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Summary

In this work we present a source of single photons for efficient interaction

with a single atom. We start by generating narrowband time-correlated

photon pairs of wavelengths 762 nm and 795 nm (or 776 nm and 780 nm)

from non-degenerate four-wave mixing in a laser-cooled atomic ensemble

of 87Rb using a cascade decay scheme. Coupling the photon pairs into

single mode fibers, we observe an instantaneous photon pair rate of up to

18000 pairs per second with silicon avalanche photodetectors. Detection

events exhibit a strong correlation in time with a peak value of the cross-

correlation function g
(2)
si (t) = 5800, and a high fiber coupling indicated by

heralding efficiencies of 23% and 19% for signal and idler modes respectively.

Single photons are prepared from the generated photon pairs by heralding

on the detection of one of the photons using a single photon detector. The

detection statistics measured by a Hanbury-Brown-Twiss experiment shows

strong anti-bunching with auto-correlation g(2)(0) < 0.03, indicating a near

single photon character. The bandwidth of the heralded single photons

is tunable between 10 MHz and 30 MHz, as measured by using a Fabry-

Perot cavity. In an optical homodyne experiment, we directly measure the

temporal envelope of these photons and find, depending on the choice of

the heralding mode, an exponentially decaying or rising temporal profile.

We then study the interaction of single photons of different temporal shapes

with a single mode of an asymmetric cavity. We find that coupling the first

photon of the cascade decay to such a cavity, and using its detection as a

herald reverses the temporal shape of its twin photon from a decaying to

a rising exponential envelope. The narrow bandwidth and high brightness

of our source makes it well suited for interacting with atomic systems for

quantum information applications. Moreover, the rising exponential tem-

poral shape of the photons will be useful for efficient absorption by a single

atom.
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dro Ceré, and Christian Kurtsiefer. Reversing the Temporal Enve-

lope of a Heralded Single Photon using a Cavity. Phys. Rev. Lett., 113,

163601, October 2014.

ix

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.123602
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.123602
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.111.123602
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.033819
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.033819
http://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.033819
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.163601
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.163601




List of Figures

2.1 Conditions for FWM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Energy levels of 87Rb along with the transition wavelengths. . . . . . . . 10

2.3 Photo of an External Cavity Diode Laser (ECDL). . . . . . . . . . . . . 11

2.4 FM Spectroscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Photo of the Tapered Amplifier (TA) kit. . . . . . . . . . . . . . . . . . 15

2.6 TA power vs seed beam power and operating current . . . . . . . . . . . 16

2.7 The Magneto-Optical Trap principle . . . . . . . . . . . . . . . . . . . . 17

2.8 The Magneto-Optical Trap (MOT) . . . . . . . . . . . . . . . . . . . . . 18

2.9 Blue fluorescence from the atom cloud . . . . . . . . . . . . . . . . . . . 20

2.10 Optical density measurement . . . . . . . . . . . . . . . . . . . . . . . . 21

2.11 Experimental setup and level scheme . . . . . . . . . . . . . . . . . . . . 23

2.12 Timing sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.13 Wavelength of the FWM signal mode. . . . . . . . . . . . . . . . . . . . 26

2.14 Observation of the phase matching using a CCD camera. . . . . . . . . 27

2.15 Normalized cross-correlation function, g
(2)
si . . . . . . . . . . . . . . . . . 29

2.16 Idler mode spectrum measured with a scanning Fabry-Perot cavity . . . 30

2.17 Coincidences measured with different decay paths. . . . . . . . . . . . . 31

2.18 Polarization state of the photon pairs . . . . . . . . . . . . . . . . . . . . 32

3.1 Hanbury–Brown–Twiss interferometer . . . . . . . . . . . . . . . . . . . 37

3.2 Experimental setup for heralded g(2) measurement . . . . . . . . . . . . 39

xi



LIST OF FIGURES

3.3 Photon antibunching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Piezo voltage - frequency transfer function . . . . . . . . . . . . . . . . . 42

3.5 Cavity linewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Cavity ringdown time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.7 Spectrum of the idler mode . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Idler bandwidth vs Optical density . . . . . . . . . . . . . . . . . . . . . 47

3.9 Homodyne detection concept . . . . . . . . . . . . . . . . . . . . . . . . 48

3.10 Representation of quadrature field operator expectation values for the

Fock states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.11 Electronic circuit diagram of the homodyne detector . . . . . . . . . . . 51

3.12 Spectrum of the homodyne detector noise . . . . . . . . . . . . . . . . . 52

3.13 Detector noise power vs Optical power . . . . . . . . . . . . . . . . . . . 53

3.14 Experimental setup for homodyne measurement . . . . . . . . . . . . . . 54

3.15 Field envelope of a heralded single photon . . . . . . . . . . . . . . . . . 56

4.1 Concept of time reversal of the heralded photons . . . . . . . . . . . . . 61

4.2 Transfer function of the asymmetric cavity . . . . . . . . . . . . . . . . . 64

4.3 Schematic of the time reversal experiment . . . . . . . . . . . . . . . . . 65

4.4 Asymmetric cavity transmission and reflection . . . . . . . . . . . . . . . 66

4.5 Transformation of the temporal shape of the heralded idler photons when

the cavity is in signal mode. . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Transformation of the temporal shape of the heralded idler photons when

the cavity is in idler mode . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Photon number in the cavity . . . . . . . . . . . . . . . . . . . . . . . . 72

4.8 Photon number in the cavity with a photon of 17 ns coherence time . . . 73

5.1 Absorption experiment setup . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Hong-Ou-Mandel setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.1 Absorption imaging setup and timing sequence. . . . . . . . . . . . . . . 80

A.2 Shadow cast by the atom cloud on the probe beam . . . . . . . . . . . . 81

xii



LIST OF FIGURES

A.3 Optical density fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.4 Optical density vs camera pixel number . . . . . . . . . . . . . . . . . . 83

B.1 FWM experiment with seed, and signal field power measurement with

an oscilloscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

C.1 SPDC in PPKTP crystal used for APD jitter measurement . . . . . . . 89

C.2 Result of APD timing jitter measurement . . . . . . . . . . . . . . . . . 90

D.1 Superradiance in four-wave mixing . . . . . . . . . . . . . . . . . . . . . 92

D.2 Superradiance results: Peak coincidence rate and decay time . . . . . . 93

E.1 Spectroscopy error signal of the 795 nm laser corresponding to 87Rb D1

line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

E.2 Spectroscopy error signal of the 780 nm laser corresponding to 87Rb D2

line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

E.3 Spectroscopy error signal of the 762 nm laser . . . . . . . . . . . . . . . 97

E.4 Rubidium-87 hyperfine levels . . . . . . . . . . . . . . . . . . . . . . . . 98

xiii



LIST OF FIGURES

xiv



Chapter 1

Introduction

Over the past two decades, there has been a tremendous growth in research on quantum

information and computation. This growth stems from the promise of being able to

perform some computational tasks much faster in a quantum computer than the clas-

sical counterparts [1, 2, 3], and potentially unbreakable crytographic protocols [4, 5].

In order to perform these tasks and protocols, we need the ability to initialize, manip-

ulate, store and measure the quantum states of some quantum system for a physical

implementation. In addition it is also essential to connect physical systems situated at

different locations in order to build any viable large scale quantum networks [6, 7, 8, 9].

There are a variety of different physical implementations currently being researched

such as photons [10], neutral atoms [11], ions [12], cavity QED [13], spins in NMR [14],

superconducting circuits [15], quantum dots [16] etc. Each has its own advantages

and disadvantages as discussed in [17]. It is widely agreed upon that the photons are

ideal for transmitting quantum information over long distances as they interact weakly

with the environment and therefore preserve coherent superposition states well. On

the other hand atomic systems are well suited for manipulation and storage of the

quantum states. An efficient transfer of information between the two systems requires

strong interaction between photons and atoms.

Apart from the quantum information applications, a more fundamental interest in

single atom - single photon interaction is to answer one of the elementary questions

1



1. INTRODUCTION

in quantum optics: Whether it is possible to reverse the spontaneous emission from

a single atom [18]. In other words, is it possible to excite an atom in its ground

state to an excited state using a single photon Fock state? There has been some

work on developing theoritical models to describe this process [19, 20], and proof of

principle experiments [21, 22, 23, 24]. However, an experimental demonstration at a

single quantum level still remains to be performed. With the recent advances in cavity

QED [25], and free space trapping of single atoms with large spatial mode overlap [26], it

may now be possible to perform experiments to verify this. According to the theoretical

predictions, single photons required for such an experiment should have some very

specific constraints on the spectral and temporal properties [19]. The bandwidth of

the interacting photons has to match the linewidth of the atomic transition, and the

temporal envelope of the photons should be the time reversal of a photon from the

spontaneous emission.

In this thesis, we present a source of single photons that is suitable for interaction

with atomic systems for quantum information applications, and to test the reversibility

of the spontaneous emission process. We use a photon pair source based on fourwave

mixing in an atomic ensemble as a starting point. The detection of one photon of the

pair is then used as a herald for the preparation of a single photon. We present various

experiments to quantitatively characterize the generated single photons, and ways to

manipulate them for efficient interaction with atoms.

1.1 Thesis Outline

Chapter 2 : We start by describing the basic equipment and experimental techniques

for cooling and trapping an ensemble of atoms. This is followed by a descrip-

tion of the experimental setup, source alignment procedures, and generation and

detection of entangled photon pairs by fourwave mixing via cascade decay level

scheme.

Chapter 3 : Here we describe how single photons are obtained from the generated

2



1.1 Thesis Outline

photon pairs by heralding, and measurements of some characteristic qualities the

single photons including a temporal auto-correlation function, bandwidth, and

temporal field envelope.

Chapter 4 : In this chapter we discuss the interaction of heralded single photons with

an asymmetric cavity as a method to shape the temporal envelope of the single

photons in order to make them suitable for absorption by a single atom. By

using a different interpretation of the same experiment, we investigate how single

photons with different temporal shapes affect the population of the cavity.

Chapter 5 : In the final chapter we present the conclusion of the thesis, some of the

ongoing work and future experiments that can possibly be performed.

The results presented in Chapter 2 of this thesis is a joint work with Ms. Gurpreet

Kaur Gulati and therefore also appears in a her PhD thesis [76]. While the rest of my

work focuses on the characterizing and engineering the spectral and temporal proper-

ties of the heralded single photons for absorption by a single atom, her work aims to

characterize the entanglement between the photons of the pair in different degrees of

freedom and interfacing with a single atom via quantum interference rather than direct

absorption.

The results on generation of photon pairs and the bandwidth measurements are

published in [27], the proof of single photon nature and the field measurements in [28],

and the interaction of the photons with an asymmetric cavity in [29].

3



1. INTRODUCTION
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Chapter 2

Generation of photon pairs

Time-correlated and entangled photon pairs have been an important resource for a wide

range of quantum optics experiments, ranging from fundamental tests [30, 31, 32, 33]

to applications in quantum information [4, 10, 34, 35, 36]. Many initial experiments

used a cascade decay in atomic beam to generate photon pairs [32, 37]. These photons

showed strong non-classical correlation in time and polarization, but large numerical

aperture lenses close to the atoms were needed to collect sufficient photons to perform

the experiments. Another way to generate photon pairs uses parametric frequency

conversion process in non-linear optical crystalline materials. This was first observed

in [38] and is in fact the most widely used technique today for generating correlated

photon pairs. The key advantage of this method is that the photon pairs can be

generated in well defined spatial modes (see Section 2.1.1)

Spontaneous Parametric Down Conversion (SPDC) in χ(2) nonlinear optical crystals

has been the workhorse for generating photon pairs for the past three decades. Although

extremely robust, the photons from SPDC have very broad bandwidths ranging from

0.1 to 2 THz [39, 40, 41]. This makes it difficult to interact with atom like physical

systems, since their optical transitions usually have a lifetime-limited bandwidth on the

order of several MHz. Various filtering techniques have been employed to reduce the

bandwidth of SPDC photons. In addition, the parametric conversion bandwidth may

be redistributed within the resonance comb of an optical cavity [42, 43, 44, 45].

5



2. GENERATION OF PHOTON PAIRS

Another parametric process Four-Wave Mixing (FWM), exploits the third order sus-

ceptibility (χ(3)) and has been used to generate photon pairs from nonlinear fibers [46,

47], hot vapor cells [48, 49], and cold atomic ensembles [50, 51, 52]. FWM in atomic en-

sembles rely on large nonlinear optical coefficient χ(3) near the atomic resonances. We

generate photon pairs by FWM in a cold cloud of atoms using a cascade level scheme

similar to previous work by Chanelier̃e et al. [53].

In this chapter, the theory of photon pair generation by FWM is briefly introduced

in Section 2.1. This is followed by some technical details of the equipment in Section 2.2.

Section 2.3 describes the experimental setup and the source alignment procedure. Fi-

nally, the results of the correlation measurements that demonstrates the generation of

the pairs are presented in Section 2.4.

2.1 Theory

In non-linear optics the response of a dielectric material to applied optical fields can be

written as a series expansion [54]

P = ε0(χ(1)E + χ(2)E2 + χ(3)E3 + ...) (2.1)

where E is the strengths of the applied optical field, P is the dipole moment per unit

volume, also known as polarization of the material. The coefficient χ(1) is the linear

susceptibility and is related to the refractive index of the material, n =
√
χ(1) + 1.

The second- and third- order non-linear susceptibilities χ(2), χ(3) of the optical media

are negligibly small in many materials. However, the response of some materials due

these terms becomes significant at high field strengths. The SPDC process in a typical

nonlinear crystal is described by the χ(2) term.

In the case of neutral atoms as a non-linear medium, the χ(2) term vanishes due to

the inversion symmetry of the atoms. This can also be seen from the angular momentum

selection rules. In the electric dipole approximation, parametric coupling of three fields

to an atom is disallowed due to angular momentum conservation [54]. Hence the lowest

6



2.1 Theory

order non-linear response of an atom comes from the χ(3) term which is responsible for

FWM processes.

We generate photon pairs via a non-degenerate spontaneous FWM process in the

presence of two continuous wave (CW) pump beams. Photons from the pump lasers

are probabilistically converted into pairs of photons in two optical modes called the

signal and idler modes. A simplified level scheme for FWM in a cascade decay is shown

in Figure 2.1 (Right). Assuming that the intensity of the pump laser is chosen such

that the atomic population remains primarily in the ground level (a), the third-order

nonlinear susceptibility for this scheme is given by [54]

χ(3)(ωi = ω1 + ω2 − ωs) = (2.2)

NL

6~3

µab µbc µcd µda
[ωab − iΓb − ω1] [(ωab + ωbc)− iΓc − (ω1 + ω2)] [ωad − iΓd − (ω1 + ω2 − ωs)]

where N is the atom density, L is the length of the interaction region, µab,bc,cd,da are

electric dipole matrix elements, ω1,2,s,i are the frequencies of the pumps, signal and

idler field, ωab,bc,cd,ad are the atomic transition frequencies, and Γb,c,d are the linewidths

of the excited levels. The physical quantity measured in an experiment is the intensity

of the signal and idler fields for a fixed intensity of the pump fields. This quantity can

be considered as a measure of the strength of the FWM process and it is proportional

to |χ(3)|2. Therefore Eq. (2.2) indicates how the strength of the FWM process is related

to the atom density and the detunings of the fields from the atomic resonances. Since

FWM is a parametric process, the energy of the participating fields has to be conserved.

