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Abstract

A violation of Bell’s inequality suggests an incompatibility of quantum mechanics with local

realistic theory. An experimental violation of the Clauser-Horne-Shimony-Holt (CHSH) variant

of the Bell’s inequality has been performed. However, local realistic theory cannot be discounted

because of experimental loopholes, namely the locality loophole and the detection loophole. In

this thesis, we attempt to close the two loopholes at the same time in a photonic CHSH Bell’s

inequality experiment. To close the locality loophole we utilize the Pockels effect of a Lithium

Niobate crystal to switch between measurement bases randomly within nanoseconds. To close

the detection loophole we intend to implement a Transition Edge Sensor which has a detection

efficiency of about 99 %. However, there remains mechanical and electronics issues that have

to be resolved before performing an eventual loophole-free Bell’s inequality experiment.
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Chapter 1

Introduction

Realism is the idea that particles have definite physical properties and they continue to have

such properties whether or not these properties are measured [1]. In addition, the measurements

should be local, in the sense that these physical properties should only be affected by their

immediate surroundings. In 1935, Einstein, Podolsky and Rosen (EPR) hypothesized local

realism in quantum mechanics [2]. In summary, they found it strange that in the quantum

mechanical description of an entangled system of two particles, a measurement performed on

one of the entangled particles, influences the value of the same physical quantity of a similar

measurement on the other particle. They proposed that quantum mechanics was incomplete

and could be missing some local hidden variables (LHV), which would cause such correlations

in the particles, thus preserving the local realistic assumption. The idea of introducing a set of

LHV to bring quantum mechanics neatly into the framework of classical physics is known as the

LHV theories. About 30 years later in 1964, John Bell formulated a Bell’s inequality based on

a thought experiment which could probably rule out LHV theories [3]. In 1969, Clauser, Horne,

Shimony and Holt (CHSH) extended this work to show that John Bell’s analysis was applicable

to actual physical systems as well. They presented a variant of the Bell’s inequality, referred to
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as the CHSH Bell’s inequality [4]. Since then, many variants of the Bell’s inequality have been

proposed and their corresponding experiments performed. In 1972, Freedman and Clauser [5]

were the first (and subsequently in 1982 by Alain Aspect [6]) to use entangled photons from

atom cascades for such Bell’s inequality experiments. Their experimental results violated Bell’s

inequality.

However, these experimental violations of Bell’s inequality suffered from loopholes which

allow interpretations using LHV theories. The loopholes in the Bell’s inequality experiment are

commonly classified into two types - the detection loophole and the locality loophole. The work

by Ilja Gerhardt and Qin Liu demonstrates that both of these loopholes have to be closed at

the same time in an experiment before the violation of the Bell’s inequality can be seen as a

rejection of LHV theories [7].

The first loophole is known as the locality loophole which arises from the fact that the mea-

surements done on one of the entangled particles is influenced by the measurements conducted

on the other particle. To close this loophole,we utilize the Pockels effect of a Lithium Niobate

crystal to switch between measurement bases randomly within nanoseconds. More information

about measurement bases are found in section 2.1.

The second loophole is known as the detection loophole, which arises as it is not possible

to detect and measure all the entangled particles produced in an experiment. It can be argued

that those detected particles could have already been pre-selected to give a result that violates

Bell’s inequality, and such a selection can be described by LHV. It is shown that for the CHSH

inequality, the minimum detection efficiency is set at 82.8% [8]. This value is lowered down

further to 66.6% using partially entangled states as shown by Eberhard [9].

To date, no experiment has yet to be performed that closes the two loopholes at the same

time. There are two common ways of conducting Bell’s inequality experiments - it could be

carried out using two highly correlated atoms which could close the detection loophole, but fail
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miserably with regards to closing the locality loophole. The work done by the group led by

Rowe [10] was the first in closing the detection loophole with 9Be+ atoms that were entangled in

their transition states. However, closing the locality loophole in this case requires the separation

of the ions apart while still preserving their states which proves experimentally challenging.

The other common way of performing a Bell’s inequality experiment is to use highly correlated

photon pairs in which the locality loophole is closed [6, 11], but does not satisfactory close the

detection loophole. This is because once the entangled photons are created, they propagate

while preserving their individual state. As such, a wide separation between the two photons’

detections with a random and fast time varying analyzer allows the locality loophole to be

closed. However, accumulated losses in the photonic experiment makes closing the detection

loophole challenging.

