(1)−

P 2
B(1) − P 3

B(1) − PB
B (1) = 1. Therefore these probabilities need not be

measured in the experiment. The CGLMP inequality thus requires a min-

imum of 32 joint probabilities to be measured. Finally, for a 4-dimensional

maximally-entangled state, the maximum violation of the CGLMP is eval-

uated to be Imax
2244(QM) = 0.33609.
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Chapter 3

Generation of Entangled

Photon Pairs

We briefly describe the theory of spontaneous parametric down-conversion

(SPDC) to generate polarization-entangled photon pairs. This is followed

by a description of how to prepare energy-time entangled photons by intro-

ducing unbalanced Mach-Zehnder interferometers in the path of the photon

pairs. In Section 3.4, we show how we can prepare polarization and energy-

time entangled photons by placing interferometers into the signal and idler

paths of the polarization-entangled photons from SPDC.

3.1 Entangled Photon Pairs

This section covers the theory of spontaneous parametric down-conversion

(SPDC). This process is ideal for creating a high quality entangled state.

The photonic qubit can be conveniently encoded in any of several degrees of

freedom, namely polarization, energy-time, time-bin, and orbital angular

momentum. One of the advantages of choosing photonic qubits is they

can travel long distance without severe decoherence in the polarization.

They are also easier to manipulate and detect since these techniques require

classical optics which have been studied in detail. The theory of SPDC was

established by Klyshko [51] in 1970 and the modern quantum mechanical

description was provided by Hong [52] in 1985.
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3. GENERATION OF ENTANGLED PHOTON PAIRS

3.1.1 Second-Order Non-linear Optical Phenomena

To understand the concept of the second-order non-linear optical phenom-

ena, we begin by looking at the behaviour of the electrons and positively

charged nuclei of the atoms in a dielectric material when subjected to an

electric field of a light wave. When a dielectric material is subjected to an

electric field E, the electrons and positively charged nuclei of the atoms get

polarized since the electric field redistributes the charges within the atoms.

The sum of the induced electric dipole moments is written as

Pi = ǫ0χ
(1)
ij Ej + ǫ0χ

(2)
ijkEjEk + ... + ǫ0χ

(n)
ijk...lEjEk...El, (3.1)

where ǫ0 is the electric permittivity of free space, χ is the linear electric

susceptibility, E is the applied electric field, i, j, ..., k∈ (1, 2, 3), and χ(n) is

the nth-order susceptibility. The susceptibility χ is related to the refractive

index of the dielectric material. For an isotropic medium, the susceptibility

χ only has one value which describes the refraction or dispersion charac-

teristics of the electric field in the dielectric medium. For a crystalline

material, the susceptibility χ is a tensor quantity related to the symme-

try of the crystal structure. The spontaneous parametric down-conversion

(SPDC) process is attributed to the non-linear coupling term, χ(2) which

is known as a second order non-linear interaction.

SPDC is stimulated by random vacuum fluctuations and the photon

pairs are created at random times. Although the conversion efficiency is

very low, it has been proven to be one of the most efficient methods to

generate the entangled photon pairs. During the process of SPDC, a pump

photon of frequency ωp is annihilated thus producing a signal and idler pho-

ton at frequency ws and wi respectively, while satisfying the conservation

of energy and momentum. The conservation laws [53] are written as,

ωp = ωs + ωi, (3.2)
−→
kp =

−→
ks +

−→
ki , (3.3)

where Eq. 3.2 and Eq. 3.3 are known as the energy conservation and phase

matching condition respectively. The phase matching is perfect for infinite

crystal lengths and ideally planar pump electric waves.

As an illustration of β-Barium-Borate (BBO) crystal in our experiment,

where there are two different refractive indices no and ne for the ordinar-
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3.2 Generation of Polarization-Entangled
Photon Pairs

ily (o) and extraordinarily (e) polarized light respectively. This crystal is

negative uniaxial since nx = ny = no, nz = ne in the principal coor-

dinate system and ne < no. This crystal has been proven to produce a

high-intensity source of polarization-entangled photon pairs [15].

The successive implementations of quantum protocols using polarization-

entangled photon pairs generated from the BBO crystal have gained in-

creased attentions among the researchers. The investigations of the prop-

erties of BBO crystal using theoretical models have been developed to study

the spectra, emission time distribution and spatial emission distribution of

the down-converted photons, see [54] and references therein. Experimen-

tal techniques have been developed to increase the generation of down-

converted photon pairs into single mode fibers [55, 56, 57, 58]. These

techniques are essential in the implementation of quantum protocols, i.e.

long distance quantum key distribution [59, 60].

3.2 Generation of Polarization-Entangled

Photon Pairs

The birefringence of the BBO crystal has to be considered for photons

propagating in the crystalline medium. The emission direction of the sig-

nal and idler photons are specified by the angle between the pump photon

wave vector and the optical axis of the crystal. There are two of types of

phase matching, type-I and type-II, differentiated by whether the signal

and idler photon within each pair have the same or orthogonal polariza-

tion. For a type-I process, the pump photon is extraordinarily-polarized

(e-polarized) and both down-converted photons have the same polariza-

tion (o-polarized). For a type-II process, the pump photon is e-polarized.

However, the polarizations of both down-converted photons are orthogonal.

In a type-II down-conversion process, the o and e-polarized photons

are emitted from the down-conversion crystal in two cones which are non-

concentric with either the pump beam or each other. In our setup, the

down-conversion crystal is oriented in such a way that the extraordinary
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3. GENERATION OF ENTANGLED PHOTON PAIRS
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V
e
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V
e
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V
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Figure 3.1: Type-II phase matched down-conversion [15]. In type-II phase

matching, an e-polarized pump photon gets down-converted into a pair of

o and e-polarized photons of lower energy. The o and e-polarized photons

are emitted from the down-conversion crystal in two respective cones which

are non-concentric with either the pump beam or each other. In our setup,

the down-conversion crystal is oriented in such a way that the extraordinary

axis coincides with the vertical (V) polarization, while the ordinary axis

coincides with the horizontal (H) polarization. These two cases are denoted

as Ve and Ho, respectively.

axis coincides with the vertical (V) polarization, while the ordinary axis

coincides with the horizontal (H) polarization (Fig. 3.1) as proposed in [15].

By tilting the optical axis of the BBO crystal with respect to the pump

wave vector, the emission cones of the down-conversion photons can be

made to intersect. The photons detected at the intersections of the cones

are indistinguishable in their wavelengths except for their polarizations.

The polarized-entangled state is written as,

|Ψ〉p =
1√
2

(

|Ho〉1|Ve〉2 + eiδ|Ve〉1|Ho〉2
)

, (3.4)

with a relative phase δ between the He and Vo photons in each spatial

mode.
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3.2 Generation of Polarization-Entangled
Photon Pairs

3.2.1 Longitudinal and Transverse Walk-Off

In practice, down-converted photon pairs generated from the BBO crystal

are not perfectly indistinguishable because the photon pairs propagate with

different velocities inside the crystal. The different refractive index no and

ne of the birefringent crystal gives rise to a relative delay between the

arrival time of the o and e-polarized photon in each pair that is dependent

on the location where they are created in the crystal. This effect is called

longitudinal walk-off and it reduces the time indistinguishability between

the o and e-polarized photons [15]. The transverse walk-off is due to the

reduced spatial mode overlap between the spatial profile distribution of the

o and e-polarized photons [61].

3.2.1.1 Compensation of Longitudinal (Temporal) Walk-Off

If the photon pairs are created at the crystal location d with respect to the

surface of the crystal facing to the pump beam, the time difference between

the arrival time of the o and e-polarized photon is δt = (L − d) (no−ne)
c

,

where c is the speed of light in the vacuum. The photon pairs created at

the face of the crystal incident to the pump beam or d = 0 have maximum

time difference while photon pairs created at the exit face of the crystal

or d = L have no time difference. The time difference is larger than the

coherence time of the photon pairs tc ≈ 100 fs even with a thin crystal of

millimeter length.

To eliminate this problem, a combination of half-wave plates (λ/2) and

BBO compensation crystals (CC) is placed after the BBO pump crystal

(Fig. 3.2) [15]. The photons first pass through λ/2 waveplate which rotates

their polarization by 90◦. This is followed by a CC whose optical axis (OA)

is aligned in the same direction as the pump crystal. The CC halves the

relative delay between the photons pairs and the final time difference is

equal for the photon pairs generated at the surface and exit of the crystal.

Therefore, the photons pairs from these two cases are indistinguishable in

the temporal degree of freedom, resulting in a pure polarization-entangled

state. This indistinguishability also holds for emission points at different

locations of the crystal.
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Figure 3.2: Compensation of temporal walkoff [62]. The photon pairs

pass through a λ/2 waveplates in which their polarization is rotated by 90◦.

They then pass through compensation crystals (CC) which are identical to

the crystal used for down-conversion except half of the thickness. In the first

extreme case (a), the CC halves the relative delay between the photons in

the pair. In the second extreme case (b), the CC induces a relative delay

equal to that in the previous case between the photons in the pair. Hence,

the photons pairs from these two cases are indistinguishable in the temporal

degree of freedom, resulting in a pure polarization-entangled state.

3.2.1.2 Compensation of Transverse (Spatial) Walk-Off

At the intersection of the emission cones, there is an elongated spread of

the o-polarized photon distribution as compared to the e-polarized photons

(Fig. 3.3) [61]. The propagation direction of the pump photon energy flux,

described by the Poynting vector is shifted with respect to the energy flux

of the o-polarized photons but is equal to the e-polarized photons. Thus,

o-polarized photons emitted will add up to an elliptical mode. Therefore,

the axis in which the o-polarized photon emitted is shifted from the center

with respect to the mode of the e-polarized photon. The shift is in the

range of several tens of µm per mm of crystal length and hence reduces the

mode overlap between the photon pairs. This causes an imbalance in the

collection of both modes.

To eliminate this problem, the compensation scheme of temporal walk-

24

3/figures/EPS/chapter2_figure8.eps


3.2 Generation of Polarization-Entangled
Photon Pairs

off is used to compensate the transverse walk-off. The polarization of the

photons are rotated by 90◦ after passing through the λ/2 waveplates. The

CC causes a shift in the path of the down-converted light such that the

center of the distribution of the o and e-polarized photons coincide. This

provides better overlap between the two mode distributions and thus re-

sults in a better spatial mode for collection. In practice, we observed a

difference in the number of o and e-polarized photons collected into the

single mode fiber (SMF) with thick crystals. The reason is that the match-

ing of the spatial mode profiles of the o and e-polarized photons decreases

with increasing crystal length even if both modes are centered.

V
e

H
o

t

t/2

/2
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o
l

H
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H
e

V
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OA

Figure 3.3: Compensation of transverse walkoff [62]. The polarization

of the photon pairs after passing through the λ/2 is rotated by 90◦. The

compensation crystal (CC) causes a shift in the path such that the center

of the distribution of the o and e-polarized photons coincide. This provides

better overlap between the two distributions and thus results in a better

spatial mode for collection.