This condition is also included in Eq. (2.2).

The output state of the light generated from a parametric process assuming single

spatio-spectral modes for the signal and idler is given by [55]

|ψ(t)〉 =
1

cosh(κt)

∞∑
n=0

tanh(κt)n |n〉s ⊗ |n〉i , (2.3)

where κ is the effective interaction strength proportional to χ(3) and the intensities of

7



2. GENERATION OF PHOTON PAIRS

Figure 2.1: Conditions for FWM. (Left) Phase matching condition. (Right)

Energy conservation with cascade level scheme

the pump fields, t is the interaction time, and |n〉s and |n〉i are the photon number

states in the signal and idler modes. It can be seen that the photon number is strongly

correlated between the signal and the idler modes. Since the interaction strength κ is

usually small, multi-photon states corresponding to higher order terms with n ≥ 2 have

much smaller probability of occurrence compared to n = 0 or 1. Therefore the output

state from such a system is a very good approximation of a two-photon pair state.

A complete theoretical description of the FWM process in atoms is outside the scope

of this thesis. A detailed study of parametric frequency conversion with a four-level

system in a cascade decay scheme can be found in [56].

2.1.1 Phase matching

The cascade decay in atoms can generate photon pairs even with a single atom interact-

ing with the pump lasers. Since the spontaneous emission from a single atom is more or

less isotropic 1, the emitted photons cannot be easily collected into single mode fibers.

This was also the case in early experiments with atomic beams [37].

On the other hand, using a spatially extended ensemble of atoms as a non-linear

medium provides translational symmetry and therefore leads to momentum conserva-

tion. The photons generated by FWM in an atomic ensemble satisfy the following

criteria known as phase matching condition

k1 + k2 = ks + ki , (2.4)

1The dipole transitions are not always isotropic [57]
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where k1, k2, ks and ki are wave-vectors of the two pumps, signal and idler modes. This

implies that for Gaussian mode pump beams, the photon pairs are generated in well

defined spatial modes that satisfy Eq. (2.4). This in turn enables efficient collection

of photons into single mode fibers without the need for high numerical aperture lenses

close to the medium. In the experiment we use Gaussian beams with Rayleigh length

much longer than the length of the atomic medium such that we have a nearly plane

wavefront for all the four modes. The 1/e diameter for the beams were chosen to be

approximately the same as the diameter of the atom cloud in the transverse direction

so as to maximize the overlap with the cloud without compromising much on the pump

intensity.

2.2 Prerequisites

The main prerequisites for a parametric process are coherent light sources and a non-

linear medium. We use lasers as a source of coherent light and a cold ensemble of 87Rb

atoms as the non-linear medium. In this section we briefly discuss the laser systems,

and cooling and trapping of the atoms.

2.2.1 Rubidium

We choose to work with 87Rb atoms for compatibility with another experiment in our

group with a single trapped atom [58, 59]. 87Rb is a naturally occurring isotope of

Rubidium with atomic number 37. It has a natural abundance of 28% and a mass of

86.9 amu and a nuclear spin of I = 5/2 [60]. The energy levels we are interested in

this thesis are the ground level 5S1/2, the first excited levels 5P1/2 and 5P3/2, and the

second excited level 5D3/2. The wavelengths of the transition between these levels are

shown in Figure 2.2. For the full hyperfine manifold of these levels refer to appendix E

.
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Figure 2.2: Energy levels of 87Rb along with the transition wavelengths. Only

the relevant levels used in the experiment are shown.

2.2.2 Lasers

The lasers are essential for cooling and trapping atoms, as pump and alignment beams

and as frequency reference for generated photons. It is therefore useful to have them op-

erating with narrow bandwidths compared atomic transition linewidths. All the lasers

used in our experiment make use of temperature stabilized single-mode semiconductor

laser diodes. For the lasers of wavelengths 780 nm and 795 nm, we use Sanyo diodes

(DL7140-201SW) with a rated output power of 60 mW at a recommended forward cur-

rent of 100 mA [61]. However, we operate the diodes at 70 mA with an output power

of about 35 mW in order to extend their operating lifetime. The operating wavelength

of these diodes is around 780 nm at room temperature (≈ 20 ◦C). To obtain a 795 nm

laser beam, we heat these diodes up to 65 ◦C. We also require lasers of wavelengths

762 nm and 776 nm that corresponds to the frequency difference between the first and

the second excited level of 87Rb (see Figure 2.2). For these wavelengths, we use ridge

waveguide diodes with a wide tuning range of 760 nm to 800 nm from Eagleyard (EYP-

RWE-0780-02000-1300-SOT12-0000). We operate these diodes at a forward current of

≈ 100 mA with an output power of 65 mW. The temperature of the diodes is stabilized

to an accuracy of 1 mK using a Peltier element, a thermistor, and a home built digital

Proportional-Integral-Derivative (PID) controller.
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Figure 2.3: Photo of an External Cavity Diode Laser (ECDL). The grating is

positioned in such a way that the first order diffraction of the incident light from

the diode goes back into the diode thus forming the cavity.

External Cavity Diode Laser

The frequency bandwidth of the light from these diodes is a few orders of magnitude

more than the atomic transition linewidths. We use an external cavity formed by

a diffraction grating in the Littrow configuration as shown in Figure 2.3 to reduce

the bandwidth. This design is commonly referred to as External Cavity Diode Laser

(ECDL) [62]. The grating is aligned such that the first diffraction order of the light

from the diode is reflected back into the diode to form the external optical cavity. The

zero-order beam from the grating is used for the experiment. A piezo electric actuator

is used to fine tune the the normal angle of the grating with respect to the incident

light. This provides the means to adjust the frequency of the laser.

The linewidths of the Sanyo lasers in this configuration were measured by mutual

beat measurements [63] to be between 1 MHz and 2 MHz. We note that the linewidth

of the lasers is wider than the linewidth of the 5D3/2 level of ≈ 700 KHz (Figure 2.2). In
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order to see how this affects our experiment, consider two photon scattering of the pump

beams (780 nm and 776 nm) by a cold cloud of 87Rb atoms. The fraction of the scattered

light from the pump beams that remain coherent with the pump beams depend on the

linewidth of the lasers. A detailed discussion of coherence in the scattering process can

be found in [75]. If the linewidth of the lasers is much smaller than the atomic transition

linewidth, the scattered light remains mostly coherent. However in our case, since the

laser linewidth is wider than the linewidth of the transition a fraction of the scattered

light becomes incoherent with the pump beams. Since FWM is a result of coherent

scattering of the pump beams into signal and idler photon pairs, the laser linewidth

also affects the FWM process efficiency. Therefore, minimizing the laser linewidth or

phase locking of the two pump lasers can improve the rate and efficiency of the photon

pairs obtained in this work (see Section 2.4).

The spatial mode of these laser beams exhibit a 2:1 ellipticity due to the difference

in divergence along the two transverse axes [61]. This is corrected by using a pair of

anamorphic prisms. An optical isolator with 30 dB isolation is used to prevent back

reflection from any optical surfaces reaching the diode and disturbing its oscillation at

a particular frequency.

Frequency modulation spectroscopy

In addition to obtaining a narrow bandwidth, it is also necessary to stabilize the fre-

quency of these lasers. We use Doppler-free frequency modulation (FM) spectroscopy

to atomic transition lines. A strong pump beam and a relatively weak probe beam is

aligned in a counter-propagating geometry through a rubidium reference cell (Thor-

labs. GC19075-RB). The pump beam is used to saturate the atomic transition, while

the probe beam is used to measure the change in absorption and phase shift acquired

across the saturated atomic resonance. Frequency modulation of the beams is per-

formed by an Electro-Optic Modulator (EOM) driven by a tank circuit with a 20 MHz

resonance frequency. The frequency modulation of the probe beam is converted into

amplitude modulation at 20 MHz using a photodiode. The dispersion of the probe

12



2.2 Prerequisites

Figure 2.4: (Left)The optical setup of FM spectroscopy used for the 780 nm and

795 nm lasers. (Right)The optical setup of FM spectroscopy used for the 776 nm

and 762 nm lasers.

beam across the atomic resonance appears as a phase shift in the photodiode signal.

This phase shift is converted into a DC error signal by frequency demodulation. An

analog PID controller uses the error signal to provide feedback to the grating PZT and

hence lock the frequency of the laser. The demodulation and PID lock is performed

using a home built FM circuit board.

The optical setup for FM spectroscopy is shown in Figure 2.4. For the 780 nm and

795 nm lasers both the pump and the probe beams are of same wavelength and are

derived from the same laser. However for the 762 nm and 776 nm lasers, we first need

to saturate the ground state resonant transition at 795 nm and 780 nm respectively.

Therefore the pump beams are derived from a different ECDL. In this case the Rb

reference cell is warmed up to a temperature of 70 ◦C in order to increase effective

atom density. This is required because the transition between the first and second

excited levels of 87Rb is much weaker than the ground state resonant transitions [64].

The error signals that we observe in our experiment with these lasers are shown in
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appendix E

FM spectroscopy is a very well established technique to perform frequency locks. A

comprehensive description of the technique can be found in [65].

The AOM

The frequency of each laser is shifted by using either a 80 MHz or a 200 MHz Acousto-

Optic Modulator(AOM) (Crystal technology, 3080-122 or 3200-124). A Radio-Frequency

(RF) signal of an appropriate frequency generated by a Direct Digital Synthesizer

(DDS) and amplified by a Mini circuits power amplifier is used to drive the AOMs.

The AOM works based on the acousto-optic effect to diffract and shift the frequency

of the laser with acoustic waves formed by the applied RF field [54]. We use the first

order diffraction that shifts the light frequency by the RF frequency and also deflects

the beam from its original path. The diffracted beam is then coupled using an aspheric

lens into a single-mode optical fiber to guide them to the main experiment. Apart

from shifting of the laser frequency, the AOM also acts as an optical switch. This is

done by switching the RF signal supplied to the AOM using a Mini circuits switch

(ZYSWA-2-50DR), thereby switching on/off the first diffraction order.

Tapered Amplifier

To obtain a sufficiently dense cloud of atoms (see Section 2.2.3), we require cooling

lasers with an optical power of about 300 mW. We use a Tapered Amplifier (TA) with

a maximum output power of 1 W (Eagleyard EYP-TPA-0780-01000-3006-CMT03-0000)

to obtain our cooling lasers 1. The TA is mounted on a copper block which is tem-

perature stabilized in the same way as the ECDLs. We use a commercial Thorlabs

current controller unit (LDC240C) to supply a constant current to the TA. The seed

beam is derived from a frequency stabilized 780 nm ECDL 55 MHz blue detuned from

the 5S1/2, F = 2 → 5P3/2, F = 3 atomic transition. The seed is mode matched to the

1This TA failed after 2 years of operation and was replaced with a 2 W version (EYP-TPA-0780-
02000-3006-CMT03-0000).
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Figure 2.5: Photo of the Tapered Amplifier (TA) kit. The TA chip is mounted

on a copper heat sink and temperature stabilized using a peltier element. The

aspheric lenses used for mode matching the seed beam and collimating the output

can be seen around the TA chip. The cylindrical lens and the optical isolator are

also enclosed in the kit.

input of the TA using an aspheric lens of focal length 6.16 mm (Thorlabs C170-TME-

B). The output beam of the TA is collimated using an aspheric lens of focal length

2.75 mm (Thorlabs C390-TME-B) and a cylindrical lens of focal length 50 mm (Thor-

labs LJ1821L1-B) is used to correct the astigmatism. A 60 dB Linos optical isolator is

used to prevent any back reflection to the TA. An 80 MHz AOM shifts the frequency of

the amplified light from the TA 24 MHz to the red of the above mentioned transition.

This AOM acts as an optical switch for the cooling laser.

A measurement of the output optical power from the TA for different forward

operating currents and seed beam powers is shown in Figure 2.6. We operate the TA

with a seed beam power of ≈ 20 mW and forward current of ≈ 2 A 1.

2.2.3 Cooling and trapping the atoms

We use a cold cloud of 87Rb atoms trapped by a Magneto-Optical Trap (MOT) to

perform the FWM experiment. The advantage of using a cold ensemble as opposed to

1The operating current was gradually increased over the lifetime of the TA from 2 A to 2.5 A to
maintain the optical power output
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Figure 2.6: Output power of the TA for different operating currents and seed

beam powers.

a hot vapor cell is that the Doppler broadening of the atomic transition line becomes

negligible. This in turn reduces the bandwidth of the generated photons by an order

of magnitude compared to the hot vapor.

The MOT

A Magneto-Optical Trap is a widely used method for cooling and trapping the neutral

atoms. The working principle of the MOT is illustrated in Figure 2.7. When an atom

absorb a photon from a laser, it gains momentum along the k-vector of the laser.

When the laser is slightly red detuned from the atomic resonance, only the atoms

moving towards the laser source with a certain velocity corresponding to the detuning

absorbs the light due to the Doppler effect. For cooling to happen the atom has to be

illuminated by counter-propagating lasers along all three directions. The trapping in a

MOT is performed by a quadrupole magnetic field with a nearly linear field gradient

at the origin. This results in a spatially dependent Zeeman shift of the atom’s mf sub-
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Figure 2.7: The working principle of the MOT illustrated using a simplified hypo-

thetical atom with F = 0→ F = 1 cooling transition. The magnetic field gradient

creates a position dependent shift of the Zeeman sub-levels. The polarization of

the cooling light is chosen such that the net force on the atoms due to absorption

and reemission of the cooling light is directed towards the center of the MOT.
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Figure 2.8: Magneto-Optical Trap (MOT). The figure shows the vacuum cham-

ber, cooling beams and quadrupole coils used to make the MOT.

levels, which increase with the radial distance from the field zero point. Because of this,

an atom moving away from the center sees the red detuned cooling laser propagating

in the opposite direction with the appropriate polarization to be on resonance, and

gets a momentum kick towards the center of the trap by absorbing a photon. There is

plenty of literature on the working principles of the MOT [66, 67, 68] and is therefore

not discussed in more detail in this thesis.

Here we give a brief description with the technical details of the MOT used in our

experiment.

• Vacuum chamber - The first step in making a cold atomic ensemble is a good

vacuum. Our vacuum chamber consists of a central cube of edge length 11
3”. Each
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side of the cube is connected to a vacuum component by a CF connection. We

use a turbo molecular pump connected to the chamber via a copper pinch-off

tube for initial evacuation to a pressure of about 10−6 mbar. A ion getter pump

from Varian with pumping speed of 2 l/s is used to bring the chamber pressure

further down. The pressure in our chamber is inferred from the ion pump current

controller (Varian Microvac 929-0200) to be about 2×10−9 mbar [69]. One port of

the cube is attached to an electrical feed-through with a Alvasource Rb dispenser

from Alvatec. A glass cuvette of outer dimensions 70 mm× 30 mm× 30 mm which

is anti-reflection (AR) coated on the outside for 780 nm wavelength is attached to

another port of the cube. The MOT is formed within the cuvette which provides

good optical access to the atom cloud. The design of the vacuum chamber along

with the components is shown in Figure 2.8.