The goal of this project is to simultaneously close the locality loophole and the detection

loophole in an experiment. To close the locality loophole, the measurement bases have to

change fast enough in a nanosecond time range. We employ the Pockels effect of a Lithium

Niobate crystal (LN crystal) to achieve a change in the plane of polarization of the detected

photons, thus an equivalent change in the measurement bases is obtained. To close the detection

loophole, the detection efficiency has to be as high as possible. A better single photon detection

technique called the Transition Edge Sensor (TES) has been developed. The TES has a high

reported detection efficiency of 99% [12] which seems promising in closing the detection loophole.

Therefore, we will employ the TES to close the detection loophole. However, due to technical

issues in getting the TES to work, this thesis would be heavily centered on developing a fast

polarization bases switch used in closing the locality loophole.

In this thesis, we will introduce the background knowledge required in this project chapter 2.

We will present the CHSH variant of the Bell’s inequality formulation in a photonic experiment

using entangled photons first. We will also highlight the importance of a fast measurement basis
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switch in closing the locality loophole and how a fast measurement basis switch is done. We

will also present the working principle of using the Pockels effect of a LN crystal in achieving a

switch in the measurement basis. We show the practical implementation of the theory presented

in chapter 2 in chapter 3. The experimental results on the properties of the LN crystal are

presented in chapter 4. In chapter 5, we summarize the problems we have encountered and

future work to be done.
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Chapter 2

Background

In this chapter, we introduce CHSH Bell’s inequality and show that to close the locality

loophole in this formulation, we need to have a very fast switch between the two measurement

settings for each receiving party of the entangled photon pairs. We also describe the utilization

of a Pockels cell in implementing the fast switch.

2.1 CHSH Bell’s Inequality

The Clauser-Horne-Shimony-Holt (CHSH) inequality is a variant of Bell’s inequality that allows

quantum mechanics and LHV theories to be distinguishable. To exemplify the CHSH inequality

in a photonic experiment, let us look at a typical CHSH experiment setup as shown in figure 2.1.

The CHSH experiment would first require a source that produces highly correlated photon pairs.

Figure 2.1: A schematic diagram of a CHSH experiment which requires two settings (a,a′ or
b,b′) and two measurement outcomes (+1,-1) per setting.
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The source produces photon pairs that are entangled in their polarization states. The photon

pairs’ polarizations are linear and orthogonal to each other. Since the photon polarization state

has only two degrees of freedom, we term one polarization as Horizontal (H) and the other as

Vertical (V). As such, a photon pair produced by the photon pair source could have the state,

|Ψ−〉 =
1√
2

(|H〉1 ⊗ |V 〉2 − |V 〉1 ⊗ |H〉2) (2.1)

Each photon is sent to one of two parties, namely Alice and Bob, for measurement. During

the measurement of the correlated photon pairs, let us consider that Alice’s photon enters a

set of detectors Ia and Bob’s photon enters a set of detectors IIb where a and b are adjustable

experimental settings. Since any two orthogonal polarizations are sufficient in fully describing

the polarization state of the light, the settings in our photonics experiment are the light po-

larization measurement basis such as the HV basis. In one such basis, the photon must take

on binary outcomes, +1 or -1. For example, in the HV basis, the photon must either be in

the H or V polarization and produces a respective click in the detector measuring the H or V

polarization respectively. The outcomes for settings a and b for Alice and Bob are represented

by A(a) and B(b) respectively. If a set of LHV, denoted as λ, governs the outcomes of the mea-

surements, then the outcomes are deterministic functions A(a, λ) and B(b, λ). After repeating

many measurements on the photon pairs, there is a joint conditional probability distribution

P (A,B|a, b, λ) for the outcome of A and B, given the settings a, b and λ,

P (A,B|a, b, λ) = P (A|a, λ)P (B|b, λ) (2.2)

To retrieve P (A,B|a, b), we average the joint conditional probability distribution over the prob-
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ability distribution of λ, f(λ),

P (A,B|a, b) =

∫
f(λ)P (A,B|a, b, λ) dλ (2.3)