Tilting the vertical angle between the fast axis of the CC and the down-

converted light beam changes the relative phase between the He and Vo

photons in each of the spatial modes. This allows the free phase δ (Eq. 3.4)

to be adjusted such that different types of entangled states can be gener-

ated.
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3. GENERATION OF ENTANGLED PHOTON PAIRS

3.2.2 Characterization of Polarization-Entangled Pho-

ton Pairs

Quantum state tomography [63, 64, 65, 66] provides full characterization of

any quantum states by a joint measurement of the down-converted photons

in various polarization bases. Instead of performing a full tomography in

this work, joint detection measurement in selected polarization bases is

sufficient to measure the quality of entanglement.

The joint detection probabilities of measurements involve the projection

of the photon pairs onto linear polarization bases. This is implemented by

inserting a polarization analyzer consisting of a rotatable λ/2 waveplate

followed by a polarizing beam splitter (PBS), which transmits horizontal

and reflects vertical polarization. The λ/2 waveplate does an unitary trans-

formation or a rotation of angle α on the polarization of the photons which

is given as

R(α) =

(

cosα − sinα
sinα cosα

)

. (3.5)

The two single-photon basis polarization states |H〉 and |V 〉 are given by

the column vectors

|H〉 =

(

1
0

)

, |V 〉 =

(

0
1

)

, (3.6)

respectively.

For any arbitrary pure polarization state |ψ〉, the probability of detect-

ing photons in a linear polarized basis at angle α from the horizontal axis

|H〉 is written as

P (H|α) = |〈H|R(α)|ψ〉|2. (3.7)

For photon pairs in the two polarization states, the rotation transfor-

mation matrix due to the two λ/2 waveplates is written as

R(2)(α, β) = R(α)⊗R(β), (3.8)

where R(α) and R(β) are the transformation performed in spatial mode 1

and 2 respectively. Therefore the joint detection probability of obtaining

the measurement result |H〉1|H〉2 for the input state |Ψ〉p (Eq. 3.4) is given
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3.3 Generation of Energy-time Entanglement

by

P (H,H|α, β) = |〈H|1〈H|2R(−α,−β)|Ψ〉p|2

=
1

2
sin2(α− β). (3.9)

when δ = π.

The visibility of the joint detection measurement in the H/V and +45◦/-

45◦ bases are related to the quality of polarization entanglement. For δ = π

in the input state |Ψ〉p (Eq. 3.4), the entangled state is

|Ψ−〉 =
1√
2
(|H〉1|V 〉2 − |V 〉1|H〉2) . (3.10)

The |Ψ−〉 state is rotationally invariant, it is left unchanged by a coordinate

transformation performed on the +45◦/-45◦ basis, i.e.

|Ψ−〉 =
1√
2
(|+〉1|−〉2 − |−〉1|+〉2) , (3.11)

where + and - denote the +45◦ and -45◦ polarization basis respectively.

The definition of the visibilities measured in the H/V and +45◦/-45◦

bases, denoted as VHV and V+− respectively, can be written as

VHV =
|CV H − CV V |
CV H + CV V

, (3.12)

V+− =
|C+− − C++|
C+− + C++

, (3.13)

where Cij is the number of coincidences obtained when the down-converted

photons in spatial mode 1 and 2 are projected onto polarization i and j

respectively. For the |Ψ−〉 states in Eq. 3.10 and Eq. 3.11, both quantities

VHV and V+− will have the value of 1 as there are no contributions giving

rise to coincidences CV V or C++.

By varying the angle α or β of the λ/2 waveplates, the Cij is measured

and hence the visibility can be computed which gives a measure of the

quality of the polarization-entangled photon pairs.

3.3 Generation of Energy-time Entanglement

In 1990, Ou et. al. demonstrated energy-time entanglement successfully us-

ing photon pairs generated from SPDC [17]. The original idea came from
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3. GENERATION OF ENTANGLED PHOTON PAIRS

an experiment proposed by Franson in 1989 to prepare an energy-time

entangled state using three level atoms with unbalanced Mach-Zehnder

interferometers on each of the photon paths [67]. In the SPDC demonstra-

tion (Fig. 3.4), the first condition is that the interferometer path length

difference has to be chosen such that the implemented time delay ∆T is

much longer than the coherence time of the down-conversion photon pairs

τ1. This condition avoids single photon interference. Typically the pho-

ton pairs are detected within a bandwidth of few nanometers, or coherence

time of around 100 fs. The second condition is that the delay ∆T must be

smaller than the coherence time of the pump photon τ2. This condition

guarantees the coherent superposition of the photon pairs which take the

short path |0〉 or long path |1〉 in the interferometers, see Fig. 3.4. The

third condition is that ∆T must be long enough to discard and postselect

events occurring when one photon takes the short path and the other takes

the long path and vice versa. This requirement implies that the coincidence

time window of the photon pair detection must be shorter than the delay

∆T in order to discard photon pairs taking the short path and the other

taking the long path and vice versa as well. In other words, by choosing an

appropriate coincidence time window, we can postselect the both photon

pairs taking the short-short path and long-long path, see Fig. 3.5. To sum

up, these three conditions impose τ2 > ∆T > τ1 which must be satisfied in

the experiment.

The coincidences between the photon pairs are detected at three pos-

sible detection time windows (Fig. 3.5), namely (−∆T, 0, ∆T ). There

are four possible combinations for coincidence detection, namely |0〉A|0〉B,
|1〉A|1〉B, |0〉A|1〉B, and |1〉A|0〉B. The states |0〉A|0〉B and |1〉A|1〉B are

indistinguishable since the time delay in the coincidence measurement de-

tection for these states are zero. The coincidence time window is shorter

than ∆T in order to postselect the indistinguishable states |0〉A|0〉B and

|1〉A|1〉B. The entangled state is written as the coherent superposition of

these indistinguishable states

|Φ〉t =
1√
2

(

|0〉A|0〉B − ei(φA+φB)|1〉A|1〉B
)

, (3.14)

with φA,B being the phase differences between the long and short paths

in the interferometers respectively. The phase φA,B is adjusted such that
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3.3 Generation of Energy-time Entanglement

Figure 3.4: Experimental setup for energy-time entanglement. A pump

photon with coherence time τ2 is down-converted into correlated photon

pairs with coherence time τ1. The photon pairs are sent into Mach-Zehnder

interferometers which introduces a time delay ∆T due to the unbalanced

arm lengths (short path |0〉 and long path |1〉). The condition ∆T < τ2

guarantees the coherent superposition of the photon pairs which take the

short path |0〉 or long path |1〉 in the interferometers. The Franson interfer-

ence [67] or second order correlation between the photon pairs are measured

by silicon avalanche photodiodes (APD), with a time delay tA − tB between

APD 1 and APD 2.

different entangled states can be generated, with a condition that the phase

difference φA,B is kept equal up to the coherence time of the down-converted

photons τ1.

3.3.1 Time-bin Entanglement

In time-bin entanglement [20, 21], the entangled photon pairs have well de-

fined emission times instead of being undetermined over the long coherence
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Figure 3.5: Four possible amplitudes of the photon pairs in the time de-

lay basis. The two coherent states |0〉A|0〉B and |1〉A|1〉B overlap up to the

coherence time of the down-converted photon pairs τ1 and there is no sin-

gle photon interference under the condition where the coherence time of

the down-converted photons are less than the time delay introduced by the

unbalanced Mach-Zehnder interferometer, τ1 < ∆T .

time of the pump photon τ2. This can be implemented by using a femtosec-

ond pulsed laser whereby the emission time is well defined. However, the

pulse train from a mode-locked laser can have a broad overall bandwidth

and the pulses are not coherent to each other. Thus, the coherence time

τ2 > ∆T cannot be fulfilled. Introducing an additional unbalanced Mach-

Zehnder interferometer in the pump beam splits the pulse train into a fixed

delay ∆T . Thus, the successive pulses are now indistinguishable from the

preceding pulses and the states of the photon pairs |0〉A|0〉B and |1〉A|1〉B
generated from SPDC are indistinguishable. In short, the path indistin-

guishability between the path |0〉pump|1〉A,B and |1〉pump|0〉A,B leads to a

time-bin entangled state after postselection. Since the work in this thesis
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does not employ a pulsed laser, the theory of the time-bin entanglement

will not be presented here. More details can be found in [20, 21].

3.3.2 Characterization of Energy-time Entangled Pho-

ton Pairs

The quality of energy-time correlation is determined by measuring the joint

detection probability of the photon pairs, also known as Franson interfer-

ence. We simplify the mathematical explanation of the Franson interference

in the original paper [67]. The state of mode 1 and mode 2 are written as

ψ(r1,2, t) =
1

2
ψ0(r1,2, t) +

1

2
eφA,Bψ0(r1,2, t−∆T ) (3.15)

The coincidence function R between APD 1 and APD 2 is

R = 〈0|ψ†(r1, t)ψ
†(r2, t)ψ(r1, t)ψ(r2, t)|0〉. (3.16)

We are interested in the event in which both down-converted photons take

the short path and long path. The above expression is thus simplified as

R =
1

16
〈0|[ψ†

0(r1, t)ψ
†
0(r2, t) + e−i(φA+φB)ψ†

0(r1, t−∆T )ψ†
0(r2, t−∆T )]×

[ψ0(r1, t)ψ0(r2, t) + ei(φA+φB)ψ0(r1, t−∆T )ψ0(r2, t−∆T )]|0〉. (3.17)

The conservation of energy from the pump frequency ωp to final states ωs,i

requires that

ωp +∆ω = ωs + ωi, (3.18)

where ∆ω is the uncertainty of the pump frequency. We write

ψ0(r1, t−∆T )ψ0(r2, t−∆T ) = ei(ωp+∆ω)∆Tψ0(r1, t)ψ0(r2, t). (3.19)

Assuming ∆ω∆T << 1 and neglecting the contribution from this term,

thus the coincidence function can be written as

R ∝ [1 + e−i(ωp∆T+φA+φB)][1 + ei(ωp∆T+φA+φB)]

∝ cos2(
ωp∆T + φA + φB

2
). (3.20)
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The coincidence function depends on the sum of the relative phases and

a constant offset given by the frequency of the pump photon ωp. The

visibility of this coincidence function measures the quality of the correlation

if R varies between 0 and 1. In practice, the reduction of this visibility is

due to the ratio between the difference in path length difference in both

interferometers, δ to the finite coherence time of the photon pairs τ1 [68].

As such, the visibility can be written as

R = cos2(
φA + φB + ωp∆T

2
) e

−( δ
cτ1

)2
. (3.21)

Thus, in order to maintain high visibility, this δ should be kept minimum

with respect to the interferometers.