• Quadrupole magnetic field - The next step is to get a linearly varying

magnetic field (B-field) gradient with a central zero point. A pair of circular

current carrying coils connected in an anti-Helmholtz configuration produces a

quadrupole B-field with this kind of field gradient near the center. Each coil

is made of 40 turns of enamal coated copper wires with a 3 mm× 3 mm square

cross-section carrying a current of 12 A. The estimated B-field gradient with this

configuration is 24.8 G/cm in the radial direction and 49.6 G/cm in the axial

direction.

• Cooling and repump beams - The final ingredients for a MOT are the

cooling beams. Counter-propagating, circularly polarised cooling laser beams

along three axes as shown in Figure 2.8 are aligned to intersect within the glass

cuvette at the position of the zero B-field. The cooling beams are obtained from

the TA and their frequencies are tuned using an AOM to be 24 MHz red detuned

from the cycling transition in 87Rb, 5S1/2, F = 2→ 5P3/2, F = 3. Each beam has

diameter of about 15 mm with an optical power of 45 mW, which corresponds to a

peak intensity > 15 times the saturation intensity (Isat). Even though the cycling

19



2. GENERATION OF PHOTON PAIRS

Figure 2.9: (Left) Blue fluorescence from the atom cloud in the presence of the

780 nm and 776 nm pump lasers. (Right) The relevant levels of 87Rb that results

in emission of the blue fluorescence.

transition forbids the population of 5S1/2, F = 1 level, there is a small probability

of scattering via the 5P3/2, F = 2 level to 5S1/2, F = 1 level. Population of this

level stops the cooling process. Therefore, we use an additional repump laser of

power 9 mW and tuned to the transition 5S1/2, F = 1→ 5P3/2, F = 2 to deplete

the population in this level.

A picture of the fluorescence from atoms trapped by the MOT in the presence of

the 780 nm and 776 nm pump lasers is shown in Figure 2.9. We see blue (420 nm)

fluorescence from one of the possible decay paths from the 5D3/2 level via 6P3/2 level

to the ground state.

Measuring the optical density of the cloud

For many measurements shown in this thesis, the number of atoms interacting with the

optical fields is an important quantity. We use the optical density (OD) of the cloud

on resonance to the cooling transition as a measure of the number of atoms [57].

OD =
d2ν

2c~ε0Aγ
N , (2.5)
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Figure 2.10: (Top) Setup to measure the optical density of the cloud. A probe

laser is focused on to the center of the cloud and the transmitted power P is

measured using a photodiode. The cooling lasers are on during the measurement

of OD. (Bottom) Transmission as a function of probe detuning from the resonance.

The dashed line is from a fit of the points between -10 MHz and 40 MHz detuning

to Eq. 2.6. The deviation from the expected shape on the red detuned side is due

to EIT.

where N is the number of atoms, A is the area of cross-section of the beam, ν is the

transition frequency, d is the transition dipole moment, and γ is the line width of the

transition. The first term on the right side of Eq. (2.5) is a constant. Therefore, OD is

directly proportional to N . We get the OD of the cloud by measuring the transmission

of a weak probe beam focused onto a 100µm spot approximately at the center of the

cloud. The frequency of the probe beam is scanned across the resonance, and the

transmitted power P is measured using the a PIN photodiode. The transmission as a
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function of detuning from the atomic resonance ∆ can be described by

P (∆) = bg + P0 e
− od γ2

4∆2+γ2 , (2.6)

where P0 is the incident power of the probe beam, bg is the background signal in the

absence of the probe beam. The measured transmission as a function of the detuning is

shown in Figure 2.10. We see a sharp feature in the transmission spectrum that deviates

from the expected behavior on the red detuned side. This is because the measurement

was carried out with the MOT cooling lasers “on” while probing the atoms. The

presence of the strong cooling beams changes the transmission of the weak probe beam

creating a transparency window centered at the detuning of the cooling beams. This

phenomenon is called Electromagnetically Induced Transparency (EIT) [70]. We fit

the measured experimental points to Eq. 2.6 to obtain the OD of the cloud. In our

experiment, we observe a maximum OD of ≈ 33. The measurement of the number of

atoms in the cloud determined absorption imaging is described in appendix A.

2.3 Experimental setup

2.3.1 Optical setup and level scheme

The optical setup for generating the photon pairs in a non-collinear geometry is shown

in Figure 2.11. The pump beams of wavelengths 780 nm and 776 nm from single mode

fibers (SMF) are collimated using aspheric lenses of focal length 4.51 mm (Thorlabs

C230-TMB) resulting in a beam waist of 0.45 mm. The beams are aligned to overlap

at the position of the cloud at an angle of ≈ 0.5 ◦. A true zero-order quarterwave plate

(QWP) and a half wave plate (HWP) for 780 nm is placed in both pump beams to set

the polarization. The atoms cooled by the MOT are initially in the 5S1/2, F = 2 ground

level. Photons from the two near resonant pump beams are coherently scattered by the

atoms into 762 nm and 795 nm photon pairs in the phase matched directions. The one

and the two photon detunings of the pump lasers from the atomic resonances, ∆1 = -
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Figure 2.11: Schematic of the experimental set up. A combination of QWP,

HWP and PBS is placed in all the optical modes to set or project the polarization.

Interference filters IF1, IF2 and IF3 are used to combine or filter the pump modes

from the signal/idler modes. The APDs Ds and Di are used to detect the single

photons. A 795 nm seed beam is used during the alignment to determine the phase-

matched direction.

40 MHz and ∆2 = 6 MHz, were chosen empirically to minimize incoherent scattering

without compromising much on the photon pair rate. A seed beam of wavelength

795 nm shown as a dashed line is combined with the 780 nm pump using an interference

filter IF1. This beam is used only for alignment purposes and is switched off during the

generation of pairs. The alignment of the source is discussed in detail in Section 2.3.3.

On the collection side, the interference filters IF2 and IF3 of bandwidth 3 nm are

used to reject the residual pump light from the photon pairs. A QWP, a HWP and

a PBS in the collection modes are used to choose the polarization of the signal and
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Figure 2.12: Experiment timing sequence.

the idler photons. Aspheric lenses of focal length 7.5 mm (Thorlabs A375-TME-B) are

used in both the signal and idler modes to couple the photons into single mode fibers

(SMF). The procedure used to couple signal and idler modes to the single mode fibers

is discussed in Section 2.3.3. The effective waists of the collection modes at the location

of the cloud were determined to be 0.4 mm and 0.5 mm for signal and idler respectively

by back-propagating light through the fibers and couplers.

The photons are detected using Avalanche Photo-Diode (APD) single photon de-

tectors from Perkin Elmer. The APD module and the associated electronics are home

built, details of which can be found in [71]. The dark count rate of the APDs ranges

between 40 s−1 to 200 s−1 and their detection efficiency is ≈ 40%. Whenever a photon

is detected the APD module outputs a NIM signal, which is then sent to a timestamp

unit. The timestamp unit records the arrival time of the NIM pulse with a resolution

of 125 ps. The timing jitter of the APDs used in our experiment was measured to be

0.6 ns FWHM (see appendix C).
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2.3.2 Timing sequence

The MOT cooling beams have to be switched off during the generation of photon pairs in

order to prevent any incoherent scattering from cooling beams into the collection modes.

However, the cold atom cloud obtained dissipates within a few milli-seconds after the

cooling beams are turned off. This limits the photon pair generation time before which

the atom cloud needs to replenished by turning the cooling beams back on. The timing

sequence used in the experiment is shown in Figure 2.12. The 12 ms duration for cooling

was chosen to maximize the average optical density of the cloud during the 1 ms photon

pair generation window. The repump beam is kept on during the pair generation time

to avoid the population of the 5S1/2, F = 1 ground level. The switching of the beams

is done using the AOMs as described in Section 2.2.2. The sequence for switching

is provided by a home built programmable pattern generator. The signals from the

APDs to the timestamp unit are are electronically gated (Detection gates) such that

only photons detected during the 1 ms pair generation time are registered.

2.3.3 Alignment procedure

For a given pump geometry, the photon pairs are generated only in the spatial modes

that satisfy the phase matching condition described in Section 2.1.1. For a non-collinear

geometry of the pump beams finding the correct collection modes for the photon pairs

is not straight forward. We use a seed beam resonant to 5S1/2, F = 2 → 5P1/2, F = 2

transition overlapped with the 780 nm pump to define the idler mode. In this configura-

tion, the phase matching condition is satisfied only when the signal mode is overlapped

with the 776 nm pump.

In the presence of the three near resonant fields the atomic cloud acts as a para-

metric amplifier, generating a fourth coherent field of wavelength 762 nm resonant to

the 5P1/2, F = 2 → 5D3/2, F = 3 transition in the direction of 776 nm pump. The

spectrum of the generated beam measured using a grating spectrometer (Ocean optics

- USB2000) is shown in Figure 2.13. A clear peak is visible at 762 nm. This generated

light at 762 nm defines the signal mode.
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Figure 2.13: Wavelength of the FWM signal mode. The peak on the left is from

the generated signal beam, and the one on the right is from the 776 nm pump. The

spectrometer had an wavelength offset of 1 nm.

The angle between seed beam and 780 nm pump beam is then gradually increased

to spatially separate the idler mode from the 780 nm pump mode. This changes the

phase matching condition and hence changes the angle at which the signal beam is

generated. This is illustrated in Figure 2.14 using a series of camera snapshots of the

four participating modes in the FWM process. When the seperation angle is ≈ 0.5◦,

the seed and the signal beams are coupled into the collection single mode fibers with a

coupling efficiency of 80 % and 70 % respectively.

We performed some measurements to characterize the seeded operation of the source

which are described in appendix B. A similar experiment of the seeded operation of the

FWM was carried out by Willis et al. in [72].

2.4 Photon pairs

Once the source is properly aligned, the seed beam is switched off. The photon pairs

generated in the defined signal and idler modes are now coupled into the collection fibers

and are sent to the APDs for detection. The polarizations of the pump beams are set to
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Figure 2.14: Observation of the phase matching using a CCD camera. (Top)

Setup used to image the pump, seed and generated signal beams onto a camera.

(Bottom) Images of the beams while changing the alignment. When the seed beam

is overlapped with 780 nm pump, the generated signal is overlapped with the 776 nm

pump. As the angle between the seed and the 780 nm pump is increased, the signal

beam is generated at an angle with the 776 nm pump to satisfy phase matching

condition.

horizontal (H) for 780 nm and vertical (V) for 776 nm. The measurement polarizations

for the photons are set to H for signal, and V for idler. These polarization settings

were chosen to maximize the FWM process efficiency as determined by operating the

source as a parametric amplifier (see appendix B) and later confirmed by two-photon

correlation measurements.

The histogram of coincidence events G
(2)
si (∆tsi) between the detection of signal and

idler photons as a function of time delay (∆tsi) sampled into time bins of width ∆t =
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1 ns is shown in Figure 2.15 The normalized cross-correlation is defined as

g
(2)
si (∆tsi) =

G
(2)
si (∆tsi)

ri rs ∆t T
, (2.7)

where ri=2600 s−1 and rs=3100 s−1 are the idler and signal photons count rates, and

T is the total time when the pump beams are on, i.e. 1/13 of the total measurement

time (see Figure 2.12). The peak at g
(2)
si (0) of 5800±124 indicates a strong temporal

correlation with a very low background accidental coincidences. The measured 1/e

decay time from the fit is 7.2±0.1 ns, which is lower than the single atom spontaneous

decay time of 27 ns from the 5P1/2, F = 2 level. This is due to the superradiance effect

in an optically thick atomic ensemble [73, 74]. More details of superradiance in the

context of our experiment is described in appendix D.

A total photon pair detection rate rP of this source can be derived from the mea-

sured G
(2)
si (∆tsi) by integrating over a coincidence time window ∆tc,

rP =
1

T

∆tc∑
∆tsi=0

G
(2)
si (∆tsi) , (2.8)

For ∆tc = 30 ns, more than 98% of the pairs are captured. With pump powers of 5 mW

at 776 nm, 100µW at 780 nm, and detunings ∆1 ≈ −40 MHz and ∆2 ≈ 6 MHz, we

obtain rP = 400 s−1 during the pair generation interval. Under these conditions, we

find a signal heralding efficiency ηs = rp/rs = 14.9%, and an idler heralding efficiency

ηi = rP /ri = 12.9%.

The pair rate can be increased by increasing the pump power or by reducing the

two photon detuning (∆2), but at the expense of reducing the heralding efficiency. We

observe a maximum pair rate of 18000 s−1 with pump powers of 15 mW for 776 nm,

300µW for 780 nm and the two photon detuning of ∆2 = 0. However the heralding

efficiency is reduced to ηs = 7 %, and ηi = 5 %. This is due to increased incoherent scat-

tering when the pump beams are on resonance to the atomic transition [75]. Systematic

measurements of pair rate and efficiency by changing various experimental parameters
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Figure 2.15: Histogram of coincidence events G
(2)
si (∆tsi) as a function of time

delay ∆tsi between the detection of idler and signal photons sampled into ∆tsi =

1 ns wide time bins, and its normalized version g
(2)
si according to Eq. (2.7). The

total integration time T=47 s. The solid line is a fit to the model g
(2)
si (∆tsi) =

B+A× exp(−∆tsi/τ), where B = 1.20± 0.07 is the mean g
(2)
si (∆tsi) for ∆tsi from

125 ns to 1µs, resulting in A = 5800± 124 and τ = 7.2± 0.1 ns.

are presented in [76].

2.4.1 Improving signal heralding efficiency by filtering

Two photon decay from the excited 5D3/2, F = 3 level to the hyperfine ground state

5S1/2, F = 1 is an allowed electric dipole transition (see Figure 2.16). However, the

photons from this decay path are not generated by a parametric process and they do

not satisfy the phase matching condition. Therefore the photon pairs from this decay

path are not emitted into the defined collection modes.

To verify this we used a scanning Fabry-Perot cavity to measure the spectrum of

the idler mode. The cavity had a linewidth of ≈ 13 MHz and a Free Spectral Range
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Figure 2.16: (Left) Level scheme showing the two allowed decay paths for idler.

(Right) Spectrum of the light in idler mode measured using a scanning Fabry-Perot

cavity. The two significant peaks corresponds to the two decay paths and the small

peak is from the residual pump light.

(FSR) of ≈ 530 MHz. The cavity transmission spectrum of the photons in the idler

mode measured using APDs is shown in Figure 2.16. We observe two major peaks

corresponding to the two allowed decay paths. The measured frequency difference

between the two peaks is 450 MHz, which agrees with the expected separation between

the two hyperfine levels of 6.83 GHz (= 12 FSR + 470 MHz).

Next we measured the coincidences G
(2)
si between signal and idler by tuning the

cavity to transmit the photons from either of the two decay paths. As expected we

observe concincidences only for the decay path that brings the atom back to F = 2

ground level (see Figure 2.17). The photons from the other decay path contributes

only to the single detection events and not to the pairs. This implies that the heralding

efficiency of the signal photons, ηs can be improved if we filter out the uncorrelated

idler photons from the 5S1/2, F = 1→ 5P1/2, F = 2 decay path.

We use a temperature-tuned solid fused-silica etalon of linewidth 375 MHz (FWHM),
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Figure 2.17: (Left) Coincidences between signal and idler with the cavity tuned

to transmit the photons resonant with 5S1/2, F = 2 → 5P1/2, F = 2 transi-

tion. (Right) Cavity is tuned to transmit photons resonant with 5S1/2, F = 1 →
5P1/2, F = 2 transition

and a peak transmission 86% in the idler mode to remove these uncorrelated photons.

This improves the idler heralding efficiency ηi to 23%.

2.4.2 Polarization entanglement

The photon pairs from our source are entangled in polarization due to the presence

of spatially and temporally indistinguishable decay paths through different Zeeman

states. The maximum polarization entanglement is obtained for orthogonal circular

polarizations of the pump beams. This can be understood from the Clebsch-Gordan

coefficients that define the relative coupling strengths between the different Zeeman

states participating in the cascade decay process. A comprehensive theoretical descrip-

tion of polarization entanglement of the photon pairs from FWM in cascade decay can

be found in [77]. We characterize the polarization state of our photon pairs by per-

forming a quantum state tomography. Each QWP and HWP in the collection modes
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Figure 2.18: Polarization state of the photon pairs.(Left) Real part of the density

matrix. (Right) Imaginary part of the density matrix.

are mounted on rotation stages controlled by stepper motors. We then measure the

coincidences between signal and idler for 16 different waveplate angles, corresponding

to 16 measurement polarization settings shown in the Table 2.1. The event rates for

normalization are obtained by collecting the 795 nm fluorescence from the atom cloud

without any polarization projection. This is used to correct for any fluctuations in

photon pair rate due to the fluctuations in the pump beam powers, and the density of

the atom cloud.

From these coincidences we reconstruct the polarization state of the photon pairs

generated from the atom cloud using a maximum likelihood algorithm [78]. The result-

ing density matrix of the state is shown in Figure 2.18.

ρ =


0.010 −0.010i −0.004 + 0.012i 0.004− 0.003i

0.010i 0.323 −0.436− 0.014i −0.016 + 0.038i

−0.004− 0.012i −0.436 + 0.014i 0.645 0.014− 0.023i

0.004 + 0.003i −0.016− 0.038i 0.014 + 0.023i 0.022


(2.9)

The degree of entanglement can be quantified by entanglement of formation Ef . It is
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2.4 Photon pairs

Measurement Polarization Coincidences Normalization counts

Signal Idler (in 3 min) (in 3 min)

L L 82 67478

L R 2417 61617

R R 111 63529

R L 5228 66241

- L 2520 65796

- R 1118 66488

H R 1341 70638

H L 2775 68862

H - 2110 73960

H H 219 70812

- H 2109 70179

L H 1440 69350

R H 2738 65702

R + 2736 71610

L + 1301 64502

- + 3543 65982

Table 2.1: Polarization tomography measurements. The first two columns show

the polarization projections on signal and idler modes with H : Horizontal, + : 45◦

linear, - : -45◦ linear, L : Left circular, and R : Right circular polarization. The num-

ber of coincidences and normalization counts for each polarization projections are

given in the third and the fourth columns respectively.
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2. GENERATION OF PHOTON PAIRS

defined as the minimum number of singlets needed to create an ensemble of pure states

that represents ρ [79], and it ranges from 0 for a completely separable state to 1 for a

maximally entangled state. Our photon pairs exhibits a high degree of entanglement

with Ef = 0.8. Another important measure of an entangled state is its purity,

P = Tr[ρ · ρ] (2.10)

where Tr refers to the trace of a square matrix, and P ranges from 0 for a totally mixed

state to 1 for a pure state. We measure a purity of P = 0.94 for the state ρ. The

closest pure state to ρ is |ψ〉 = 0.57|LR〉 − 0.82|RL〉 with a fidelity of 0.95.

2.5 Conclusion

In this chapter, we presented a photon pair source based on fourwave mixing in a cold

ensemble of 87Rb. We started by describing the essential tools including the lasers,

spectroscopy, the magneto optical trap and the optical elements used in the experiment.

We then presented the cross correlation measurement g
(2)
si as a proof of the photon pair

generation, and a complete state tomography to quantify entanglement in polarization

between the photons. The high normalized cross correlation g
(2)
si value clearly indicates

the non-classical nature of the photon pairs, and a low background rate. This makes

our photon pairs well suited for a heralded single photon source as discussed in the

next chapter.
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Chapter 3

From photon pairs to single

photons

A “true” single photon can be defined as fluorescence from a single quantum emitter

initially prepared in an excited state. Such sources of single photons rely on isolating

and imaging single quantum particles that can emit only one photon per excitation.

Single photons of this nature have been observed from single atoms [80, 81], ions [82],

molecules [83, 84], quantum dots [85, 86, 87], and colour center in diamonds [88, 89].

In order to achieve a high rate and collection efficiency of the photons into a single

optical mode, the emitter typically needs to be confined at the focus of high numerical

aperture (NA) lenses. In a cavity QED context, single photons with relatively high

collection efficiency have been observed using cavity-driven Raman transitions with

single atoms [90, 91] and quantum dots [92]. These systems also require the particles

to be confined within a high finesse optical cavity. These sources are also known as

“deterministic” single photon sources because the photons can be generated on-demand

by deterministically exciting the particle.

An experimentally simpler and efficient way of generating single photons is to use

photon pair sources based on parametric conversion process such as the one described

in the previous chapter. Since the photons are generated in pairs the detection of one
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3. FROM PHOTON PAIRS TO SINGLE PHOTONS

photon in the signal mode “heralds” the preparation of a single photon in the idler

mode, and vice versa. This kind of single photon sources are known as “heralded” or

“probabilistic” sources, as the spontaneous parametric process is intrinsically proba-

bilistic. The advantage of such a single photon source over a deterministic source is

that the photons are emitted in well defined spatial modes due to the phase matching

condition (see Section 2.1.1), thereby eliminating the need for high NA optics. Single

photons of this kind have been prepared from various physical systems such as non-

linear optical crystals [93], atomic ensembles [50, 94], photonic crystal fibers [95], Si

waveguides [96] etc.

In this chapter, we present the experiments performed to characterize the heralded

single photons from our pair source. In Section 3.1 we discuss the correlation measure-

ment that shows the generation of single photons. The bandwidth measurement of the

photons using a Fabry-Perot cavity is presented in Section 3.2. Finally the temporal

field envelope of the heralded photons measured via homodyne detection is presented

in Section 3.3.

3.1 Photon antibunching

The nature of any light source can be uniquely characterized by its coherence proper-

ties. Experimentally the coherence properties of light is measured by different order

correlation functions as described by Glauber in his pioneering work [97]. We are in-

terested in measuring the second-order autocorrelation function classically given by,

g(2)(τ) =
〈 I(t) I(t+ τ) 〉
〈I(t)〉2

, (3.1)

where I(t) is the instantaneous intensity of the light field. For a classical light field the

value of g(2)(0) is limited by the Cauchy-Schwarz inequality which applies to any pair

of real numbers,

〈I(t)2〉 ≥ 〈I(t)〉2 . (3.2)
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3.1 Photon antibunching

Figure 3.1: Hanbury–Brown–Twiss intensity interferometer used to measure the

autocorrelation function g(2) of a single mode light. In our case the incident light

to the BS is a single photon state.

By applying this condition to Eq. (3.1) it can be seen that g(2)(0) ≥ 1 for classical

fields. However, the quantum description of light allows the violation of this inequality.

For a single mode light the degree of second-order coherence in terms of the photon

number distribution is given by [98]

g(2)(0) = 1 +
(∆n)2 − 〈n〉
〈n〉2

, (3.3)

where 〈n〉 is the mean photon number in the mode and (∆n)2 is the photon-number

variance. A coherent light source exhibits Poissonian photon number statistics with

〈n〉 = (∆n)2, resulting in g(2)(0) = 1. Any light source with g(2)(0) < 1 exhibits a sub-

poissonian photon statistics and the light is said to be “antibunched”. A single photon

Fock state has 〈n〉 = 1 and (∆n)2 = 0, resulting in g(2)(0) = 0 for this state. This is

a unique characteristic of an ideal single photon source with perfect antibunching. In

this section we measure the g(2)(0) for the photons from our source to see how close we

are to this ideal case.

3.1.1 Hanbury-Brown-Twiss setup

Experimentally the g(2) of a single mode light is measured using a Hanbury-Brown-

Twiss (HBT) interferometer. The setup consists of a 50/50 beam splitter (BS) and an

APD each at the two output port of the BS, D1 and D2 (figure 3.1). The g(2) is obtained

from the probability of coincidence between the clicks from both detectors(P1,2) and
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3. FROM PHOTON PAIRS TO SINGLE PHOTONS

the probability of independent clicks (P1 and P2) on each detector.

g(2) =
P1,2

P1 P2
=

G
(2)
1,2

s1 s2 ∆tc T
, (3.4)

where G1,2 is the total number of coincidences in measurement time T , s1 and s2 are

the count rates on D1 and D2, and ∆tc is the width of the coincidence time window

used for G
(2)
1,2.

Since a single photon from a heralded source is defined only with the detection of a

heralding photon, the probabilities in Eq. (3.4) should be conditioned on the detection

of a heralding event [99]. For the heralded idler mode the normalized g(2) is given by,

g
(2)
i1,i2|s =

Pi1,i2|s

Pi1|s Pi2|s
=

Pi1,i2,s Ps
Pi1,s Pi2,s

=
G

(2)
i1,i2,sNs

Gs,i1Gs,i2
, (3.5)

where Gi1,i2,s is the number of triple coincidence events between the signal and the two

idler modes, Gi1,s and Gi2,s are the number of pair events between signal and each of

the idler modes, and Ns is the total number of heralding events in the signal mode.

Bayes’ theorem from probability theory is used in the above equation to convert the

conditional probabilities to joint probabilities, which is subsequently converted to the

number of coincidences.

The experimental setup used to perform this measurement is shown in Figure 3.2.

The model in Eq (3.5) for obtaining g(2) works for coincidence window ∆tc much

greater than the coherence time of the single photons. The photons generated from

our source have a long enough coherence time (τ ≈ 7 ns) that shape of the g
(2)
i1,i2,s can

be temporally resolved using APDs with a jitter time of 0.6 ns (see appendix C) The

G
(2)
i1,i2,s can now be resolved as a function of the time difference ∆ti1,i2 between the

detection events on D1 and D2. The terms in the denominator of Eq (3.5), Gs,i1(i2),

have a strong dependence on the time delay ∆ts,i between the signal and the idler

photon (see Section 2.4). Therefore the normalization term for every time delay ∆ti1,i2

is determined by integrating the denominator in Eq (3.5) over all possible delays of
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3.1 Photon antibunching

Figure 3.2: Experimental setup for heralded g(2) measurement with FBS: 50/50

fiber beam splitter, Ds, Ds, D1, D1 : APDs. (Left) Experimental setup to measure

g(2) on the idler mode. The detection of the signal photon acts as a herald. (Right)

Setup for g(2) on the signal mode with idler detection acting as a herald.

∆ts,i that result in a delay ∆ti1,i2 between D1 and D2. Moreover, due to the time

ordering of the cascade process, it is only meaningful to consider positive time delays

after the detection of the signal photon, thus splitting the denominator Ni1,i2|s into two

cases. For ∆ti1,i2 ≥ 0, we use

N
(+)
i1,i2|s(∆ti1,i2) =

30 ns∫
0

G
(2)
s,i1 (∆tsi)G

(2)
s,i2 (∆tsi + ∆t12) d∆tsi , (3.6)

while for ∆ti1,i2 < 0, we use

N
(−)
i1,i2|s(∆ti1,i2) =

30 ns∫
0

G
(2)
s,i1 (∆tsi + ∆t12)G

(2)
s,i2 (∆tsi) d∆tsi . (3.7)

The integration window of 30 ns (> 4τ) was chosen such that more than 98 % of gen-

erated pairs are considered for the measurement. The time resolved g(2) is then given

by,

g
(2)
i1,i2|s(∆ti1,i2) =

G
(2)
i1,i2,s(∆ti1,i2)Ns

N(∆ti1,i2)
. (3.8)

The normalized g
(2)
s for heralded signal photons is obtained in a similar way by swapping

the roles of signal and idler modes.

39



3. FROM PHOTON PAIRS TO SINGLE PHOTONS

3.1.2 Results

The resulting g
(2)
i1,i2|s(∆t12) is shown in Figure 3.3(a) as function of the delay ∆ti1,i2,

sampled into 2 ns wide time bins. With a signal photon detection rate of 50000 s−1,

we observe g
(2)
i1,i2|s(0) = 0.032 ± 0.004. When switching the roles of the signal and

idler arms, the resulting normalized correlation function shown in Figure 3.3(b) has a

minimum g
(2)
s1,s2|i of 0.018± 0.007 with an idler photon detection rate of 13000 s−1.

In both the cases we see a clear signature of antibunching with g(2)(0) � 1. This

shows that we prepare a very good approximation of an ideal single photon state in

the signal mode upon the detection of a heralding photon in the idler mode, and vice

versa.

3.2 Bandwidth of the idler photons

An indirect assessment of the bandwidth of the heralded idler photons can be obtained

from the g
(2)
si (∆tsi) (Figure 2.15), since it is related to the Fourier transform of the

spectral distribution. Assuming a transform-limited spectrum, we infer a bandwidth of

∆ν = 1/(2πτ) = 23.8± 0.7 MHz (FWHM). In order to verify if the photons are indeed

Fourier limited, we carry out a direct optical bandwidth measurement of idler photons

with a scanning Fabry-Perot cavity.

3.2.1 The cavity

The cavity is formed by two high reflecting mirrors from ATFilms with specified reflec-

tivity R > 99.9% at 780 nm and radius of curvature 50 mm. The mirrors are mounted

on an Invar spacer temperature stabilized to within 10 mK fluctuation, and kept in a

vacuum (6× 106 mbar) to prevent frequency drift due to change in the refractive index

of air. This design of the cavity was originally intended to have frequency drifts less

than the linewidth of the cavity over the entire time of the bandwidth measurement.

However the measured drift was of the order of 10 MHz over the period of an hour,

probably due to the curing process of the epoxy used to attach the mirrors to the
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Figure 3.3: Photon antibunching. (a) The correlation function g
(2)
i1,i2|s of idler pho-

tons separated by a time difference ∆ti1,i2, conditioned on detection of a heralding

event in the signal mode, shows strong photon antibunching over a time scale of

±20 ns, indicating the single photon character of the heralded photons. The er-

ror bars indicate the propagated Poissonian counting uncertainty from G
(2)
i1i2|s and

Ni1,i2|s. (b) Same measurement, but with the signal and idler modes swapped.
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Figure 3.4: Input laser AOM detuning vs piezo voltage for maximum transmission

through the cavity. The solid line is a linear fit of the form V (ν) = m × ν + V 0

where, m = 0.00653 V/MHz and V 0 = 6.44 V.

spacer. Therfore the design was modified to include a piezo tube attached to one of

the mirrors to be able to tune and stabilize the transmission frequency of the cavity

via feedback.