3.4 Entanglement in a High-Dimensional Bi-

partite System

The polarization-entangled state is intrinsically 2 dimensional since only

two linearly independent polarization vectors span the Hilbert space. One

way of generating higher-dimensional polarization-entangled states is to re-

place the pump photon with repeated pump pulses emitted from a mode-

locked femtosecond laser. The higher order emission of the SPDC photons

generates multiphoton polarization-entangled states [69, 70]. As discussed

in Section 3.1.1, the probability of obtaining higher order emission is low

which leads to a low brightness of the multiphoton-entangled source [71].

Furthermore, the losses introduced by the optical elements and the effi-

ciency of the photodiode lead to longer data acquisition times. The energy-

time entangled state allows us to create entangled states with a higher

dimension, N > 2 by implementing at least two or more interferometers

in one arm in both spatial modes [72, 73, 74]. The dimension is therefore

directly dependent upon the transformation by the interferometers and not

limited by the intrinsic property of the polarization of photons which spans

only 2-dimensional space. In practice, this provides a direct generation of

higher dimensional entangled states but the implementation of this exper-

imental scheme requires the stabilization of multiple interferometers. The
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3.4 Entanglement in a High-Dimensional Bipartite System

other approach is to repeat the 2 dimensional time-bin entanglement by

using repeated pump pulses [75], but a full analysis of the state is not

trivial. Higher dimensional entanglement can also be realised for the or-

bital angular momentum degree of freedom [76, 77, 78, 79, 80]. Although

most of these experiments exhibit non-classical behaviour, the definition of

the dimension witness is insensitive to whether our system is quantum or

classical.

In this thesis, we generate higher dimensional states entangled in mul-

tiple degrees of freedom also known as a hyperentangled state [71, 81, 82].

A hyperentangled state |HE〉 can be defined as follows,

|HE〉 = |Bell〉1 ⊗ |Bell〉2 ⊗ |Bell〉3... (3.22)

where each term corresponds to one of the four Bell states encoded in one

of the degrees of freedom of two particles. Bell states represent the simplest

examples of two qubit entangled states and they are expressed as,

|Φ±〉 =
1√
2
(|0〉A|0〉B ± |1〉A|1〉B) , (3.23)

|Ψ±〉 =
1√
2
(|0〉A|1〉B ± |1〉A|0〉B) . (3.24)

Hyperentangled states allow improvement in super dense coding [83], full

Bell-state analysis [84, 85, 86, 87], simplification of quantum logic [88],

remote entangled state preparation [89] and enhancing the quantum non-

locality tests [90].

We introduce the energy-time entanglement to photon pairs which are

entangled in polarization. The photon pairs entangled in polarization and

energy-time leads to a 4 dimensional entangled state. The state after the

coincidence time window postselection is

|Φ〉 = |φ+
polarization〉 ⊗ |φ+

energy−time〉 (3.25)

=
1√
2
(|H〉A|H〉B + |V 〉A|V 〉B)⊗

1√
2
(|s〉A|s〉B + |l〉A|l〉B)

=
1

2
(|Hs〉A|Hs〉B + |V s〉A|V s〉B + |V l〉A|V l〉B + |Hl〉A|Hl〉B) .

Denoting the polarization degree of freedom |H〉 =

(

1
0

)

, |V 〉 =

(

0
1

)

and energy-time degree of freedom |s〉 =

(

1
0

)

, |l〉 =

(

0
1

)

, it can be
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shown

|Hs〉 = |H〉 ⊗ |s〉 =

(

1
0

)

⊗
(

1
0

)

=









1
0
0
0









= |0〉 (3.26)

|V s〉 = |V 〉 ⊗ |s〉 =

(

0
1

)

⊗
(

1
0

)

=









0
0
1
0









= |1〉 (3.27)

|V l〉 = |V 〉 ⊗ |l〉 =

(

0
1

)

⊗
(

0
1

)

=









0
0
0
1









= |2〉 (3.28)

|Hl〉 = |H〉 ⊗ |l〉 =

(

1
0

)

⊗
(

0
1

)

=









0
1
0
0









= |3〉 (3.29)

The quantum state in Eq. 3.25 can be written as

|Φ〉 =
1

2
(|00〉+ |11〉+ |22〉+ |33〉) , (3.30)

which spans the 4 dimensional Hilbert space.

In this experiment, we generate energy-time entanglement similar to

that proposed in [17] to photon pairs which are entangled in polariza-

tion [15]. We measured the CGLMP inequality by carrying out two mea-

surements on one party, A1 or A2, and the other party, can also carry out

two measurements, B1 or B2. Each measurement has 4 possible outcomes:

A1, A2, B1, B2 = 0, 1, 2, 3. In Chapter 5, we will explain the derivation of

this 4-dimensional CGLMP inequality and experimental setup in detail.
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Chapter 4

Implementation of Sources of

2-Dimensional Entangled

Photon States

Photonic systems are one of the main workhorses for contemporary quan-

tum research. They have various properties, i.e. polarization, linear mo-

mentum, and orbital angular momentum, which can serve as degrees of

freedom by which quantum states can be encoded. The resistance of these

properties and thus the quantum states they represent to decoherence,

makes photons the ideal carriers of these quantum states.

Two or more photonic quantum states could exist in what are called

entangled states. These entangled states describe the system of two or

more photons as a whole and could not be derived from the individual

quantum states of constituent photons. It is this quantum entanglement

that makes it possible to, just to name a few, implement in principle totally

secure encryption key distribution protocol [91], realize the teleportation

of photonic quantum states [10] from one point to another, and allow us

to factorize a large prime number [3] at a much higher speed than what

current electronic computers are capable of.

For many decades and still up to today, the process of spontaneous

parametric down-conversion (SPDC) in non-linear optical crystals is fre-

quently employed to generate these entangled photons. The SPDC process
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is well understood and it offers a relatively simple way to experimentally

implement a source of entangled photons [92]. Thus naturally we decided

to go down the same route for the implementation of our entangled photon

pair source.

In this Chapter, we start off by detailing the characterization of the var-

ious factors influencing the efficiency of our entangled photon pair source.

We then describe the procedure for setting up a polarization and time-

energy entangled photon pair source. We will also give an in depth func-

tional description of the experimental setup and report on the result of

the characterization of the efficiency of our source and the quality of the

entangled state that was generated.

4.1 Photon Pairs Collection

In order to analyze the photon pairs from SPDC, they must first be col-

lected. This is usually done by imaging each of the two down-converted

photons from the down-conversion medium into two single mode optical

fibers (SMF) by means of collection lenses. The lens and SMF combina-

tion provides us with a very well-defined and adjustable spatial mode for

the collection of the down-converted photons.

As discussed in Section 3.1.1, SPDC is a spontaneous and weak pro-

cess, hence the photon pairs are created at random times. In an idealized

case, where the collection of the down-converted photons are perfect, every

photon collected in one SMF corresponds to another photon in the other

fiber. However, in practice, this is not the case due to a mismatch be-

tween the spatial mode of the collection and that of the down-converted

light, and the inefficiencies of the detection instrumentation. To character-

ize this effect, we implemented the simplified photon pair source as shown

in Fig. 4.1. The photon pairs are generated by SPDC using a β-barium

borate (BBO) crystal. BBO crystals offer certain advantages compared

to other non-linear crystals, i.e. wide optical transmission window from

190-3300 nm and high damage threshold, 500MW/cm2 in the UV region.

The wavelength degeneracy of the photon pairs is independent of the tem-

perature of the crystal, but depends on the cut of the crystal with respect

36



4.1 Photon Pairs Collection

Figure 4.1: Schematic of the spontaneous parametric down-conversion

(SPDC) setup. An Argon-ion cw-pumped SPDC process generates photon

pairs in single mode optical fibers (SMF). Dichroic mirrors (DM) separate

the 702 nm photon pairs from the residual 351 nm pump beam. The orthog-

onally polarized photon pairs generated by type-II SPDC are separated by

a polarizing beam splitter (PBS).

to the propagation direction of the pump beam. Thus, this allows for the

critical phase matching condition to be satisfied [93].

Fig. 4.1 shows a BBO crystal pumped by an Argon-ion laser (Coherent,

Innova 300) with central wavelength, λp=351 nm. The profile of the output

beam TEM00 allows the spatial mode creation of the photon pairs to be

optimally coupled into single mode optical fibers (SMF). This light passes

through pump optics (PO) to focus the beam down to a waist of 89µm. At

the focus, a lmm thick BBO crystal cut for collinear type-II phase matching

(θ=49.2◦, φ=30.0◦) is placed. The crystal is tilted such that the emission

direction of the photon pairs, λs,i=702 nm is parallel to the pump beam.

The photon pairs then pass through a few dichroic mirrors (DM), which

transmit the pump beam with wavelength 351 nm and reflects the photon

pairs of wavelength 702 nm. The signal and idler photon pairs which have

orthogonal polarizations are separated by a polarizing beam splitter (PBS).

The spatial modes of the photon pairs, defined by SMF, are matched to the

pump mode to optimize the collection of the photon pairs [55, 56, 57, 58].
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The subsequent photon pairs are detected by silicon avalanche photodiodes

(APD). The coincidences between the photon pairs are registered once the

delay between the two arms are adjusted to compensate for electronic and

optical path length differences. The collection efficiency is defined as [94],

η =
√
η1 η2

ηlRc√
R1R2

,

where Rc is the coincidence count rate between the two detectors, R1 and

R2 are the signal and idler single count rates, ηl is the optical loss after

the crystal, which is due to the dichroic mirrors, coupling into single mode

fibers and losses in the fibers. η1 and η2 are the APD detection efficiencies

which are about 50% to 60%. We repeated this experiment for different

crystal lengths l=1mm, 2mm, and 10mm to assess the collection efficiency

of the down conversion source. The collection efficiencies using a tightly

focused pump beam with a waist of 82µm is 33.3% for a 1mm crystal,

26.1% for a 2mm crystal and 16.6% for a 10mm crystal. We attributed

the low efficiency of the setup to the four dichroic mirrors which introduces

a loss of 15%, this corresponds to a reflectivity of approximately 96% for

each mirror.

The number of detected photon pairs scales as the square of the length

of the crystal, l2 [95]. However the angular width of the SPDC ring and

bandwidth is proportional to 1/l while the useful intersecting area between

the two rings scales as 1/l2. The number of photon pairs within this area

(for a fixed spectral bandwidth) is independent of the crystal length. A

thicker crystal would certainly produce a larger number of photon pairs

with a narrower spectral bandwidth, however, the collection of these photon

pairs into the SMF collection optics would be less. An infinitely thin crystal

would give a perfect collection efficiency. This is in agreement what we

observed in the experiment where the collection efficiency using a thin 2mm

crystal is higher than that of a 10mm long crystal, see Fig 4.2. Thus, we

adopt the 2mm long crystal in our down-conversion source of photon pairs.

In addition, we observed a pronounced transverse walk-off with a 10mm

crystal which lowers the collection efficiency. As discussed in Section 3.2.1.2,

compensation crystals (CCs) were used to compensate for the spatial walk-

off such that the centre for the distribution of the o and e-polarized photon

pairs coincide. There is still a relatively large spread in the spatial mode
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Figure 4.2: The collection efficiencies of the photon pairs generated via the

SPDC process versus BBO crystal length. The collection efficiency using a

tightly focused pump beam of waist 82µm is 33.3% for a 1mm crystal,

26.1% for a 2mm crystal and 16.6% for a 10mm crystal. The observed

collection efficiency increases with a thinner pump crystal. The curve is

inversely proportional to the crystal length, l.

profile of the e-polarized photon compared to o-polarized photon. This

reduces the spatial mode overlap between the o and e-polarized photon,

hence the coupling of both modes into the SMF is lowered.

4.2 Characterization of Detector Efficiency

Once the down-converted photons are collected into SMFs, we require in-

formation on how well the down-converted photons are detected. A less

than ideal detection of the photons would led to differences between the

measured and actual collection efficiency assuming completely efficient de-
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tection. Thus the efficiency of the detector has to be taken into account

when we assess the collection efficiency of the photon pair source. It is

important to note that the efficiency of a detector is actually a culmination

of two influencing factors: how well the photons are coupled to the active

detection area of the detector and the quantum efficiency of the active area.

For the purpose of our characterization, it was not possible to distinguish

between the two. Only a characterization of the overall detector efficiency

is possible.

Quantum efficiency can be defined as the fraction of incident photons

on the photodiode which contribute to the external photocurrent or pho-

ton counts. Photodiodes are semiconductor devices which contain a p-n

junction and often an intrinsic (undoped) layer between the n and p lay-

ers [96]. Photons absorbed in the depletion region or the intrinsic region

generate electron-hole pairs, most of which contribute to the photocurrent.

A higher responsivity, defined as photocurrent per unit power of input light

(AW−1), can be achieved with avalanche photodiodes which are operated

with a relatively high reverse bias voltage such that secondary electrons

can be generated when the photodiode is operated in a Geiger mode. Sil-

icon photodiodes offer quite high internal quantum efficiency at the mid

and infra-red range, with the efficiency depending on the wavelength. Sur-

face reflectivity of the silicon detection area, thickness of the silicon, and

reverse bias voltage across the photodiode also affect the overall quantum

efficiency.

We performed a simple experiment to estimate the detection efficiency

of a silicon avalanche photodiode (APD). We prepared a collimated beam

of wavelength λ, with a beam size of approximately 1mm in diameter.

The beam is subsequently split by a beam splitter (BS) into two paths.

The transmitted beam is sent to a Hamamatsu (model: S1227-1010) pho-

todetector (PD) with a 10mm x 10mm detection area which has been

precalibrated for its responsivity. The photocurrent generated is measured

using a high sensitivity digital ammeter (HP, model: 3458A). The reflected

beam is sent to a set of neutral density filters which attenuates the light by

an order of 10−14 before being detected by an APD (Perkin Elmer, model:

C30902S) with a 0.2mm2 action detection area. We measured the detec-

tion efficiency of the APD by comparing the number of photons generated
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from the photocurrent at the PD and the number of photons registered at

APD.

The photon counts per second generated from the photocurrent I of the

PD is

nPD =
Iλ

Ahc
, (4.1)

where A is the sensitivity of the photodiode, h is Planck’s constant, and c

is the speed of light. From this we can calculate the detection efficiency of

the APD given by,

ηAPD = (nAPD − ndark)/nPD, (4.2)

where nAPD is the counts registered by the APD and ndark is the dark count

when the APD is not exposed to any light. The dark count increases with

increasing reverse bias voltage and increasing in the temperature of the

APD.

The accuracy of the APD detection efficiency characterization depends

on the accuracy in characterizing the attenuation of each neutral density

filter. We measured the attenuation by measuring the optical power of a

beam, by means of a PD, before and after it passes through the neutral

density filter. The optical power measurement is done by measuring the

photocurrent output from the PD. The photocurrent is on the order of

mA for 780 nm (output from a Ti:Sa laser, operated in cw mode) and

becomes less than µA after the neutral density filters. The accuracy of

the measurement of this weak photocurrent is up to nA. For the 632.8 nm

output from a HeNe laser which is less bright compared to the Ti:Sa laser,

the extremely weak photocurrent being measured contributes to a higher

uncertainty of the attenuation measurement for each neutral density filter.

Thus, the detection efficiency for the input wavelength at 630 nm has an

uncertainty of 13.4% compared to 780 nm which has a lower uncertainty of

only 0.8%.

The obtained detection efficiency of an APD with different input wave-

lengths are summarized in Table 4.1. The detection efficiency varies with

different reverse bias voltages applied to the APD. A larger bias voltage

increases the probability of breakdown, thus increasing the probability of

photon detection and also increases the dark count.
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Table 4.1: Estimation of the detection efficiency η of the APD.

Laser source λ(nm) I(mA) A(A/W) η(%) uncertainty in η (%)

HeNe 632.8 < 0.002 0.43 35.9 13.4

Ti:Sa (cw) 780 5.84 0.57 62.6 0.8

To summarize, in conjunction with the measurement result obtained

in the previous section, the collection efficiency of the photon pairs in the

experiment is greatly reduced by a factor of η. The collection efficiency of

the source using a type-II 1mm BBO is 33%, with a detection efficiency of

approximately 60%. We note that it is possible to obtain higher collection

efficiencies with type-I BBO crystals in a collinear configuration. This

configuration utilized two adjacent BBO crystals (each 15.74mm length)

has reported a collection efficiency of 36-39%, with a detection efficiency

around 51% [97].

4.3 Polarization-Entangled Photons

For the generation of polarization-entangled photons, we implement a typ-

ical down-conversion source similar to that proposed in [15]. Our setup

is shown in Fig. 4.3. The BBO crystal is pumped continuously by a blue

laser diode (Nichia, NDHV310APC, maximum output power of 60mW)

with a running wavelength of λp=405.1 nm. The laser diode is mounted

inside a collimation tube which is temperature stabilized by placing a

peltier element under the diode mounting. For an external cavity diode

laser (ECDL) configuration, an UV reflective holographic grating (Thor-

labs, GH13-36U, 3600 lines per mm) is placed in front of the collimation

tube (Thorlabs, C220-TMA, f= 11mm). The purpose of this diffraction

grating is to lengthen the free running coherence length of the diode laser

from ≈1mm to ≈1m. As discussed in Section 3.3, the coherence length of

the pump laser is one of the key features in order to generate the energy-

time entanglement in the experiment discussed in Section 4.4. The diffrac-

tion grating is used as the wavelength-selective element in the external
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Figure 4.3: Schematic setup of a SPDC source of polarization-entangled

photon pairs. An external cavity diode laser (ECDL) pumps a BBO crystal

which generates polarization-entangled photon pairs via SPDC which are

coupled into SMF. The down-converted signal and idler of photon pairs,

wavelength λs,i=810 nm emerge at an angle of approximately 3◦ from the

axis of propagation of the residual 405 nm pump beam. The polarization

correlation is measured by projecting the photon pairs onto linear polariza-

tion basis, which is selected by tunable λ/2 waveplates and polarizing beam

splitters (PBS).

resonator. The first-order diffracted beam provides optical feedback to

the laser diode and the emission wavelength can be tuned by rotating the

diffraction grating. A disadvantage is that this also changes the direction of

the output beam, which is inconvenient for many applications. An optical

Faraday rotator (OFR, IO-5-405-LP) is placed after the grating to mini-

mize the back reflection from the fiber coupling to the laser diode. The

output of the fiber passes through an aspheric lens (Thorlabs, C220-TMA,

f= 11mm) in order to focus down the beam down to a waist of 80µm.

At the focus, a 2mm thick BBO crystal cut for type-II phase matching

(θ=42.3◦, φ=30.0◦) is placed. The crystal is tilted such that the emis-

sion direction of the photon pairs, λs,i=810 nm emerges at an angle of
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approximately 3◦ from the axis of propagation of the pump beam. This

non-collinear configuration separates the photon pairs from the residual

pump beam. The polarization-entangled photon pairs (o and e-polarized

photons are indistinguishable in each arm) pass through λ/2 waveplates

and a CC to remove the spatial and transverse walk-off before they are

coupled into single mode fibers (SMF). The spatial modes of the photon

pairs, defined by SMF, are matched to the pump mode to optimize the

collection of the photon pairs. A pair of 810 nm interference filters (IF),

transmission bandwidth of 3 nm (Semrock, 99% transmission at 810 nm) is

placed to suppress the scattered light or fluorescence generated from the

BBO crystal. A pair of polarization controllers (PC) is used to ensure that

the polarization of the collected photons at the output fiber is the same as

the input in one arm and the polarization of the photons in the other arm

is orthogonally rotated using the PC. The free phase δ between the two

paths in the polarization state Eq. 3.4 is adjusted to δ=0 by tilting the

CC to arrive at a state |φ+〉

|φ〉+p =
1√
2
(|H〉1|H〉2 + |V 〉1|V 〉2) . (4.3)

4.3.1 Polarization Correlation

The polarization analysis in each arm is performed using a combination of a

λ/2 waveplate on a motorized rotation mount and a polarizing beam split-

ter (PBS). This allows projections onto any arbitrary linear polarization.

The signals from the APDs are sent to a coincidence unit for coincidence

counting.

The polarization entanglement of photon pairs prepared in this setup is

tested by probing the polarization correlations in the horizontal (90◦)/vertical

(0◦) polarization basis also known as the H/V basis (the natural basis

of the type-II down-conversion process) and in a complementary basis.

For the complementary basis it is common to take measurements in the

+45/-45◦ basis. We quote those correlation measurements as visibilities

VHV and V±45◦ , whereby the measurements are performed by rotating the

λ/2 waveplates at angle α0 and α1 which correspond to +45/-45◦ and

H/V bases, respectively. The visibility in the H/V basis is expected to
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be high since the polarization of down-conversion photon pairs generated

are H and V polarized. A high visibility measurement in the +45/-45◦

basis verifies the indistinguishability of the two paths, which leads to a

better quality polarization-entangled source. We observed visibilities of

VHV =99.4± 1.2% and V45◦ =99.4± 1.1% respectively (Fig 4.4)∗.
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Figure 4.4: Polarization correlations measured in the H/V and

+45/-45◦ basis. The observed visibilities are VHV =99.4± 1.2% and

V45◦ =99.4± 1.1% for the H/V and +45/-45◦ bases, respectively.

We thus ensure that our source of polarization-entangled photon pairs

are of a high quality. There is no mechanical stability issues and the setup

design is compact which are reasons why this configuration is often adopted

in research laboratories. The practical limitation is the optical losses and

polarization mode dispersion in the fiber. The optical losses inside the

810 nm single mode fiber is approximately 50% per kilometer. Polarization

mode dispersion is a phenomenon where there is a slight difference in the

propagation time of light with different polarization states inside the fiber.