We determine the transfer function between the applied voltage to the piezo tube

and the frequency shift of the transmission peak by using a locked 795 nm laser, fre-

quency tuned by an AOM. This transfer function is later used to convert the measured

bandwidth of the idler photons from piezo voltage to frequency. The AOM frequency

is scanned in steps of 2 MHz, and for each step the piezo voltage that results in a max-

imum transmission of the laser through the cavity is determined. The result of this

measurement is shown in Figure 3.4. The transfer function is determined by a linear

fit to be 153 MHz/V.

The idler photons from a single mode fiber is mode matched to the fundamental

TEM00 transverse mode of the cavity using an aspheric lens of focal length 4.5 mm

(Thorlabs C230-TMB) and a 150 mm plano convex lens. The cavity length is stabilized

via a feedback to the piezo voltage by monitoring the transmission of a 795 nm refer-
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Figure 3.5: The cavity transmission as a function of applied piezo voltage. The

solid (blue) line indicates a fit of the form y(x)= a
γ2+4(x−x0)2 where the FWHM

linewidth γ = 0.0247 V. We use the transfer function from Figure 3.4 to determine

the frequency linewidth to be 3.78± 0.12 MHz.

ence laser coupled through the cavity. The reference laser is switched on only during

the cooling cycle of the experiment (Figure 2.12). The linewidth of the cavity was

measured using this reference laser by tuning the piezo as shown in Figure 3.5. The

FWHM linewidth of 3.78± 0.12 MHz is obtained from a fit of the experimental points

to a lorentzian function. However, this is a convolved linewidth of the cavity and the

reference laser, and therfore gives only an upper bound of the cavity linewidth.

The value of the cavity linewidth can be determined from the G
(2)
si decay time of

the idler photons transmitted through the cavity [100]. The piezo voltage was tuned

such that the peak transmission frequency of one of the longitudinal modes match the

idler photon central frequency. The coincidence time distribution (G
(2)
si (∆tsi)) between

the transmitted idler photons and the heralding signal photons is shown in Figure 3.6.

The G
(2)
si without the cavity has exponential time constant τ = 7.2 ns (figure 2.15). In

the presence of the cavity this transforms into a much longer decay compatible with
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Figure 3.6: The cavity ringdown time measured with heralded idler photons.

The blue line indicates a fit to an exponential decay function of the form B +A×
e−(t−t0)/τ ′ , where B = 15, A = 327, t0 = 40 ns and τ ′ = 51.3 ± 3.5 ns. The fit is

performed only on experimental points with ∆tsi > 80 ns.

the ring-down time of the cavity τ ′. The linewidth of ∆ν = 1/(2πτ ′) = 3.1± 0.2 MHz

is obtained by fitting the tail of the G
(2)
si (∆tsi) to an exponential function.

In order to measure the bandwidth of the idler photons, their transmission though

the cavity is recorded using an APD and a timestamp unit while tuning the cavity

resonance ±50 MHz around the 5S1/2, F = 2 → 5P1/2, F = 2 transition frequency.

3.2.2 Results

The result of the transmission measurement of the heralded idler photons with an

atomic cloud OD ≈ 32 is shown in figure 3.7(a). It can be seen that the bandwidth of

the photons is broader than the natural line width of the 5S1/2, F = 2 → 5P1/2, F = 2

transition (6 MHz). This is due to a collective enhancement of the decay process from

the intermediate level 5P1/2, F = 2 in an optically thick ensemble. This process is

known as superradiance, discussed in more detail in appendix D. A fit of the obtained

44



3.2 Bandwidth of the idler photons

2000

4000

6000

8000

U
nh

er
al

de
d 

 id
le

r 
ev

en
ts

 150

 300

 450

 600

H
er

al
de

d 
 id

le
r 

ev
en

ts

1500

3000

4500

-50 -40 -30 -20 -10  0 10 20 30 40 50

N
on

-C
ol

le
ct

iv
e 

 d
ec

ay
 e

ve
nt

s

Detuning (MHz)

(a)

(b)

(c)

Figure 3.7: (a) Spectral profile of idler photons, heralded by the detection of signal

photons with an atomic cloud OD ≈ 32. The frequency uncertainty is due to the

uncertainty in voltage driving the cavity piezo. The line shows a fit to a model

of Lorentzian-shaped photon spectrum, convoluted with the cavity transmission

spectrum. The fit gives a bandwidth of 24.7 ± 1.4 MHz (FWHM). (b) Same as

(a), but without heralding. The resulting bandwidth from the fit is 18.3± 1.3 MHz

(FWHM). (c) Inferred idler spectrum from the incoherent (non-superradiant) decay

with 12.4± 1.4 MHz (FWHM) bandwidth from a fit.
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3. FROM PHOTON PAIRS TO SINGLE PHOTONS

spectrum to a Lorentzian line shape widened by the cavity transfer function leads to a

bandwidth of 24.7± 1.4 MHz (FWHM) for the idler photons, if they are heralded by a

signal photon.

However, the observed spectrum of all light in the idler mode (i.e., the unheralded

ensemble) shows a narrower bandwidth of 18.3 ± 1.3 MHz (FWHM). This may be ex-

plained by incoherent (non-collective) contributions to light emitted via the collectively

enhanced decay collected in phase-matched directions. The optical bandwidth of light

from the collective decay contribution should increase with the atom number N due

to an enhanced cascade decay rate, while the bandwidth of light from the incoherent

contribution should remain the same. We can infer its spectrum by subtracting the

heralded idler spectrum from the unheralded idler spectrum after correction for losses

in filters (11%), optical elements (7%), inefficient photo detectors (60%), polarization

filters (12%), and fiber coupling (30%). The resulting spectrum for OD ≈ 32 is shown

in Figure 3.7(c), with a width of 12.4± 1.4 MHz FWHM. This exceeds the natural line

width expected for the incoherent decay, probably due to self-absorption in the atomic

cloud.

The observed bandwidth γ of the heralded idler photons for different atomic den-

sities is shown in figure 3.8(a). According to [101, 102], the variation of the emitted

bandwidth γ due to collectively enhanced decay can be modeled by the relation

γ = γ0(1 + µN) , (3.9)

where γ0 = 2π × 5.8 MHz is the natural line width of the 5P1/2, F = 2→ 5S1/2, F = 2

transition, N is the atom number and µ is a factor that corresponds to the geometry

of the cloud. We find a linear increase of γ with OD which is compatible with this

model, since µN is proportional to our measured OD. The solid line shows a fit with

the proportionality factor between µN and OD as a free parameter. The estimated

bandwidth from the g
(2)
si decay time is shown in Figure 3.8(b). This bandwidth is

comparable with the bandwidth measured using the cavity, indicating that the photons
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Figure 3.8: (Left) Bandwidth (FWHM) of heralded idler photons for different

cloud optical densities (OD) measured wih the cavity. (Right) Bandwidth of her-

alded idler photons estimated from the g
(2)
si decay time. The solid line shows the

fit to the model (Eq (3.9)) with the slope as the only free parameter. The slope of

the line is 0.098± 0.007 for (a), and 0.089± 0.005 for (b).

are indeed transform-limited.

3.3 Measuring the field envelope of the photons

The two-photon correlation in time (g
(2)
si ) represents the probability of detecting one

photon before or after detection of the herald (see Figure 2.15). In a cascade decay the

correlation is not symmetric in time [98]. When using the signal photon as a herald, the

temporal envelope of the idler photon shows a fast rise and a long exponential decay.

We expect this envelope to be reversed in time when the idler serves as the herald,

with an exponential rise instead of an exponential decay. We now complement this

reasoning with a measurement of the heralded single photon field quadrature in the

time domain [103, 104] via a balanced homodyne detection.
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3. FROM PHOTON PAIRS TO SINGLE PHOTONS

Figure 3.9: The basic elements for a homodyne detection. The field to be mea-

sured Ep is mixed with a strong local oscillator Elo and detected using PIN photodi-

odes D+ and D-. The difference current ∆I is proportional to the field quadrature

of Ep which is in phase with Elo.

3.3.1 Homodyne detection

Homodyne detection is a well known technique used to measure the field quadrature of

an electromagnetic mode. The basic elements of a balanced homodyne detection scheme

is outlined in the figure 3.9. The mode carrying the field to be measured is mixed with

a strong reference field (local oscillator LO) of same frequency on a 50/50 beam splitter

(BS). The outputs of the beam splitter are detected by two PIN photodiodes and their

currents subtracted.

The two incident fields on the BS are given by [55],

Ep(~r, t) = i

√
~ω

2V ε0
(â ei(

~k.~r−ωt) − â† e−i(~k.~r−ωt)

Elo(~r, t) = i

√
~ω

2V ε0
(b̂ ei(

~k.~r−ωt) − b̂† e−i(~k.~r−ωt) ,
(3.10)

where a and b are the photon annihilation operators which characterize the the two

incident modes. The total field at the two output ports of the beam splitter,

E±(~r, t) = i

√
~ω

2V ε0
(ĉ± e

i(~k.~r−ωt) − ĉ†± e−i(
~k.~r−ωt) , (3.11)
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3.3 Measuring the field envelope of the photons

where ĉ± = â± ib̂ are the annihilation operators of the output modes of the BS.

The quantity measured by balanced homodyne detection is represented by the op-

erator

M̂H(t) =

∫ t+T

t
dt′(ĉ†+(t′)ĉ+(t′)− ĉ†−(t′)ĉ−(t′))

= i

∫ t+T

t
dt′(â†(t′)b̂(t′)− b̂†(t′)â(t′)) (3.12)

where T is the integration time. The local oscillator is assumed to be a single mode

coherent light beam characterized by complex amplitude

α(t) =
√
Fe−iωt+iθ (3.13)

where F is the time-independent mean photon flux, and θ is the phase.

The difference current of the two detectors is given by

〈∆I(t)〉 ∝ 〈M̂H(t)〉 = i
√
F

∫ t+T

t
dt′〈â†(t′)e−iωt′+iθ − â(t′)eiωt

′−iθ〉 (3.14)

= 2i

∫ t+T

t
dt′〈X̂cos(ωt′ − θ) + P̂ sin(ωt′ − θ)〉 (3.15)

where X̂ and P̂ are quadrature field operators. It can be seen that the mean difference

current is proportional to the quadrature phase amplitude of the signal mode defined

with respect to the local oscillator phase θ. The LO phase is generally defined by

phase locking the LO to the pump lasers. This is essential for the experiments on

quantum state reconstruction in quadrature phase space [105, 106]. However, we are

only interested in measuring the time variation of the field amplitude of a single photon

Fock state. It is well known that the quadrature phase amplitude of a single photon

Fock state is independent of the phase θ [98]. This is illustrated in figure 3.10. Therefore

our experiment does not require such a phase lock for the LO.
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3. FROM PHOTON PAIRS TO SINGLE PHOTONS

Figure 3.10: Representation of quadrature field operator expectation values for

the Fock states. The expectation value is independent of the local oscillator phase

θ.

3.3.2 Detector characterization

The homodyne detector unit consists of two Si PIN photodiodes (Hamamatsu S5972)

connected as shown in Figure 3.11 to measure the difference current ∆I. The respon-

sivity and coupling of light to these diodes is determined to be 0.53 A/W by comparing

the measured DC current with a reference photodiode. The sensitivity of the reference

diode was measured by the National Metrology Center in A*STAR, Singapore to be

0.6027± 0.002651 A/W at 795 nm. The DC part of the difference current is suppressed

by using a high pass filter with a cut-off frequency of 10 KHz. The AC part is amplified

by a transimpedence amplifier (AD8015) of gain 5.7 kΩ. The output of the amplifier

in this configuration is designed to drive a 100Ω load. A 2:1 transformer is used to

convert the output impedance of the detector unit to drive a 50 Ω load instead.

Since we are interested in measuring the optical field at a single photon level, it is

important to characterize the noise level of the homodyne detector. The detector noise

can be classified into three broad categories:

• Electronic noise which is independent of the incident optical power. This includes
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3.3 Measuring the field envelope of the photons

Figure 3.11: Circuit diagram of the homodyne detector with: Si photodiodes D+

and D-, a high pass filter HPF (C9,R4) with 3 dB cut-off frequency of 10 KHz, a

transimpedance amplifier AD8015, and a 2:1 transformer for impedance matching

with a 50 Ω line. The upper cut-off frequency of the AC port is limited by the

amplifier at 210 MHz. The DC port is used to measure the difference DC current

across the 10 KΩ load (R4).

the dark current of the detector and the thermal noise in the electronics.

• Classical noise which results from intensity fluctuations in the laser. This noise is

negligible in the balanced homodyne detection as the intensity fluctuations cancel

out in the difference current, ∆I.

• Shot noise which corresponds to the Poissonian photoelectron statistics. This is

the fundamental detection limit. The variance of the photocurrent due to shot

noise is given by V (∆I) = 2e∆f〈∆I〉, where ∆f is the frequency bandwidth, and

e is the charge of the electron.

The best signal-to-noise ratio can be achieved when the detector noise power is

dominated by shot noise i.e., the detector is said to be shot noise limited. In this case,

Pnoise = V (∆I)RL , (3.16)

where Pnoise is the rms noise power of the homodyne current measured using a load
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Figure 3.12: The spectrum of the electronic noise measured without LO (red) and

the overall noise with LO of optical power 4.4 mW (blue). The resolution bandwidth

of the spectrum analyzer was set to 10 KHz for both the measurements. The 3 dB

bandwidth of the detector is determined from the blue curve to be 210 MHz. The

relatively flat response of the noise within the detector bandwidth is characteristic

of the Shot noise.

resistance RL.

The characteristic features of shot noise are :

• The variance of the noise power is directly proportional to the average current,

and therefore the incident optical power.

• The noise spectrum is independent of the frequency within the detection band-

width.

The spectrum of the noise from our detector was measured with an Agilent 13 GHz

spectrum analyzer (MS2723B) and is shown in Figure 3.12. The red line is the spectrum

of the electronic noise obtained with no incident light onto the detectors. The blue line

is the noise spectrum in the presence of the LO of optical power 4.4 mW. It can be seen
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Figure 3.13: The detector noise power by varying the incident optical power of

the LO on a log-log plot. The noise power (y-axis) is obtained from the average

value of the spectrum analyzer trace (Figure 3.12) between 100 KHz to 200 MHz.

The black line is a fit of the form: Pnoise = b+ s×Popt, where b=-82.15 dBm is the

electronic noise level (red line) and s=10 dB/decade is the slope of the shot noise.

that the spectrum is reasonably flat in frequency within the detection bandwidth of

210 MHz, except for a few peaks 1. The noise power in these peaks become negligible

when integrating over the detection bandwidth.

The measured noise power of our detector as a function of the incident optical

power is shown in Figure 3.13. The electronic noise is shown as a horizontal line at

-82 dBm independent of the optical power, and the blue line represents the shot noise.

We operate the detector at an incident optical power of ≈ 4.5 mW where the overall

noise is dominated by the shot noise.