∗Refer to Section 3.2.2 for details on the measurement procedure for VHV and V45.
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This dispersion has a typical value of approximately a picosecond per kilo-

meter. For the fibers we use in the experiment which are a meter long,

these two factors are insignificant.

4.4 Energy-time Entangled Photons

4.4.1 Consideration of Interferometer Type

As discussed in Section 3.4, energy-time entanglement proposes several

advantages compared to polarization-entanglement. This includes the pos-

sibility of implementing higher-dimensional experiments and we need not

be concerned about polarization mode dispersion in the fiber. However,

practical implementation is difficult due to the high sensitivity of the inter-

ferometers to mechanical instabilities and frequency instability of the pump

laser. To simplify the setup, we chose to generate 2-dimensional energy-

time entangled photons which requires only one unbalanced Mach-Zehnder

in each arm.

We will first discuss the two possible interferometer setups, namely fiber

and free-space interferometers. The most stringent condition of an interfer-

ometer is the perfect spatial mode and beam propagation overlap between

the two modes. Fiber beam splitters offer the advantage of ensuring that

both Gaussian modes are indistinguishable in their spatial distributions

and propagation in each arm has perfect overlap. There is no active sta-

bilization for mechanical vibrations except for temperature stabilization of

the fiber. This is required since the optical path length differences changes

with the room temperature. The change in refractive index inside the fiber

has a typical value of 10−5/K. For a metre of fiber used in the experiment,

a change in temperature of 0.1 degree Celsius causes a phase shift of more

than 2π radian. However, by controlling the temperature, one can set an

arbitrary phase shift in this interferometric experiment. Since the path

length difference of the interferometers have to be kept to within the co-

herence length of the down-converted photons (≈100µm), the fibers need

to be cut to a certain length with a comparative accuracy.

On the other hand, the free space interferometer has less temperature
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and path length problems. The position of the mirror can be controlled

using a stepper motor to reach a path length difference precision of up

to ≈100µm. However, the difference in the beam size increases with the

path length difference. This reduces the indistinguishability and results in

a lower visibility. For this matter, the beam has to be collimated over a

long distance, approximately 1m in our experiment to maximize the inter-

ference visibility. In practice, this imperfection limits the possible number

of interferometers and thus the maximum possible number of dimensions in

the energy-time degree of freedom. In the free-space interferometer, extra

work is needed to align the beam to reach high visibility. The free-space

interferometer offers simpler active stabilization against mechanical vibra-

tions. This is achieved by sending a fixed frequency reference laser beam

following a path parallel to the down-converted photon pairs in the interfer-

ometer. Any vibrations on the mechanical components would be detected

by this reference laser and necessary compensation for this vibration can be

made. After consideration, we chose to adopt the free-space interferometer

design because it is less temperature sensitive and the phase shift is easier

to manipulate using an piezoelectric actuator.

For the pump laser, we used an 405 nm external cavity laser diode which

shows a relatively high visibility ≥ 98% in an interferometer with a path

length difference of 1.5m. A variation in the pump laser wavelength ∆λp

introduces a relative phase shift of the interferometer, ∆φ = 2π∆L∆λP

λ2
p

,

where ∆L is path length is difference. A metre in the path length difference

would probably require a frequency stability of 10MHz. A popular scheme

for reducing the frequency variations down to less than 10MHz is based on

the active stabilization of a suitable stable reference frequency. However,

there are few suitable atomic transition at our pump wavelength to stabilize

to. Alternatively, we can shorten our data acquisition time to avoid the

long term drift in the pump laser frequency.
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4.4.2 Schematic of Setup for Generation Energy-Time

Entangled Photons

Figure 4.5: Schematic setup of a source of energy-time entangled pho-

ton pairs. The down-conversion photon pairs were sent into unbalanced

Mach-Zehnder interferometers where |0〉 and |1〉 represent the short and long

path, respectively. By discarding the states |0〉A|1〉B and |1〉A|0〉B, the post-
selected states |0〉A|0〉B and |1〉A|1〉B constitute the energy-time entangled

state.

The setup for the generation of energy-time entangled photons is shown

in Fig. 4.5. The condition that the delay ∆T = ∆L/c must be smaller than

the coherence time of the pump photon τ2 is fulfilled by using the 405 nm

external cavity laser diode as pump laser. This condition guarantees the

coherent superposition of the photon pairs which take the short path or

long path in the interferometers. Furthermore, a path length difference of

∆L = 0.75m or 2.5 ns, was chosen which can exceed our coincidence time

window.

Photon pairs generated from down-conversion using a 2mm long BBO

crystal are sent into unbalanced Mach-Zehnder interferometers. For the

48

4/figures/EPS/timebin.eps


4.4 Energy-time Entangled Photons

preliminary measurement, a pair of polarizers (Pol) are inserted in the in-

terferometers to select one of the two states |H〉A|H〉B and |V 〉A|V 〉B gen-

erated from the down-conversion source. We introduce the long path by

placing a mirror (M) at ∆L/2 away from the beam splitter (BS). This long

path is folded such that the retro-reflection introduces a total path length

difference of ∆L = 0.75m. The Franson interference requires the mirror to

be placed accurately to within the coherence length of the down-conversion

photons, lc ≈ 100µm. Therefore, the movement of the mirror is controlled

by a combination of a stepper motor which moves the mirror with µm

precision and a piezoelectric actuator (Thorlabs: AE0505D08F, maximum

displacement of 9.1µm at 150V) which moves the mirror with submicron

precision. The voltage sent to the piezoelectric actuator changes the phase

φA and φB of the interferometers. We built an external cavity laser diode

which has an operating wavelength of λ = 810 nm (JDSU: 5400202, maxi-

mum output power of 50mW) to simulate the down-conversion beam. The

laser beam is visible to the naked eye and the coherence length is ≥ 1m al-

lowing us to align the interferometers. The two interferometers are aligned

to reach an interference visibility of at least 97%.

The coincidence time window was chosen which exceeds our APD tim-

ing uncertainty. We measured the timing resolution by registering the

photon pair coincidences between the two APDs. The number of coinci-

dences is maximum when the time difference ∆t between these two signals

is zero. The full width at half maximum (FWHM) was measured to be

approximately 1 ns (Fig. 4.6).

4.4.3 Matching the Interferometer Path Length Dif-

ferences

To match the path length difference between the two interferometers, the

output of one of them is directly coupled into the other interferometer input

by a SMF (Fig. 4.7).

To avoid observing single photon interference effects in the interferom-

eter itself, the coherence length of the input laser beam has to be shorter

than ∆L. This warrants that the interference observed is purely due to
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Figure 4.6: APD timing resolution. The number of coincidences is maxi-

mum when the time difference between the two signals is zero. The timing

resolution is measured to be approximately 1 ns.

the path indistinguishability between the two interferometers. We chose a

Ti:Sa pulsed laser which operates at 810 nm wavelength with a bandwidth

of 5 nm (approximately the bandwidth of the down-conversion photons).

The power is a few mW and the beam is coupled into the SMF of the input

interferometer. By moving the mirror (M) using the stepper motor, once

the interferometer path lengths are equalized up to the coherence length

of the input beam, the two states |0〉A|1〉B and |0〉B|1〉A of the photons

interfere (Fig. 4.8). By monitoring the signals from APD 1 or APD 2,

the position of the mirror is adjusted until the maximum interference is

observed. This corresponds to a matched path length difference in these

two interferometers. The matching of the path lengths is verified by send-

ing the down-converted photon pairs into both interferometers as shown in

Fig. 4.5. Instead of measuring the interference between the two coupled in-

terferometers as mentioned earlier, we measured the coincidence registered
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Figure 4.7: Matching the path length difference between the two inter-

ferometers. An input pulse laser was sent into the first interferometer with

an interference filter (IF) at the input of the interferometer. The output is

coupled into the next interferometer using a single mode fiber. By moving

one of the mirrors (M) in the interferometers, once the path length differ-

ence between the two interferometers is less than the coherence length of the

input beam, interference is observed and detected using APD 1 and APD 2.

between the detectors in interferometer A and B. The observed interference

is a space separated interference or Franson interference. The FWHM of

the envelope corresponds to the coherence length of the down-conversion

photons which is approximately lc ≈ 130µm (Fig. 4.9). This measure-

ment is undersampling due to the resolution of the stepper motors. In

order to resolve the resolution problem and able to measure the visibility

of the Franson interference, a finer scan is performed later on by using a
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Figure 4.8: Interference (absolute photon counts) between the two states

|0〉A|1〉B and |0〉B|1〉A showing in the APD signals (either APD 1 or APD

2). Using a pulsed laser as an input, the position of the mirror is adjusted

until the observed interference is maximum. This corresponds to the two

interferometer path lengths being equalized.
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piezoelectric actuator, see Section 4.4.5.
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Figure 4.9: Franson interference (coincidence) between the two states

|0〉A|0〉B and |1〉B|1〉A. The coincidences are between APD A and APD B

signals (A1B1, A1B2, A2B1 or A2B2, see Fig. 4.5). Using down-conversion

photon pairs as an input, the Franson interference is observed while scan-

ning the position of the mirror. The FWHM of the envelope corresponds to

the coherence length of the down-converted photons which is approximately

lc ≈ 130µm. The black solid line joins the experimental data points and

this measurement is undersampling due to the resolution of the scan.
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4.4.4 Coincidence Time Window
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Figure 4.10: Coincidences registered between detectors in interferometer

A and B without post-selection. The central peak corresponds to the indis-

tinguishable states |0〉A|0〉B and |1〉A|1〉B. The satellite peaks are the states

|0〉A|1〉B |1〉A|0〉B which can be discarded by an appropriate choice of co-

incidence time window. The curve fit reveals the path length difference is

0.741m or 2.47 ns and suggests that the coincidence time window should be

below 2.5 ns to avoid any contribution to the coincidences from the satellite

peaks.

After matching the path length differences, the subsequent procedure

is to select an appropriate coincidence time window. As discussed in Sec-

tion 3.3, an appropriate coincidence time window is chosen to postselect

the states |0〉A|0〉B and |1〉A|1〉B.
First, the path length difference ∆L is measured by measuring the co-

incidences of down-converted photon pairs between the detectors in inter-

ferometer A and B without post-selection. The coincidences are measured
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by delaying one of the detector signals, tA − tB. In Fig. 4.10, the central

peak corresponds to the indistinguishable states |0〉A|0〉B and |1〉A|1〉B. The
satellite peaks are the states |0〉A|1〉B and |1〉A|0〉B which can be discarded

by an appropriate coincidence time window. The curve fit reveals that

the path length difference is 0.741m or 2.47 ns and suggests that the co-

incidence time window should be below 2.5 ns to avoid any coincidences

contribution from the satellite peaks. Any unwanted coincidences reduces

the quality of the energy-time entangled state.