1The peaks are presumably from FM radio, and AOM drivers nearby
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3. FROM PHOTON PAIRS TO SINGLE PHOTONS

Figure 3.14: Field measurement setup. One of the photons (idler in this figure)

is combined with a coherent laser field as a local oscillator on a polarizing beam

splitter (PBS1), and sent to a balanced pair of PIN photodiodes D+, D- for a ho-

modyne measurement. The photocurrent difference as a measure of the optical field

strength is amplified and recorded with an oscilloscope triggered on the detection

of a heralding signal photon by Dt.

3.3.3 Experimental setup

The experimental scheme is shown in Figure 3.14: the idler mode is mixed with a

local oscillator (LO) which is frequency-stabilized to the idler transition 5S1/2, F =

2 → 5P1/2, F = 2. The balanced mixing is done with two polarizing beam splitters

(PBS1,2) and a half-wave plate resulting in an interference visibility of ≈ 95%. The

difference of photocurrents from the PIN silicon photodiodes (D+, D-) is proportional

to the optical field quadrature in the idler mode. We record the homodyne signal

with a digital oscilloscope (analog bandwidth 1 GHz), with the detection of the signal

photon on Dt triggering the acquisition. We then calculate the variance of the optical

field from 2.7× 105 traces, normalized to the shot noise, as a measure of the temporal

envelope of the photon. We also switched the roles of the signal and idler modes for

triggering and homodyne detection, this time using a local oscillator resonant with

the transition 5P1/2, F = 2 → 5D3/2, F = 3 near 762 nm. The variance for this

measurement is calculated from 5× 105 traces. Both results are shown in Figure 3.15.

In both configurations, we set ∆2 ≈ 6 MHz to maximize the heralding efficiency.
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3.3 Measuring the field envelope of the photons

3.3.4 Results

In Figure 3.15(a) the normalized field variance of the idler photon suddenly rises about

4% above the shot noise level at the detection time of the trigger photon, and expo-

nentially decays back to the shot noise level, with a time constant of τi = 7.2 ± 0.2 ns

obtained from a fit. This can be easily understood by the timing sequence of a cascade

decay, where the signal photon heralds the population of the intermediate level, which

subsequently decays exponentially, leading to the characteristic decaying envelope of

the idler photon according to the Weisskopf-Wigner solution [107]. The probability of

detecting an idler photon given the detection of a signal photon (heralding efficiency)

was independently determined with two APDs to be ηi ≈ 13%.

In Figure 3.15(b) the normalized field variance of the signal photon exponentially

increases a few 10 ns before the trigger event to a value of 1.06, and then quickly returns

to the shot noise level. The time constant of the exponential part is obtained from a

fit to be τs = 7.4± 0.2 ns. Here, the suppression of uncorrelated trigger (idler) photons

by the etalon (see Section 2.4.1) results in a higher heralding efficiency ηs ≈ 19%,

and therefore a higher signal to shot noise level. The measured value of decay time

is compatible with our previous measurements of the distribution of detection time

differences for this optical density.

From the results of the HBT experiment (see Section 3.1.2), we know that the idler

detection witnessed a single photon in the signal mode to a very good approximation.

We therefore have to conclude that the heralded signal field is a single photon state

with an exponentially rising temporal envelope. In this case, however, the simple

causal interpretation of the physical process in the Weisskopf-Wigner picture does not

work [107]: the trigger time is fixed by the herald that leaves the atoms in the ground

state, but the signal field starts to rise to a maximum before that. So the heralding

process does not set an initial condition of a physical system that then evolves forward

in time, but marks the end of a (signal) field evolution that is compatible with the

exponential rise that started before the heralding event. Formally this is not a problem,

because the heralding event just sets a different boundary condition. A single photon
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Figure 3.15: Optical homodyne results. (a) Exponential decay of the field vari-

ance of heralded idler photons. (b) Exponential rise of the field variance of heralded

signal photons.

with such a rising exponential temporal envelope would be ideal for absorption by a

two-level system, and to test the reversibility of the spontaneous emission process [18].

3.4 Conclusion

In this chapter, we have demonstrated a source of narrowband heralded single photons

based on an ensemble of cold rubidium atoms. We observe antibunching with g(2)(0) <

0.03, conditioned on detection of a photon in the signal (idler) mode. Depending on

which of the modes is chosen as a herald, we find either an exponentially decaying or

rising temporal envelope of the heralded photon.
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3.4 Conclusion

If heralded single photons are practically not distinguishable from “true” single

photons, the former should at least in principle be efficiently absorbed by a two-level

system in free-space in a time-reversed Weisskopf-Wigner situation. Such an experi-

ment also would provide a better understanding as to how equivalent heralded photons

are to single photons emerging from a deterministic source with a well-defined initial

condition. This test would require a photon driving a ground state transition of a two

level system. The heralded photons with the exponentially rising waveform generated

by our scheme are resonant with an excited transition and therefore cannot be used

directly. In the next chapter, we address this problem of how to prepare a ground state

resonant photon with an exponentially rising envelope.
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Chapter 4

Interaction of single photons with

a cavity

Absorption of a single photon by a single atom is an interesting problem from a fun-

damental point of view, and is also essential for many quantum information proto-

cols [8, 108]. One of the requirements for an efficient absorption is that the temporal

shape of the incident photon is the time reversal of the photon from the spontaneous

decay process [19, 20]. Temporally shaped light pulses have been utilized in many re-

cent experiments to achieve efficient interactions between light and matter [25, 109]. In

particular, the advantage of using a rising exponential shaped single photon for absorp-

tion in an atomic ensemble was demonstrated in [110], and shaped multiphoton pulses

for exciting a single atom was demonstrated in [24]. This advantage also applies to

interacting single photons with other systems such as quantum dots [111, 112], single

molecules [113] and superconducting circuits [22].

Efficient preparation of single photons with a rising exponential envelope is not

trivial. One solution is the direct modulation of a heralded photon generated by an

atomic medium [114]. This technique results in unavoidable losses due to filtering.

In Chapter 3 we demonstrated a scheme to generate single photons with a rising

exponential shape by heralding on photon pairs produced by cascade decay without
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4. INTERACTION OF SINGLE PHOTONS WITH A CAVITY

filtering. The drawback of this scheme is that the photon with the rising exponential

envelope is not resonant with an atomic ground state transition.

We combine the asymmetric cavity design used by Bader et al. [21] with the well

known temporal correlation properties of photon pairs [115] to invert the temporal

envelope of the generated photon pairs. With a proper heralding sequence, we obtain

rising exponential single photons resonant with a ground state transition of 87Rb. This

concept is not limited to atoms, but can equally be applied to other physical system

with a cascade level structure to obtain such photons [116, 117, 118].

In this chapter, we discuss two related experiments. In the first experiment pre-

sented in Section 4.1, we reverse the temporal envelope of the heralded photons. In

Section 4.2, we study the coupling of single photons with different temporal shapes to

the cavity.

4.1 Reversing the temporal envelope

4.1.1 Concept

We first present an intuitive, though hand-waving description of how a cavity can be

used to reverse the temporal envelope of the heralded photons. A more rigorous math-

ematical description is presented in the Section 4.1.2. Consider an asymmetric cavity

with one mirror (M2) with unit reflectivity and another partially reflecting mirror (M1)

with a reflectivity chosen such that the cavity ringdown time matches the coherence

time of our photons (see Figure 4.1). A photon incident on the cavity at the mirror

M1 will either be directly reflected off the mirror or be coupled to the cavity mode.

If the incident photon has a rising exponential temporal envelope matching the cavity

lifetime, the probability amplitudes of the direct reflection and the leakage from the

cavity mode through the mirror M1 cancel out due to complete destructive interfer-

ence. Therefore the incident photon is completely absorbed into the cavity mode, and

subsequently decays exponentially through M1. The exponentially rising envelope of

the incident photon thus gets transformed into a decaying exponential envelope.
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4.1 Reversing the temporal envelope

Figure 4.1: Concept of time reversal of the heralded photons using an asymmetric

cavity. The figures of the left shows the temporal shape of the heralded photons

without the cavity. The experimental observation of this was presented in Chap-

ter 3. The figures on the right shows how an asymmetric cavity in the signal mode

is expected to reverse the envelope of these photons.
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In our experiment the signal photon has a rising exponential envelope when her-

alded on the detection of the idler photon. When coupled to the cavity, its temporal

envelope changes to an exponential decay. However we are interested in the shape of

the heralded idler photons resonant with the ground state of the atom. If the heralded

signal photon has an exponentially decaying envelope, symmetry implies that the her-

alded idler photon has a rising exponential envelope with the same time constant. Thus

by using an asymmetric cavity in the signal mode we can invert the temporal shape of

the idler photons from exponential decay to a rise.

4.1.2 Theory

The photons emerging from an atomic cascade decay have a well defined time order.

The first photon of the cascade (signal) is generated before the photon resonant with

the ground state (idler). The resulting state can be described by a two photon wave

function [102] of the form

ψ(ts, ti) = Ae− (ti−ts)/2 τ Θ(ti − ts) , (4.1)

where ts, ti are the detection times of the signal and idler photons, and Θ is the Heaviside

step function. In this notation, the probability of observing a pair is proportional to

|ψ(ts, ti)|2. The exponential envelope and the decay time τ is a consequence of the

atomic evolution of the cascade decay. If the detection of a signal photon is used as

herald, the idler mode has a single photon state with a exponentially decaying temporal

envelope starting at ti = ts. Similarly, if the detection of an idler photon acts as a

herald, the signal photon has an exponentially rising temporal envelope.

The effect of the cavity on the signal mode can be described as a frequency-

dependent phase factor [119, 120],

C(δ′) =

√
R1 −

√
R2 e

i δ′/∆νf

1−
√
R1R2 ei δ

′/∆νf
, (4.2)

where R1,2 are the reflectivities of M1,2, ∆νf is the free spectral range of the cavity,
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4.1 Reversing the temporal envelope

and δ′ the detuning from the cavity resonance. For R2 = 1, the transformation of

the incoming mode is lossless, i.e., |C(δ′)| = 1. We are only interested in the condition

when the photon frequency is tuned near the cavity resonance i.e. δ′ � ∆νf . Therefore

Eq. (4.2) can be approximated upto the first order in series expansion as

C(δ′) ≈

√
R1 −

√
R2 (1 + i δ′

∆νf
)

1−
√
R1R2 (1 + i δ′

∆νf
)
. (4.3)

The cavity transforms the two-photon wavefunction in Eq. (4.1) into the two-photon

wavefunction ψ̃(ts, ti):

ψ̃(ts, ti) = F−1
s

[
C(ωs − ω0

s − δ) · Fs [ψ(ts, ti)]
]
, (4.4)

where Fs denotes a Fourier transform from ts to ωs, and δ is the detuning of the cavity

resonance from the signal photon center frequency ω0
s/2π.

If R1 is chosen such that the ring-down time of the cavity matches the coherence

time τ of the photon pair, resulting wavefunction is:

ψ̃(ts, ti) =
A√

1 + 4 δ2τ2
[ 2 δ τ e−(ti−ts)/2 τ Θ(ti − ts)

+e(ti−ts)/2 τ Θ(−ti + ts)] (4.5)

with an exponentially rising and an exponentially decaying component. Their relative

weight can be controlled by the detuning δ; for δ = 0, a time-reversed version of

Eq. (4.1) is obtained:

ψ̃(ts, ti) = Ae(ti−ts)/2 τ Θ(−ti + ts). (4.6)

Heralding on the detection of a modified signal photon results in an idler photon

state with a rising exponential envelope, ending at ti = ts. The cavity thus effects a

reversal of the temporal envelope of the heralded idler photons from an exponential

decay to a rise.
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Figure 4.2: Transfer function of the asymmetric cavity. (Top) Argument of the
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)
. (Bottom) Absolute value of

the cavity transfer function, |C(δ′)|. The loss in the cavity is given by 1− |C(δ′)|.

In practice, R2 is always less than 1, which leads to losses in the cavity. In the

experiment we have R1=0.941, R2=0.998, and ∆νf=2.7 GHz (see next section). The

transfer function between the incident light to the cavity and the reflected light from

the cavity for these parameters is shown in Figure 4.2.

4.1.3 Experiment

To experimentally investigate the time reversal technique, we use the setup shown in

Figure 4.3. We generate time-ordered photon pairs by four-wave mixing in a cold

ensemble of 87Rb atoms in a cascade level scheme. Pump beams at 795 nm and 762 nm

64



4.1 Reversing the temporal envelope

Figure 4.3: Schematic of the time reversal experiment. IF1, IF2: interference

filters, used to combine pump beams and to separate the photons pairs. SMF:

Single mode optical fibers. M1, M2: cavity mirrors. The incoming and outgoing

mode of the cavity are separated by a polarizing beam splitter (PBS) and a quarter

wave plate (λ/4). D1, D2: silicon avalanche photodiodes (APD). The inset shows

the cascade level scheme for generation of photon pairs in 87Rb

excite atoms from the 5S1/2, F = 2 ground level to the 5D3/2, F = 3 level via a two-

photon transition. The 776 nm (signal) and 780 nm (idler) photon pairs emerge from

a cascade decay back to the ground level and are coupled to single mode fibers.1 All

four modes are collinear and propagate in the same direction. The coherence time τ of

the photon pairs is determined by a time-resolved coincidence measurement between

the detection of signal and idler photons to be 5.9±0.2 ns. The optical density of the

1Note that for this experiment we swap the wavelengths of the pumps and generated photon pairs
described in chapters - 2 and 3. This is done because the single atom experiment in our group requires
a single photon resonant with the D2 line (780 nm) for efficient interaction.
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atom cloud for this experiment is ≈ 28.
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Figure 4.4: Transmission and reflection of the asymmetric cavity measured using

776 nm laser. (Top) Transmission through the cavity as a function of the detuning

∆ from the cavity resonance. The blue line is the fit of the form T (∆) = b +

a (γ/2)2

∆2+(γ/2)2 , where γ=27 MHz, a=0.039, and b=0.007. (Bottom) Reflection from

the cavity as a function of the detuning ∆ from the cavity resonance. The blue

line is the fit of the form T (∆) = b′ − l (γ/2)2

∆2+(γ/2)2 , where γ=27 MHz, l=0.113, and

b′=1.01. The reflectivity of M2 and the losses in the cavity (R2) is obtained from

the fit parameters to be R2 = 0.998± 0.001.

One of the modes of the photon pairs (signal in Figure 4.3) is coupled to the funda-

mental transverse mode of an asymmetric cavity, formed by mirrors M1, M2 with radii

of curvature of 100 mm and 200 mm, respectively. We characterize the cavity using a

frequency stabilized laser of wavelength 776 nm. The reflectivity of mirror M1 is de-

termined by direct measurement with a PIN photodiode to be R1 = 0.9410 ± 0.0008.