To characterize the coincidence time window of our n-channel coinci-

dence unit [98], we measured the coincidences between two identical copies

of a signal obtained from the output of an APD sent into channel 0 and 1.

A variable delay t, defined as the relative delay of channel 1 with respect

to channel 0, was introduced between them (Fig 4.11).

Figure 4.11: n-channel coincidence unit. The signals (photon count rates)

are sent into channel 0 and 1 for coincidence counting measurement. The

coincidence time window t is determined by an adjustable delay unit with

a variable capacitor forming the time delay circuit. The coincidence is reg-

istered if there are two signals from different channels detected within the

coincidence time window. The digital-to-analog converter (DAC) converts

a digital code (0...4095) to an analog signal which controls the coincidence

time window in the coincidence unit. The coincidence unit is connected to a

computer for data processing. The signals from the n-channels with different

arrival times are fed into an OR gate and the coincidence unit only triggers

on the earliest signal among those channels.
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Figure 4.12: Coincidence time window (DAC code) versus time delay t,

defined as relative delay of channel 1 with respect to channel 0. The right

bar shows the number of coincidence events. The coincidences are maximum

when the time delay between the signals are centered around zero. This

graph provides us with a map between DAC code needed to set the desired

coincidence time window.

This measurement was repeated by varying the coincidence time win-

dow of our coincidence unit. A 3D plot with the parameters: time window,

delay, and coincidence events is plotted to obtain the coincidence time win-

dow setting (Fig. 4.12). The coincidence time window of our unit ranges

from 1.6 ns to 5.6 ns. We decide to set the coincidence time window to

be 1.6 ns, the smallest time window, in order to discard the unwanted

coincidences contributed from the satellite peaks and postselect only the

indistinguishable states |0〉A|0〉B and |1〉A|1〉B.
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4.4.5 Energy-time Correlation

Having matched the path length difference of both interferometers and

set the appropriate coincidence time window of the coincidence unit, the

coincidences registered can be described as a coherent superposition of the

states |0〉A|0〉B and |1〉A|1〉B. Only when the coherence length of the pump

laser is larger than ∆L then the energy-time entangled state is written as

|φ〉t =
1√
2

(

|0〉A|0〉B − ei(φA+φB)|1〉A|1〉B
)

. (4.4)

The laser condition must hold over the whole measurement time taken.

The laser frequency instability changes the relative phase in the interfer-

ometer A and B [99]. This was monitored on the additional interferometer

with the pump laser as an input. Due to the instability of the pump laser

diode, the external cavity length has to be adjusted (this can be done by

moving the grating with a piezoelectric actuator, which effectively changes

the cavity length) to obtain an output beam with sufficiently long coher-

ence length. A stable and high visibility interference was observed at this

additional interferometer with a path length difference of approximately

1.5m, which satisfies the condition that the coherence length of the pump

photon is greater than the path length difference in the interferometers

τ2 > ∆T . We measured the visibility of the energy-time entangled state

or Franson interference by changing the phase φA and φB in the inter-

ferometers. This measurement is similar to the procedure described in

Section 4.4.3, but here we control the relative phases or path length dif-

ferences by piezoelectric actuators. This allows a finer resolution in mea-

suring the constructive and destructive interference of the coincidences.

With a coincidence time window of 1.6 ns, by analyzing the long-short

path for |H〉 photons, we observed visibilities of VA1B1=94.3± 5.2% and

VA1B2=96.1± 3.3% for coincidences between A1B1 and A1B2, respectively

(Fig 4.13). For the long-short path for |V 〉 photons, we observed visibilities

of VA1B1=101.0± 6.9% and VA1B2=96.6± 3.3% for coincidences between

A1B1 and A1B2, respectively. The visibilities and their uncertainties are

obtained from least-square fit of sine wave to the experimetal data. The

relative phase shift between the interferometer is controlled by feeding an

applied voltage into the piezoelectric actuator. The stability of the inter-

58



4.4 Energy-time Entangled Photons

Figure 4.13: Energy-time correlation or Franson interference of long-short

path for |H〉 (top) and |V 〉 (bottom). The relative phase shift between the

interferometers A and B is controlled by a piezoelectric actuator. (top)

The observed visibilities are VA1B1=94.3± 5.2% and VA1B2=96.1± 3.6%

for coincidences between A1B1 and A1B2, respectively. (bottom) The ob-

served visibilities are VA1B1=101.0± 5.9% and VA1B2=96.6± 3.3% for co-

incidences between A1B1 and A1B2, respectively. The unequal periods of

the visibility trace for the two interferometers is mainly due to interferometer

A and B having different piezoelectric actuators.
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ferometers limits our integration time and hence results in a larger error

bar in the measurement.
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4.5 Summary

In the polarization-entangled source, the down-converted photon pairs gen-

erated from the BBO crystal is in a superposition state and the collection

optics are positioned such that these indistinguishable photon pairs are

collected efficiently. The measurement settings for the polarization basis

are determined by the orientation of the waveplates in the analyzers which

can be calibrated in advanced. This entangled state is well defined which

facilitates further analysis this source.

This is different for the energy-time entangled source, whereby the in-

distinguishability between the two decay paths for photon pairs relies on

the stability of the interferometers built in this experiment. Any stability

issues result in the entangled state being not perfectly well-defined and the

subsequent visibility measurements and analysis become less straight for-

ward. Moreover, the measurement settings on the relative phases are not

easily determined and controlled since the phases are subject to the relative

stability between the two interferometers and the frequency stability of the

pump laser. The solutions to this problem will be discussed in Chapter 5.
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Chapter 5

Violation of the 4-Dimensional

CGLMP Inequality

In this Chapter we give a detailed overview of the implementation of a

4-dimensional entangled state and highlight the findings from our attempt

to violate the 4-dimensional CGLMP inequality.

5.1 Background

In view of high-dimensional entanglement having promising applications in

quantum information science, much progress has been made on the genera-

tion of high-dimensional entangled states [71, 77]. These experiments show

non-classical correlations but practical applications are only conceivable

when it is possible to detect these high-dimensional entangled states. Ex-

periments reported recently in [100, 101] show that a classical d dimensional

system can violate a quantum d−1 dimensional system, up to d = 4 using

the orbital angular momentum degree of freedom. However, the weakness

of the witnesses defined in their experiments is that they are unable to rule

out the possibility of having a classical d-dimensional state instead of a d-

dimensional entangled state. The CGMLP inequality or dimension witness

defined in our experiment has the advantage in identifying the classical

correlations for any d-dimensional systems. Therefore we are only probing

the lower bound of the d-dimensional entangled states in our experiment.
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5.2 Implementation of 4-Dimensional Entan-

gled Photons

The probing of dimensionality in this experiment was proposed by Cai [102].

The 4-dimensional entangled photons consists of a combination of a polar-

ization and energy-time entangled photons and the state is written as,

|Φ〉 = |φ+
polarization〉 ⊗ |φ+

energy−time〉. (5.1)

The above state can be further rewritten as the 4-dimensional maximally

entangled state in Eq. 2.10.

The setup for the energy-time entangled experiment is modified with

two interferometers in each arm to analyze the horizontal (H) and vertical

(V) polarization of the entangled photons.

In Fig. 5.1, one of the polarized-entangled photon pairs was sent to Al-

ice’s side, with a polarizing beam splitter (PBS) which transmits the |H〉
photons and reflects the |V 〉 photons before the photons are sent respec-

tively into the unbalanced Mach-Zehnder interferometer. There are two

separate unbalanced Mach-Zehnder interferometers, one for each polariza-

tion. After the first beam splitter (BS), the |H〉 photons which take the long

path or |V 〉 photons which take the short path is sent through a λ/2 wave-

plate which transforms |H〉 → 1√
2
(|H〉+ |V 〉) and |V 〉 → 1√

2
(−|H〉+ |V 〉).

The |H〉 photons which take the short path or |V 〉 photons which take

the long path is sent through a λ/4 waveplate which transforms |H〉 →
1√
2
(|H〉 + i|V 〉) and |V 〉 → 1√

2
(i|H〉 + |V 〉). Following this, the photons

recombine at the second BS which completes the Mach-Zehnder inter-

ferometer. Following each output of the second beam splitter, a PBS is

placed. Photons from the output ports of the PBS were then detected with

APDs. There are total of four detectors on each side corresponding to four

outcomes in this measurement. For Bob’s side, the setup is entirely the

same except the |H〉 photons which take the short path or |V 〉 photons

which take the long path is sent through a λ/4 waveplate which transforms

|H〉 → 1√
2
(|H〉 − i|V 〉) and |V 〉 → 1√

2
(−i|H〉+ |V 〉). The purpose of these

waveplate orientations and the phases φP,H,V are meant for the CGLMP

measurement which will be discussed in the later part of this chapter.

64



5.2 Implementation of 4-Dimensional Entangled Photons

Figure 5.1: Implementation of 4-dimensional entangled photons. The

scheme of energy-time entangled experiment is modified with two interfer-

ometers in each arm to analyze the horizontal and vertical polarization of

the polarized-entangled photons.

There are two major disadvantages with this setup. For the CGLMP

measurement, we measure 4 × 4 = 16 combinations of two-fold coinci-

dences. The schematic design of the energy-time experiment introduces an

inherent 50% losses for the single photon counting. The two-fold coinci-

dence between Alice and Bob is expected to be only 0.50 × 0.50 = 0.25

of the total coincidences generated from down-conversion. Furthermore,

the stability of the interferometers is subjected to temperature change and

vibrations from the environment. The thermal expansion of aluminium

optomechanics on which the optics are mounted are on the order of µm/K

which means in general there is a long term drift in the relative phase

between the interferometers. In order to minimize the temperature fluctu-

ations and vibrations from air currents, thus increasing the interferometric
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stability, the setup is enclosed in a box .

5.2.1 Optimizing the Quality of the Interferometers

The path length difference of the short path for |H〉 and |V 〉 photons has
to be kept within the coherence length of the down-converted photons. We

applied the same technique as discussed earlier in Section 4.4.3, we equal-

ized these two short paths using a pulsed laser as an input. A maximum

visibility of the interference corresponds to the path length difference being

within the coherence length of the input beam. We observed a visibility of

at least 97% for this short-short path interference.

After matching the short-short path length difference, we proceed to

match the path length difference of the long-short interferometers of A and

B. The conditions below need to be satisfied,

lAH − sAH = lAV − sAV = lBH − sBH = lBV − sBV . (5.2)

where l indicates the long path, s the short path, H for horizontal polariza-

tion, V for vertical polarization, A for Alice and B for Bob. The above con-

dition must hold at least within the coherence length of the down-converted

photons. This was accomplished in three steps similar to Section 4.4.3 but

in a different order. First, we matched the long-short path length for |H〉
in Alice and Bob, then we matched the long-short path length for |H〉 in

Alice and |V 〉 in Bob, and lastly we matched the long-short path length for

|V 〉 in Alice and Bob.