Transmission through the mirror M2 and absorption by the mirrors leads to losses in

the cavity. The loss per round trip is determined from the transmission through and the
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4.1 Reversing the temporal envelope

reflection from the cavity and is included in the reflectivity of M2, R2 = 0.998± 0.001

(Figure 4.4). The mirrors are mounted on a 55 mm long fused silica spacer, corre-

sponding to a free spectral range ∆νf = 2.7 GHz. Therefore, an incident photon of

Fourier bandwidth 1/(2πτ) = 27 MHz interacts effectively with only one longitudinal

mode of the cavity, ensuring that Eq. (4.3) is an adequate model. Temperature control

of the spacer allows precise tuning and stabilization of the resonance frequency of the

cavity. The light reflected off the cavity is separated from the incident mode by using

a polarising beam splitter (PBS) and a quarter waveplate (λ/4).

4.1.4 Results

We infer the temporal shape of the heralded photons from the time distribution of the

coincidence rate G
(2)
si between the APDs Ds and Di. In Figure 4.5 we show G

(2)
si for

three different cavity-photon detunings. When the cavity resonance is tuned far away

from the signal photon frequency ω0
s , in this case about δ/2π = 120 MHz, the temporal

envelope remains nearly unchanged from the exponential decay obtained without the

cavity. Off-resonant coupling of the incident signal photon to the cavity leads to the

residual coincidences at times ti − ts < 0. At δ/2π = 27 MHz, the time distribution

becomes a symmetric exponential, and on resonance, δ/2π = 0, we obtain a rising

exponential shape. For all three detunings the measurement agrees with the shape

expected from Eq. (4.5): the exponential time constants remain unchanged and the

new temporal shapes are determined by the phase shift across the cavity resonance via

Eq. (4.3).

From the time distribution of the coincidence counts, it is evident that the situation

is symmetrical to what we presented in Section 3.3.4: by heralding on the signal photon

we now obtain an idler photon with a rising exponential temporal envelope. This result,

though predicted by the theory, is particularly exciting: the idler photon is resonant

with a ground state transition and its temporal envelope is similar to the time reversal

of that obtained by spontaneous decay. The only deviation from the predicted shape

occurs for a short time interval after the detection of the herald (ti − ts > 0). We
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Figure 4.5: Transformation of the heralded idler photons from exponential decay

to rise when the cavity is aligned in the signal mode. The y-axis shows the coin-

cidence rate G
(2)
si between the detectors D1 and D2 as a function of the detection

time difference. The dashed lines represent
∣∣∣ψ̃(ts, ti)

∣∣∣2, obtained from the model

described by Eq. (4.5) for the indicated cavity detunings δ, with the amplitude A

as the only free parameter used to fit the experimental points.
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Figure 4.6: Temporal envelope of the idler photon when the cavity is aligned

and tuned to resonance with the idler mode. The dashed line represents
∣∣∣ψ̃(ts, ti)

∣∣∣2
obtained from Eq. (4.4) by swapping i and s. Also in this case, the amplitude is

the only free parameters used in the fit.

attribute this deviation to an imperfect matching between the signal and cavity spatial

modes.

To confirm the predictive power of our model, we repeated the same experiment

swapping the roles of the signal and idler modes i.e., the cavity is aligned in the idler

mode. This corresponds to swapping the subscripts s and i in Eqs. (4.4) and (4.5).

Figure 4.6 shows the time resolved coincidence rateG
(2)
si between the signal and modified

idler photons with the cavity tuned on resonance with the idler central frequency. In

this case the cavity transforms the exponentially rising temporal envelope into a more

complex shape. Our model describes accurately this complex shape, as can be seen

from the dashed line in Figure 4.6.
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4. INTERACTION OF SINGLE PHOTONS WITH A CAVITY

4.2 Coupling of the single photons to the cavity

Efficient coupling of temporally shaped coherent light pulses to an optical cavity was

studied in [21]. In this section we present a similar experiment with single photons using

the same experimental setup used for reversing the temporal envelope. We determine

the population of the cavity mode as a function of time, and observe its dependence on

the temporal envelope of the incident photon.

4.2.1 Estimation of the photon number in the cavity

The photon number in the cavity at any given time from the heralding event can be

estimated from the time distributions of the rate of the photons incident to the cavity

(Gin) and the rate of the photons reflected back from the cavity (Gref ). The Gin is

obtained by tuning the cavity resonance to ≈200 MHz from the central frequency of the

incident photons. The loss per round trip due to the leakage through the mirror M2

and the absorption in the mirrors is η = 1 − R2 = 0.002 ± 0.001. The mean photon

number in the cavity 〈n(t)〉 is given by,

n(t) =

∫ t

−∞

(Gin(t′)

P
−
Gref (t′)

P
− n(t′) η

trt

)
dt′ , (4.7)

where P =
∫ −100 ns

100 ns Gin(t) dt is the total rate of the incident photons, and trt =

2L/c = 0.37 ns is the round trip time of the cavity. Eq. (4.7) can be rewritten as a

differential equation,

dn(t)

dt
=

Gin(t)

P
−
Gref (t)

P
− n(t)η

trt
(4.8)

The solution of this differential equation is given by,

n(t) =
e−η t/trt

P

∫ t′

−∞

(Gin(t′)

P
−
Gref (t′)

P

)
eη t

′/trt dt′ (4.9)
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4.2 Coupling of the single photons to the cavity

We use Eq. (4.9) to determine the mean photon number in the cavity with single

photons of different temporal shapes.

4.2.2 Results

When the cavity is aligned in the idler mode, we have a heralded single photon with

decaying exponential envelope interacting with the cavity. The mean photon number

in the cavity (〈n(t)〉) reaches a maximum of 0.44± 0.01 as shown in Figure 4.7. On the

other hand, when the cavity is aligned in the signal mode we have a heralded single

photon with a rising exponential envelope interacting with the cavity. In this case,

〈n(t)〉 reaches a maximum of 0.76 ± 0.01. As expected, the photon with the rising

exponential waveform interacts more efficiently with the cavity.

We also measured the population of the cavity with an exponentially rising single

photon of coherence time τ = 17 ± 1 ns, much longer than the ringdown time of the

cavity. This coherence time is obtained by lowering the optical density of the atom

cloud to ≈ 7. The result is shown in Figure 4.8. It can be seen that the maximum

value of 〈n(t)〉 is 0.51±0.02., lower than the case when the decay times match.

An asymmetric optical cavity is analogous to a single atom in many aspects [121].

Following this analogy, we expect the results presented in this section to be extended

to the probability of absorption of a single photon by a single atom. In the case of

interaction with a single atom, in addition to the “time reversed” envelope it will also

be necessary to match the bandwidth of the transition for an efficient absorption. We

have already demonstrated how it is possible to control the bandwidth of the photon

generated by the cascade process by adjusting the optical density of the atomic medium

in Section 3.2.
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Figure 4.7: Mean photon number in the cavity estimated using Eq. (4.9). (Bot-

tom) The detection of an idler photon is used as herald and the cavity is in the

signal mode. In this case we observe the interaction of an exponentially rising

waveform with the cavity. (Top) The roles of signal and idler are swapped and

the cavity interacts with an exponentially decaying incident photon.
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Figure 4.8: Mean photon number in the cavity with an exponentially rising single

photon of coherence time 17 ns. The peak value of 〈n〉 is 0.51.

4.3 Conclusion

In this chapter, we have demonstrated a method to transform a heralded single photon

with a decaying exponential temporal envelope to a rising exponential envelope using

a cavity. Using this method, we obtain single photons that resemble the time-reversed

versions of photons from spontaneous decay process resonant to the D2 line of 87Rb

atoms. Single photon states of this envelope and suitable bandwidth would be useful for

transferring quantum information from photons to atoms. The time reversal technique

presented here can also be used with photon pairs from other sources with time-ordered

emission, as found e.g. in molecules and quantum dots.
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Chapter 5

Conclusion and outlook

In this thesis we have demonstrated a source of narrow bandwidth heralded single

photons resonant with the ground state of 87Rb atoms. The bandwidth of the photons

is tunable from 10 MHz to 30 MHz, and a maximum photon detection rate of 18000 s−1.

We have also presented a potentially loss-less technique to reverse the temporal envelope

of the photons to resemble the time reversal of spontaneous decay process.

5.1 Outlook

Sonderman et al. [122] has theorized that a single photon light field can be absorbed

completely by a single atom provided that it was generated by an inversion of all the

degrees of freedom of the atomic spontaneous emission process. One of the challenges

to experimentally verify this has been to obtain single photons with a time reversed

envelope. There has been a few recent experiments with temporally shaped coherent

pulse with a single atom [24] or a cavity [21]. Our photons can be used to perform

similar experiment with single atoms in free space or in a weakly coupled cavity. Such an

experiment would serve to verify the reversibility of the spontaneous emission process.

Another interesting experiment that one could perform with our photons is to study

how remote manipulation of its temporal envelope affects the absorption by an atom.

Consider an experiment where our photons are sent to a single atom trapped in free
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5. CONCLUSION AND OUTLOOK

Figure 5.1: Schematic of a proposed experiment to measure the mean absorption

of a single photon from FWM by a single atom trapped between two aspheric lenses

(AL). The detection signal from Ds is used to open a time window of width w using

an optical switch to let the single photon reach the single atom experiment. The

transmission of the photon is measured using an APD DT.

space by a tightly focused optical dipole trap [58, 59] (see Figure 5.1). The interacting

photon (idler) is turned on/off by using an optical switch controlled by the detection

of a heralding (signal) photon. The switch is opened for a specific time (w) from the

detection of time of the signal photon, thereby directing the idler photon to the atom

for absorption. How would the mean absorption/scattering change as the resonance

frequency of the cavity in the signal mode is varied? And how does the width of the

switching time window (w) affect the mean absorption? Answering these questions in

an experiment would be helpful to better understand the temporal shaping of single

photons by heralding technique, and also the interaction of atoms and photons at a

fundamental level.

From quantum information perspective, transfer of entanglement between photons
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5.2 Progress towards absorption by a single atom

and atoms is an important step towards building quantum networks. Polarization

entanglement of our photon pairs combined with the absorption by an atom can be

used to perform entanglement swapping experiments similar to [123, 124].

5.2 Progress towards absorption by a single atom

We are currently working towards interfacing our photons with a single atom in an

optical dipole trap in free space. As a first step, we performed an experiment to show

that the single photon from our source is indistinguishable from a fluorescence photon

from a single atom. A detailed description of this experiment can be found in [76, 125].

A simplified schematic of the Hong-Ou-Mandel (HOM) interferometer used carry out

the experiment is shown in Figure 5.2. Single photons from our experiment and the

single atom are sent to the input ports of a 50/50 Beam Splitter (BS). The interference of

the photons result in bunching at the output ports of the BS. We measure a HOM dip in

the coincidences between the detectors D1 and D2 with a visibility of 75±4 %, indicating

that the two photons are indeed largely indistinguishable. Therefore, the time reversed

version of the heralded photons from our source obtained by the technique discussed

in Chapter 4 should in principle also be indistinguishable from the time reversal of the

single atom spontaneous decay.

However the cavity described in Chapter 4 requires polarization projection in order

to reverse the envelope. This destroys the polarization entanglement of the photon

pairs. In addition to this, the linewidth of the cavity is about 4 times larger than

the linewidth of the 87Rb D2 line. A traveling wave bow tie cavity would solves both

these issues. The incoupling and the outcoupling modes of such a cavity are spatially

separable. Therefore, if the reflectivity of the mirrors are polarization independent, we

can reverse the envelope without any polarization projection. We are presently making

a bow tie cavity with a linewidth of ≈10 MHz, matching the minimum achievable

bandwidth of the photons with a reasonable rate (≈50 s−1).
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Figure 5.2: A simplified schematic of the Hong-Ou-Mandel (HOM) interference

between heralded single photons from four wave mixing and fluorescence photon

from a single atom. The detection of a signal photon by an APD Ds is sent to the

single atom experiment where it is used as a time reference to prepare a π pulse for

exciting the atom. The fluorescence photon from the excited atom reflected from

the 99/1 BS is coupled into single mode fiber and sent to one of the input ports of

the 50/50 BS used in HOM interferometer. The idler photon from FWM is sent to

the other input port of the 50/50 BS. The fiber delay is adjusted such that the two

photons reaches the 50/50 BS at the same time. The bunching in photon statistics

due to HOM interference is observed by measuring the coincidences between APDs

D1, D2 and Ds.

78



Appendix A

Absorption imaging

In this chapter we describe the measurement of the number of atoms trapped by the

Magneto-Optical Trap (MOT) using absorption imaging. Absorption imaging is a

standard method to determine the number and the density of the atoms obtained by

laser cooling techniques [126].

A.1 Experiment

The basic idea of absorption imaging is illustrated in Figure A.1(a). A probe laser of

diameter much larger than the size of the cloud and near resonant to the 5S1/2, F =

2 → 5P3/2, F = 3 transition is aligned to overlap with the entire cloud. The probe

beam was collimated from the fiber using a 25 mm focal length lens, resulting in a

beam diameter of ≈ 6 mm. The power of the probe beam was chosen to be 10µW such

that the peak intensity is more than 40 times lower than the saturation intensity of

the above mentioned transition. The transverse profile of the beam is elliptical instead

of Gaussian due to the aberrations caused by the collimating lens. However this is

not a problem since the measurements rely only on the intensity fraction with and

without the cloud. A two lens telescope with a magnification factor of ≈ 0.23 is used to

image the cloud onto a CCD chip. We use a linear CCD camera (Sony XC-56) with a

resolution of 659× 494 pixels. Each pixel has a physical dimension of 7.5µm× 7.5µm.
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A. ABSORPTION IMAGING

The timing sequence of the experiment shown in Figure A.1(b) is different from the

cycle used for the photon pair generation. This is mainly because of the slow switching

time of the camera shutter. Even though the applied TTL switching pulse to the camera

is only 70µs wide, the camera shutter takes a few ms to “close” completely. During

this time the cooling light cannot be turned on as it would affect the measurement.

Figure A.1: (a) Experimental setup used for absorption imaging. The shadow

cast by the cloud of 87Rb atoms on the transverse profile of a near resonant probe

laser is imaged using a CCD chip. (b) The timing sequence used for absorption

imaging.
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A.2 Results

Figure A.2: Shadow cast by the atom cloud on the probe beam. CCD image of

the resonant probe beam without (left) and with (right) the atom cloud

A.2 Results

Due to the absorption of the probe light by the cloud during the acquisition time of

the camera its image appears as a shadow in the probe beam (see Figure A.2). Each

pixel of the camera records the transmission of the probe along different columns along

the cloud. We record these transmission images by tuning the frequency of the probe

beam across the atomic resonance using an AOM. Three images are captured for every

detuning value of the probe beam: (1) with both the probe beam and the cloud to see

the absorption (I); (2) with the probe beam but without the cloud to obtain I0; (3)

with the probe beam switched off to measure the background (bg). The background

image is subtratracted from the other two images for determining the optical density

(OD). We determine the OD corresponding to each pixel using a fit function,

I(∆)− bg = (I0 − bg)e
− OD Γ2

4∆2+Γ2 , (A.1)
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Figure A.3: Transmission corresponding to one of the pixels near the center of

the cloud as a function of the detuning from the resonance. The OD obtained from

the fit is 25.0±2.2.

where ∆ is the detuning of the probe beam from resonance, and Γ=6.06 MHz is the

linewidth of the 5S1/2, F = 2 → 5P3/2, F = 3 transition. This fit function is also used

when measuring the OD with a photodetector described in Section 2.2.3.

A plot of the probe transmission as a function of detuning for one of the pixels

corresponding to a column near the center of the cloud is shown in Figure A.3. The

optical densitity ranges from 27.5 at the center of the MOT to 0 outside of the MOT.

The distribution of the OD measured for each pixel of the camera is shown as a 3D

plot in Figure A.4. It can be seen that the distribution is not Gaussian but rather

uniform near the center where the density is high. This is possibly due to the same

effects described in [127]
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Figure A.4: The optical density as a function of the camera pixel number. Each

point is obtained from the transmitted intensity (see Figure A.3) of the probe

through a thin column of atoms along the probe propagation direction.
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A.2.1 The number of atoms

The average atom density of each column can be obtained from the measured optical

density using Beer’s law: The transmittance of light traveling through a dispersive

medium is given by,
I

I0
= e−σlnv , (A.2)

where σ is the scattering cross-section, l is the length of the interaction region, and

nv is the average number of the atoms per unit volume in the interaction region. The

term lnv is known as the column density (nc) and is related to the OD as,

ln
(I(0)

I0

)
= −OD = −σnc . (A.3)

The average number of atoms in a column corresponding to each pixel of the camera

is given by Np = ncA where A is the area of the pixel. The total number of atoms in

the cloud is obtained by summing Np over all the pixels of the camera.

N =
∑

all pixels

Np =
∑

all pixels

ncA =
A

σ0

∑
all pixels

OD . (A.4)

We estimate the total number of atoms for the OD distribution shown in Figure A.4

to be (1.39± 0.21)× 108.
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Appendix B

Four-wave mixing with seed

The atomic ensembles in the presence of the two pump lasers (780 nm and 776 nm) and

the seed laser (795 nm) acts as a parametric amplifier. In this process a coherent fourth

field (762 nm) is generated in the phase matching direction. We use the seed and the

generated field to define the signal and the idler mode for the photon pair generation.

In this appendix we study the efficiency of the four-wave mixing process by measuring

the power of the generated signal while varying the polarizations of the participating

fields.

The experimental setup (see figure B.1) and the timing sequence is the same as that

described in alignment procedure ( Section 2.3.3). We use a Thorlabs photodetector

(PDA36A) to measure the power of the generated signal field. The Figure B.1 shows

the oscilloscope trace of the photodiode voltage. During the parametric conversion

interval of 1 ms, the generation of the coherent signal field appears as a spike in the

photodiode voltage. The background is due to the residual pump light leaking through

the interference filters and falling on the photodiode. The Quarter Wave Plates (QWP)

and the Half Wave Plates (HWP) in each of the modes is used to set or measure the

polarization.
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Figure B.1: (Top) Level scheme and setup for FWM with seed. The signal power

is measured with a photodiode PD. (Bottom) Signal field power measured with

an oscilloscope. The background is from the residual 776 nm pump light.
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Polarizations signal

780 nm pump 776 nm pump 795 nm seed 762 nm signal power (nW)

H H H H 30.2

H H V V 7.8

V H H V 80

V H V H 7.8

H V V H 83

V V V V 30

L L L L 39

L L R R 0

R L L R 39.4

L R L R 15.6

Table B.1: The generated signal power and polarization for different polarizations

of the pumps and the seed.

To measure the polarization dependence of the signal power, we set different polar-

ization for the pumps and the seed beam. For each setting we determine the polariza-

tion and the power of the generated signal. The result of the measurement is shown

in Table B.1. The maximum signal power is generated for orthogonal linear polariza-

tion of the pump beams. Therefore, we use these polarization settings to obtain high

parametric conversion efficiency during photon pair generation.

87



B. FOUR-WAVE MIXING WITH SEED

88



Appendix C

APD timing jitter

Many measurements presented in this thesis rely on the APDs being able to resolve

the temporal envelope of the photons. This requires the jitter time of the APDs to

be much smaller than the coherence time of the photons. In this chapter we present a

mesurement of the jitter time of an APD used in our experiment.

Figure C.1: Experimental setup used to measure APD jitter. The 405 nm photons

from the pump laser is converted into photon pairs of wavelength 808 nm by SPDC

in a PPKTP crystal. One photon of the pair is detected by a reference APD

from MPD, and the other is detected by an APD used in our experiments. The

time difference distribution between the detection events is measured using an

oscilloscope.
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Figure C.2: Result of APD timing jitter measurement. Coincidence between the

detection events on Dref and D1 as a function of the detection time difference. The

FWHM of the distribution is 0.58± 0.05 ns.

We use an SPDC photon pair source [71] and a commercial APD module from

Micro Photon Devices (MPD) with specified jitter time of < 50 ps to perform this

measurement. The setup is shown in Figure C.1. The photon pairs from the SPDC

source have a FWHM bandwidth of > 100 GHz which corresponds to an arrival time

distribution width of < 10 ps, smaller than the jitter of the APDs. The details of the

SPDC source can be found in [71]. One photons of the pair is detected by this APD

and the other is sent to the APD used in our experiment.

The result of the coincidence measurement is shown in Figure C.2. The width of

the time delay distribution obtained from the G(2) between these two detection events

gives the combined jitter time of the two APDs. Since the jitter time of the MPD

detector is much smaller than our APDs, the measured width is essentially the jitter

of our APD.
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Appendix D

Superradiance in four-wave

mixing

Superradiance is a collective emission phenomenon of an ensemble of excited atoms

coupled to a common radiation mode. This phenomenon was first described by Dicke

in [73]. There is a wide variety of physical systems where superradiance has been

observed [128, 129, 130]. For superradiant emission to happen, the excitation dipoles

belonging to different atoms in the ensemble should exhibit correlation in phase along

a collective radiation mode. Such a phase correlation between different atoms can be

achieved by the proximity of the atoms with separation lengths much smaller than the

wavelength of the emitted light [131], coupling of the atoms to a vacuum mode of a

resonant cavity [132], or phase-matching in a parametric scattering process [102, 128].

Here we give a brief overview of the superradiance in a four-wave mixing process.

Superradiance in four-wave mixing (FWM) via a Λ level scheme has been studied

extensively in the context of quantum memories [101, 133]. Since the concept can be

easily extended to the cascade level scheme used in our experiment, we first discuss a

comparision between the two schemes. We then present the experimental results that

shows superradiant emission.

In a FWM experiment via a Λ scheme (see Figure D.1(a)), the first scattering
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D. SUPERRADIANCE IN FOUR-WAVE MIXING

Figure D.1: Superradiance in four-wave mixing. (a) Λ scheme: The detection of a

stokes photon scattered a write pulse generates a Dicke state of the form described

by Eq. (D.1). The superradiance is observed in the emission of the anti-stokes

photon during the retrival process. (b)Cascade scheme: The detection od a signal

photon generated by a two-photon scattering of the pumps prepares a Dicke state

of the form Eq. (D.2). Superradiance is observed in the spontaneous emission along

the idler mode. In both cases phase matching plays a critical role in achieving the

phase coherence between the atoms in the ensemble.

process by an application of a write pulse generates a Dicke state of all N atoms

interacting with the pulse.

1√
N

N∑
n=1

ei
~∆k. ~rn |g1〉1|g1〉2 . . . |g2〉n . . . |g1〉N (D.1)

where ~∆k is the phase mismatch between the pump and the scattered photon, and ~rn

are the positions of the atoms in the ensemble. Since |g1〉 and |g2〉 are both ground

states there is no spontaneous emission between them. This Dicke state is leads to

superradiant emission of a single photon during the retrieval process using a read pulse.
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Figure D.2: (a) Peak pair rate vs optical density. The line is a fit of the form

rp = α (OD)2, where α=0.79. (b) Idler decay time vs OD. The line is a fit of the

form τ/(1 + β OD) where β = 0.089 relates OD to µN in Eq. (D.3).

The superradiance in our experiment is very similar except that the detection of a

signal photon prepares a Dicke state of the atomic ensemble with a single excitation to

the state |e〉 (see Figure D.1(b)),

1√
N

N∑
n=1

ei
~kI . ~rn |g1〉1|g1〉2 . . . |e〉n . . . |g1〉N (D.2)

where ~kI = ~kp2 + ~kp1 − ~ks is given by phase-matching condition. In this case there is

spontaneous emission from |e〉 to |g1〉 which is enhanced by superradiance along the

idler mode ( ~kI).

Since there is a well defined initial condition for the preparation of the Dicke state

and the spontaneous emission from |e〉 → |g1〉 is allowed, we can observe the two

characteristic features of superradiance in our experiment:

• The peak intensity (pair rate) increases quadratically with N .
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D. SUPERRADIANCE IN FOUR-WAVE MIXING

• The decay time τ ′ is shorter compared to the single atom spontaneous emission

time τ ,

τ ′ =
τ

1 + µN
, (D.3)

where µ is a geometry factor for the atomic ensemble.

We experimentally verify these two characteristic features of superradiance. We use

the optical density of the cloud (OD) as a measure of the number of atoms as N ∝ OD.

In order to vary N without affecting the geometry factor µ, we change the repump laser

power.

Figure D.2(a) shows the peak coincidence rate within 1 ns of the detection of the

signal photon as a function of optical density (OD) of the cloud. As expected, the rate

increases quadratically with the OD.

The g
(2)
si (t) between detection of signal and idler photons gives the probability of

getting a idler photon as a function of time delay from the detection of signal photon.

Therefore the exponential time constant of g(2)(t) gives the superradiant decay time of

the idler photons. We measure this decay time with different optical densities of the

cloud as shown in Figure D.2(b). It can be seen that the variation of the measured

decay time agrees with Eq. (D.3).
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Appendix E

Laser spectroscopy signals with

87Rb

Figure E.1: Spectroscopy error signal of the 795 nm laser corresponding to 87Rb

D1 line. The hyperfine lines (F’) and the cross-over lines (CO) from 5S1/2, F = 2

level. The separation frequency (in MHz) between the adjacent lines is indicated.
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E. LASER SPECTROSCOPY SIGNALS WITH 87RB

Figure E.2: Spectroscopy error signal of the 780 nm laser corresponding to 87Rb

D2 line. The hyperfine lines (F’) and the cross-over lines (CO) from 5S1/2, F = 2

level (Top) and 5S1/2, F = 1 level (bottom). The separation frequency (in MHz)

between the adjacent lines is indicated.
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Figure E.3: Spectroscopy error signal of the 762 nm laser. A 795 nm laser reso-

nant to 5S1/2,F=2 →5P1/2,F’=2 is used as a pump. The lines seen in the figure

corresponds to the allowed transitions from 5P1/2,F’=2 level to different hyperfine

levels of 5D3/2.
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E. LASER SPECTROSCOPY SIGNALS WITH 87RB

Figure E.4: Hyperfine structure of the relevant levels in 87Rb.
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hoven, S. Kröll, G. Leuchs, M. Lewenstein, D. Loss, N. Lütkenhaus, S. Mas-

sar, J. E. Mooij, M. B. Plenio, E. Polzik, S. Popescu, G. Rempe, A. Sergienko,

D. Suter, J. Twamley, G. Wendin, R. Werner, A. Winter, J. Wrachtrup, and

A. Zeilinger. Quantum information processing and communication. The Euro-

pean Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 36:203–228,

2005. 10.1140/epjd/e2005-00251-1.

[10] Emanuel Knill, Raymond Laflamme, and Gerald J Milburn. A scheme for

efficient quantum computation with linear optics. nature, 409(6816):46–52, 2001.

[11] Gavin K. Brennen, Carlton M. Caves, Poul S. Jessen, and Ivan H. Deutsch.

Quantum Logic Gates in Optical Lattices. Phys. Rev. Lett., 82(5):1060–1063, Feb

1999.

[12] J. I. Cirac and P. Zoller. Quantum Computations with Cold Trapped Ions.

Phys. Rev. Lett., 74(20):4091–4094, May 1995.

[13] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble.

Measurement of Conditional Phase Shifts for Quantum Logic. Phys. Rev. Lett.,

75:4710–4713, Dec 1995.

[14] J.A. Jones. NMR quantum computation. Progress in Nuclear Magnetic Resonance

Spectroscopy, 38(4):325–360, 2001. cited By (since 1996) 106.

[15] John Clarke and Frank K. Wilhelm. Superconducting quantum bits. Nature,

453(7198):1031–1042, Jun 2008.

[16] Daniel Loss and David P. DiVincenzo. Quantum computation with quantum

dots. Phys. Rev. A, 57(1):120–126, Jan 1998.

[17] Kalle-Antti Suominen. Physical Implementation of Large-Scale Quantum

Computation. In Grzegorz Rozenberg, Thomas Bck, and JoostN. Kok, editors,

Handbook of Natural Computing, pages 1493–1520. Springer Berlin Heidelberg, 2012.

[18] G Leuchs and M Sondermann. Time-reversal symmetry in optics*. Physica

Scripta, 85(5):058101, 2012.

100

http://dx.doi.org/10.1140/epjd/e2005-00251-1
http://www.nature.com/nature/journal/v409/n6816/abs/409046a0.html
http://www.nature.com/nature/journal/v409/n6816/abs/409046a0.html
http://link.aps.org/doi/10.1103/PhysRevLett.75.4710
http://www.scopus.com/inward/record.url?eid=2-s2.0-0035354346&partnerID=40&md5=a50cf2fb5c6c9f1a1c3a13a05383aa5f
http://dx.doi.org/10.1007/978-3-540-92910-9_44
http://dx.doi.org/10.1007/978-3-540-92910-9_44
http://stacks.iop.org/1402-4896/85/i=5/a=058101


REFERENCES
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[81] B. Darquié, M. P. A. Jones, J. Dingjan, J. Beugnon, S. Bergamini, Y. Sortais,

G. Messin, A. Browaeys, and P. Grangier. Controlled Single-Photon Emission

from a Single Trapped Two-Level Atom. Science, 309(5733):454–456, 2005.

[82] Frank Diedrich and Herbert Walther. Nonclassical radiation of a single

stored ion. Phys. Rev. Lett., 58:203–206, Jan 1987.

[83] B. Lounis and W. E. Moerner. Single photons on demand from a single

molecule at room temperature. Nature, 407:491–493, 2000.

106

http://link.aps.org/doi/10.1103/PhysRevA.79.033814
http://link.aps.org/doi/10.1103/PhysRevA.79.033814
http://hdl.handle.net/1853/13999
http://hdl.handle.net/1853/13999
http://link.aps.org/doi/10.1103/PhysRevA.64.052312
http://link.aps.org/doi/10.1103/PhysRevLett.78.5022
http://link.aps.org/doi/10.1103/PhysRevLett.78.5022
http://link.aps.org/doi/10.1103/PhysRevLett.39.691
http://link.aps.org/doi/10.1103/PhysRevLett.39.691
http://www.sciencemag.org/content/309/5733/454.abstract
http://www.sciencemag.org/content/309/5733/454.abstract
http://link.aps.org/doi/10.1103/PhysRevLett.58.203
http://link.aps.org/doi/10.1103/PhysRevLett.58.203
http://dx.doi.org/10.1038/35035032
http://dx.doi.org/10.1038/35035032


REFERENCES
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