The alignment of these three interferometers in one arm requires a sub-

stantial amount of work since the alignment procedure needs to be done

in sequence and the corresponding mirrors need to be readjusted until the

visibilities reach maximum and the path length differences need to be re-

matched. The long-short path length difference is still kept to ∆L =0.75m

and the short path is kept to approximately 0.38m which is almost the

shortest path we could work with. This is because the length of the short

path is determined mostly by the size of our optomechanical and optical

components. We measured the visibilities for each interferometer using

the pulsed laser and external cavity diode laser (ECDL). The table below

summarizes the visibility measurements.
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Table 5.1: Visibility of Interferometers.

Laser input
short-short long-short long-short long-long

|H〉 path |V 〉 path

Pulse laser, Alice 97.9% - - 93.0%

lc ≈ 0.1mm Bob 98.7% - - 94.5%

ECDL, Alice 98.5% 97.2% 97.2% 96.2%

lc ≥ 1m Bob 98.8% 96.8% 96.2% 95.9%

We attribute the reduction in visibility for the long-short path to the

imperfect overlapping between the two spatial modes. In practice, we can

maximize the first three visibilities in Table 5.1 by adjusting the path length

difference and the corresponding mirrors. The difficulty of these alignments

is that these interferometers share common paths and the mirrors have to

be adjusted to make sure all these visibilities reach optimum. The long-

long path interference suffers from a lower visibility because all the mirrors

have been optimized for maximum visibility for the first three visibility

measurements in Table 5.1, and hence there are no extra degrees of freedom

to increase the long-long path interference visibility. It is not known why

the measured visibilities in long-long path interference using the pulsed

laser as input are lower than the ECDL.

5.2.2 Phase Shift Compensation

The next issue is we faced was the imperfect splitting ratio and change in

polarization of the output beam from the BS. The splitting ratio is not 50:50

but instead, an unbalanced ratio of 45:55, subject to the polarization of the

input light. This leads to unbalanced detector measurements and a skew

in the photon counting statistics. We resolve this problem by adjusting the

detector coupling in order to obtain a balanced measurement. However,

the issues of unequal splitting ratio raise the concern of the accuracy in our

measurement basis which cannot be solved exactly by just adjusting the

detector coupling.

The second problem of the BS is that it does not maintain the polar-
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ization of the light passing through it. The observation of the short-short

path interference projected on the |H〉 and |V 〉 basis is not consistent with
theoretical prediction. We consider mode propagation in the short-short

path with the mode entering the PBS written as (Fig. 5.1)

a
PBS−−→ 1√

2
(cH − ieiφP dV ) (5.3)

cH
QWP−−−→ 1√

2
(cH ± icV ) (5.4)

dV
HWP−−−→ 1√

2
(−dH + dV ) (5.5)

where the plus sign indicates the setting for Alice and minus sign for Bob.

The four modes for Alice and Bob after the BS are








A1
A2
A3
A4









=
1

2
√
2









i+ ieiφP

−i− eiφP

1− eiφP

1 + ieiφP









, (5.6)









B1
B2
B3
B4









=
1

2
√
2









i+ ieiφP

i− eiφP

1− eiφP

−1 + ieiφP









. (5.7)

The probabilities of detecting these modes are








|A1|2
|A2|2
|A3|2
|A4|2









=
1

4









1 + cosφP

1 + sinφP

1− cosφP

1− sinφP









, (5.8)









|B1|2
|B2|2
|B3|2
|B4|2









=
1

4









1 + cosφP

1− sinφP

1− cosφP

1 + sinφP









. (5.9)

By measuring these interferences in the |H〉 and |V 〉 basis, the phase shift

values obtained do not agree to each other with a discrepancy of at least

half a radian (Fig. 5.2). This is mainly because the BS introduces an

anomalous phase shift between the |H〉 and |V 〉 components, which effec-

tively changes the polarization. To recover the polarization after the beam

passes through the BS, a quartz plate is placed before the BS input. The

quartz plates correct the relative phases of the |H〉 and |V 〉 components,

hence maintaining the original input polarization.
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Figure 5.2: Compensation of the phase shift by the quartz plate. (top)

The interference of the short-short path as measured by four APDs with-

out quartz plate. A phase shift introduced by the beam splitter (BS) was

observed between APD 1 and 3 (projected on |H〉 basis) and APD 2 and 4

(projected on |V 〉 basis). The phase shift is compensated by introducing two

quartz plates with each placed before the BS input. (bottom) The observed

interference is in agreement with the theoretical prediction (Eq. 5.9) after

compensating for the anomalous phase shift due to the beam splitter (BS)

with quartz plates.
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5.2.3 Quality of the 4-dimensional Entangled State

We measured the visibility of this source separately, namely the visibility of

the polarization correlation, energy-time correlation for |H〉, and energy-

time correlation for |V 〉. These visibility measurements have been men-

tioned in the previous sections and we summarized the result in Table 5.2.

Table 5.2: Visibility of different entangled source.

Type of entangled source Visibility

Polarization ≥ 99.4%

Energy-time, |H〉 ≥ 94.3%

Energy-time, |V 〉 ≥ 96.6%

The total coincidences or sum of all 16 possible 2-fold coincidences is

930 coincidences per minute. The main objective of this experiment is not

to develop a high brightness entangled source and we did not put much

effort in increasing the total number of coincidences. The main losses came

from the interferometer design and the coupling from the source to the

detectors.

5.2.4 Piezoelectric Actuator

The piezoelectric actuator transforms electrical energy into precisely con-

trolled mechanical displacements. They are ideal for applications requiring

rapid, precise positional changes on the nanometer or micrometer scale.

However the non-linearity of the mechanical displacements or hysteresis is

a problem since the displacement varies with the direction of the applied

voltage. This affects the accuracy of our phase measurements in the in-

terferometers. The hysteresis effect was characterized using our existing

interferometric setup. Our measurement shows that hysteresis is present

even though the applied voltage is 20V, which does not exceed the maxi-

mum applied voltage of 150V.

Using the JDSU laser diode as an input laser, we measured the single

photon interference signal generated from the interferometer by increasing
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and decreasing the applied voltage to the piezoelectric actuator. The values

of the phases are extracted to study the displacement behaviour of the

piezoelectric actuator. The hysteresis curve of displacement versus voltage

is mapped out for different voltage step sizes, namely 0.05V, 0.5V, and 1V.

Fig. 5.3 shows that the displacement takes different paths depending on the

direction of the applied voltage and the voltage step size. These different

step sizes contribute to the phase setting error ranging from approximately

0.4 rad to 0.6 rad. Since the hysteresis curve is always reproducible, it

suggests that consistent displacement can always be reproduced using the

same voltage if the voltage is always reset to origin.

Figure 5.3: Hysteresis curve with displacement versus voltage mapped out

for different voltage step sizes, namely 0.05V, 0.5V, and 1V. The displace-

ment deviation varies from 0.4 rad to 0.6 rad depending on the step size. The

displacement deviation was calculated at 10V, a median value of the applied

voltage in the experiment. The hysteresis curve is a conceptual drawing and

may not be to scale.
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However, it is discovered that applying the voltage in one direction does

not necessarily reproduce the original displacement even though the voltage

is reset to origin. With an input voltage of 20V in steps of 1V, there is still

a consistent error of at least 0.5 rad in reproducing the phase measurement

values. This error slowly reduces to approximately 0.02 rad after the step

size is decreased to 0.05V. Assuming the interferometric setup is stable

for this duration of time, the relative phases in the interferometers can be

measured and set accordingly.

5.2.5 Stabilizing the Interferometers

The stabilization scheme requires the ability of the piezoelectric actuator

to reproduce the relative phase settings in the interferometers. In this

experiment, a beam from an external cavity laser diode is used to simu-

late the down-converted photons in order to measure the relative phases

in the interferometers. In order to measure the short-short path interfer-

ence, shutters are installed to block the long path for |H〉 and |V 〉 photons.
For measuring the long-short path interference for |H〉 (|V 〉) photons, the
long path for |V 〉 (|H〉) photons is blocked by the shutters. By scanning

the piezoelectric actuators, these three individual interference signals are

measured separately which allow us to extract the phases by fitting the

visibility curves. Once the relation between the phase and voltage is ex-

tracted, we can implement the stabilization scheme by setting the required

phases to the required values. For this reason the piezoelectric actuator is

studied in detail in Section 5.2.4 to ensure that the phases are measured

and set correctly. To verify that our stabilization scheme works accordingly,

we measured the output of the interferometer by setting the relative phase

beginning from 0 to 2π. The measurement was repeated several times

to verify that these measurement were reproducible in order to assess the

uncertainty of our phase settings. In Fig. 5.4, the step size of the input

phases is 0.5 rad and the plot is the best fit curve for each measurement.

We estimate the uncertainty of the set phases to be 0.1 rad.

In our experiment, the piezoelectric actuators play two major roles. We

used them to stabilize the interferometers and set the required phase set-

tings in the measurements. The alternative approach is to send a reference
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Figure 5.4: The uncertainty of the phase setting is approximately 0.1 rad.

laser beam into the interferometer. The interferometer is then locked to

the error signals generated from the outputs of interferometer. The relative

phases can be set by placing a very thin rotatable cover slip in the optical

path length of the interferometer and the phase introduced by the cover slip

can be calibrated. However, this strategy does not apply in our experiment

since there are three interferometers which share common paths.

In summary, the main source of error of the phase settings comes from

the long duration (5∼10 minutes) taken to scan the piezoelectric actuators.

This is because we run through two hysteresis cycles to make sure the set

phases are accurate. The interferometers are enclosed in a box to provide

better passive stability during the measurement.

As discussed in Section 4.4.5, the frequency stability of the pump laser

affects the energy-time correlation. The residual pump beam after the

BBO crystal is sent to a Michelson interferometer with a path length dif-

ference of 1.5m. The interferometer is misaligned to produce a few fringes

projected on the CCD camera for the purpose of locking. The high fre-

quency drift in the observed fringes rule out the possibility of vibration
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and thermal drift of the mechanical components. The grating is controlled

by attaching a piezoelectric actuator which ensures the fringes are always

locked. The interferometer is enclosed in a box to minimize the instability

of the interferometer. This ensures that the feedback is compensating for

the frequency drift of the pump laser and not of the interferometer.

5.3 Measurement Settings

In the CGLMP paper [30] discussed the Eq. 2.5, a maximally-entangled

state of a two d-dimensional system has the nondegenerate eigenvectors

|k〉A,a =
1√
d

d−1
∑

j=0

ei
2π
d
j(k+αa)|j〉A,

|l〉B,b =
1√
d

d−1
∑

j=0

ei
2π
d
j(−l+βb)|j〉B, (5.10)

with operators Aa, a = 1, 2 measured by Alice and Bb, b = 1, 2 measured

by Bob, and α1 = 0, α2 = 1
2
, β1 = 1

4
and β2 = −1

4
. Eq. 5.10 has been

shown to maximize the violation of the CGLMP inequality for the maxi-

mally entangled state of two d-dimensional system [28, 103]. We consider

a dimensionality of d = 4 and expand the eigenvectors

|k = 0〉A,1 = |0〉+ |1〉+ |2〉+ |3〉
|k = 1〉A,1 = |0〉+ i|1〉 − |2〉 − i|3〉
|k = 2〉A,1 = |0〉 − |1〉+ |2〉 − |3〉
|k = 3〉A,1 = |0〉 − i|1〉 − |2〉+ i|3〉

|k = 0〉A,2 = |0〉+ ei
π
4 |1〉+ ei

π
2 |2〉+ ei

3π
4 |3〉

|k = 1〉A,2 = |0〉+ iei
π
4 |1〉 − ei

π
2 |2〉 − iei

3π
4 |3〉

|k = 2〉A,2 = |0〉 − ei
π
4 |1〉+ ei

π
2 |2〉 − ei

3π
4 |3〉

|k = 3〉A,2 = |0〉 − iei
π
4 |1〉 − ei

π
2 |2〉+ iei

3π
4 |3〉
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|l = 0〉B,1 = |0〉+ ei
π
8 |1〉+ ei

π
4 |2〉+ ei

3π
8 |3〉

|l = 1〉B,1 = |0〉 − iei
π
8 |1〉 − ei

π
4 |2〉+ iei

3π
8 |3〉

|l = 2〉B,1 = |0〉 − ei
π
8 |1〉+ ei

π
4 |2〉 − ei

3π
8 |3〉

|l = 3〉B,1 = |0〉+ iei
π
8 |1〉 − ei

π
4 |2〉 − iei

3π
8 |3〉

|l = 0〉B,2 = |0〉+ e−iπ
8 |1〉+ e−iπ

4 |2〉+ e−i 3π
8 |3〉

|l = 1〉B,2 = |0〉 − ie−iπ
8 |1〉 − e−iπ

4 |2〉+ ie−i 3π
8 |3〉

|l = 2〉B,2 = |0〉 − e−iπ
8 |1〉+ e−iπ

4 |2〉 − e−i 3π
8 |3〉

|l = 3〉B,2 = |0〉+ ie−iπ
8 |1〉 − e−iπ

4 |2〉 − ie−i 3π
8 |3〉 (5.11)

In order to obtain the required measurement settings in this experiment,

we begin with the mode propagation (Fig. 5.5)

aH,k −→ −ieiφH (−icH,k+1 − icV,k+1 + dH,k+1 − dV,k+1) (5.12)

+cH,k ∓ icV,k − idH,k ± dV,k,

aV,k −→ eiφP eiφV (∓cH,k+1 − icV,k+1 ± idH,k+1 + dV,k+1) (5.13)

+eiφP (−cH,k + cV,k − idH,k − idV,k),

with an upper sign for Alice and lower sign for Bob since the QWP wave-

plate setting for Alice transforms |H〉 → 1√
2
(|H〉+ i|V 〉) and vertical polar-

ization |V 〉 → 1√
2
(i|H〉 + |V 〉) and QWP waveplate setting for Bob trans-

forms |H〉 → 1√
2
(|H〉− i|V 〉) and |V 〉 → 1√

2
(−i|H〉+ |V 〉). The subscript k

represents the short path and k+1 represents the long path. Using Eq. 5.12

and 5.13, we expressed the modes in the first (k = 0) and second (k = 1)

time-bin and modes in the second (k = 1) and third (k = 2) time-bin.

We post-selected the mode in second (k = 1) time-bin only and wrote the

output port c and d as

cH = ie−iφH |0〉 ∓ e−iφP e−iφV |1〉 − e−iφP |2〉+ |3〉,
dV = −e−iφH |0〉+ e−iφP e−iφV |1〉+ ie−iφP |2〉 ± |3〉,
dH = e−iφH |0〉 ∓ ie−iφP e−iφV |1〉+ ie−iφP |2〉+ i|3〉,
cV = ie−iφH |0〉+ ie−iφP e−iφV |1〉+ e−iφP |2〉 ± i|3〉. (5.14)

where |0〉 = aH,0|vac〉, |1〉 = aV,0|vac〉, |2〉 = aV,1|vac〉, and |3〉 = aH,1|vac〉.
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Figure 5.5: Schematic of the measurement unit on either Alice’s or Bob’s

side. Mode a enters the PBS. The subscript k represents the short path and

k + 1 represents the long path. The transmitted mode after the polarizing

beam splitter (PBS) is split into two modes by a beam splitter (BS). The

two modes are aH,k which passes through the QWP waveplate and aH,k+1

which accumulates phase φH and passes through the HWP. The reflected

mode after the PBS is split into two modes by a BS. The two modes are aV,k

which passes through the HWP waveplate and aV,k+1 which accumulates

phase φV and passes through the QWP.

We compared Eq. 5.14 and Eq. 5.11 in order to extract the required

φP1, φP2, φH1, φH2, φV 1, and φV 2 phase settings. The required phase set-

tings are extracted as shown in the Table 5.3, where Ai and Bi are the

measurement settings for Alice and Bob respectively. We need to measure

2-fold coincidences between Alice and Bob by choosing the measurement

settings A0B0, A0B1, A1B0, and A1B1. Refer to table 2.1, for a 2 dimen-

sional quantum system, the maximum violation of I2222 = 0.2071 and for a
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Table 5.3: The choices of phases in the interferometers to probe the 4-

dimensional entangled state for A0, A1, B0 and B1 settings.

φP φH φV

A0 −π π
2

0

A1
5π
4

5π
4

π
4

B0 −9π
8

π
8

7π
8

B1
9π
8

7π
8

9π
8

3 dimensional quantum system, the maximum violation of I2233 = 0.30495.

In order to show that the quantum system has a dimensionality of 4, we

aim to achieve a value between 0.30495 and 0.33609. Any values less than

zero indicates the system is classical as discussed in Section 2.2.1.

5.4 Experimental Results & Conclusions

With a maximally entangled state |Φ〉 = |φ+
polarization〉⊗|φ+

energy−time〉 as the
input, we measured the coincidence rates for 30 seconds in each setting.

However, the total time taken to perform this measurement took approx-

imately 7 minutes. More than 6 minutes were actually used to measure

and set the relative phases in the three interferometers. The applied volt-

ages to the piezoelectric actuators had a 0.1V step size, a reasonably slow

rate. The alternative solution is to replace the piezoelectric actuator fitted

with a strain gauge. The actuator under a compressive loading generates

an electric charge that is directly proportional to the force applied. The

feedback voltage converted from the electric charge can provide a linear

operation of the piezoelectric actuator [104].

We measured the CGLMP violation to be I2244 = 0.30 ± 0.04. This

value indicates that the state of the system is in 3 dimensions since this

value exceeds the maximum violation of a qubit system. Several measure-

ment shows that the violation we measured exceeds I2233, hinting that there

is a possibility of the state is in 4 dimensions but this is subject to the ac-

curacy of our measurements since the error bar is too large for us to make
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such a claim.

Our experiment is limited by the low coincidence rates and the stability

of the experimental setup which results in a relatively large error in our

final measurements even though the polarized and energy-time entangled

photons exhibit a high visibility in their respective polarization and energy-

time correlation. Since a substantial amount of time was spent locating the

individual phase settings, this increased the probability of our experimental

setup being affected by the stability of the interferometers and frequency

of the pump laser. The frequency stability of the pump laser is currently

being addressed. We remain uncertain about the tolerance of our phase

settings in this CGLMP inequality measurement. Given that the upper

and lower bound of this inequality is smaller than our error bar in our

measurement, an increase in data acquisition time and coincidence rates

may help to resolve this problem. An alternative suggestion is to use a

non-maximally entangled state as an input increases the upper bound of

this inequality, Imax
2244 = 0.364762, which means that we can afford a bigger

error bar.
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Chapter 6

Final Remarks

The experimental scheme to encode states in a 4-dimensional Hilbert space

into entangled photon states has been presented. The hyperentanglement

involving the polarization and energy-time degrees of freedom of the pho-

tons was analyzed with four outputs for each signal and idler photon pairs.

A high dimensional entangled state lowers the threshold of the detection

efficiency for loophole free Bell experiments [28]. In the earlier part of

Chapter 4, the collection efficiency of the photon pairs generated from the

BBO crystal and detector efficiency of the APD used were characterized.

We showed that a loophole free experiment using type-II down-conversion

using a BBO crystal is difficult to implement because the collection effi-

ciency of the source does not exceed the minimum value required [28].

We focused on a test of the CGLMP inequality measurement. Never-

theless, the losses introduced by the interferometers lead to a large decrease

in the coincidence count rate. To increase the coincidence count rates, we

can utilize periodically-poled lithium niobate (PPLN) [105] or potassium

titanyl phosphate (PPKTP) [106] crystals for both type-I and II down-

conversion respectively. Since PPKTP possess a larger effective non-linear

coefficient (typically 5 times higher than BBO crystal [107]), the observed

down-conversion efficiencies using a long PPKTP crystal has been reported

up to be 4 orders of magnitude higher than the BBO crystal. This is be-

cause the yield of the down-converted photons is proportional to the square

of the product of the effective non-linear coefficient and the crystal length.

Furthermore, the reduction of bandwidth of the down-converted photon
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pairs may improve the energy-time correlation because the path length

differences in the interferometers are less stringent. Lastly, the complete

suppression of the spatial walk-off eliminates the need for additional com-

pensation crystals.

The question that now remains is whether we have achieved the goal

of implementing a 4-dimensional entangled source. In a limited sense the

answer is yes since we observed Franson interference using our polarized-

entangled photons. The remaining issues of the frequency stability of the

pump laser is currently being addressed and the piezoelectric actuator fitted

with strain gauge are in place and have been characterized. We believe

these may help in improving the accuracy of our measurements and thus

reduce the error in our measurement of the CGLMP inequality.

For a fundamental test, we have demonstrated the concept of dimen-

sionality, which can be experimentally assessed. The measurement statis-

tics collected reveals the relevant information about an unknown system,

without referring to the internal working of the source. There are different

attempts to prepare experiments in higher dimensions using various degrees

of freedom. Recently, an experiment reported a 50-dimensional two-photon

using orbital angular momentum entanglement [108], but the violation of

Bell’s inequality is difficult to implement. Nevertheless, this points to the

possibility of implementing new experiments such as loophole-free Bell test

experiments in the future.
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Miklaszewski, and Anton Zeilinger. Violations of Local Realism by

Two Entangled N-Dimensional Systems Are Stronger than for Two

Qubits. Physical Review Letters, 85:4418–4421, 2000. 8
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