The expectation value at settings a and b is defined as,

E(a, b) = P (+1,+1|a, b) + P (−1,−1|a, b)− P (+1,−1|a, b)− P (−1,+1|a, b) (2.4)

From this, the CHSH inequality is obtained as shown in Appendix A.1.3,

〈S〉 = |E(a, b) + E(a, b′) + E(a′, b)− E(a′, b′)| ≤ 2 (2.5)

To look at the quantum mechanical description of the 〈S〉 value, the respective probabilities

P (A,B|a, b) = |〈A(a)|1〈B(b)|2|Ψ−〉|2 can be shown in Appendix A.1.2 to be,

P (H,H|a, b) = P (V, V |a, b) =
1

2
sin2(a− b)

P (H,V |a, b) = P (V,H|a, b) =
1

2
cos2(a− b) (2.6)

Substituting the probabilities in equations 2.6 into the expectation value in equation 2.4, we

obtain

E(a, b) = − cos 2(a− b) (2.7)

Finally, substituting in the expectation values into the inequality of equation 2.5, as well as
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choosing the following settings,

a = 0◦, a′ = 45◦, b = 22.5◦ and b′ = −22.5◦ (2.8)

we can show that,

〈S〉QM = 2
√

2 (2.9)

which violates the value of 2 as formulated using any LHV theory. Therefore, this shows

that quantum mechanics is incompatible with any LHV theory and that quantum mechanics is

nonlocal.

We return to the schematic diagram as shown in figure 2.1 to explain the physical realization

of the measurement settings. The measurement settings would refer to the bases that are

rotated by the respective angles in equation 2.8, with H defined as the polarization at 0◦. The

corresponding outcome of +1 or -1 would refer to the detector’s click for the incoming photons

with its plane of polarization parallel or perpendicular to the respective angles in equation 2.8.

For example, setting a = 0◦ would mean measuring in the HV basis and a +1 would be a

detector’s click for seeing a photon in the H polarization. a = 45◦ refers to the ±45◦ basis,

which is a rotation of 45◦ with respect to the HV basis and a +1 corresponds to detecting a

photon polarized in the +45◦ plane. After performing the experiment over time, the detected

particles are in a statistical distribution and the expectation value E(a, b) would be

E(a, b) =
N+1,+1 +N−1,−1 −N+1,−1 −N−1,+1

N+1,+1 +N−1,−1 +N+1,−1 +N−1,+1
(2.10)

where NAB is the total number of coincidence pairs of the respective outcomes A and B, where

A and B each take on the binary outcomes +1 or −1. It follows that we can obtain the

8



experimental 〈S〉 value by substituting the expectation values obtained through equation 2.10

in equation 2.5. If we are successful in closing the loopholes and still obtaining an 〈S〉 value of

more than two, then the LHV theory is rejected.

2.2 Fast Polarization Switch for Closing the Locality Loophole

2.2.1 Rotation of the Polarization Plane

For closing of the locality loophole, the two measurement bases each for both Alice (a and

a′) and Bob (b and b′) mentioned in section 2.1 would need to change fast enough. By ‘fast’,

we mean that Alice’s measurement basis change must be completed before information on

Bob’s measurement in a corresponding basis reaches Alice. Consider a simple example where

only three photon pairs are detected. At a particular time t, both Alice and Bob start their

measurements at settings a and b on the first photon pair. Information of their measurements

at settings a and b would start to travel towards each other. After some time t + τ , when the

measurement information of Alice has reached Bob and that of Bob has reached Alice, the first

photon pair must have its measurement completed and the second photon pair will be measured

in a new random basis. It follows that by the time t + 2τ , the measurement basis must have

been changed again to measure the third photon pair. This indicates that the change in the

measurement basis must be done within time interval τ .

To look at how a change in the measurement basis is done, we first look at how measure-

ments in different bases are conducted in an experiment. Figure 2.2 shows how we perform

measurements in HV basis and ±45◦ basis (settings a and a′). As shown in figure 2.2, to mea-

sure in the HV basis, we allow incoming photons to pass through a Polarization Beam Splitter

(PBS) and measure the intensity on the transmitted and reflected beam. Generally, a PBS sep-

arates an incident light beam into two orthogonal linear polarizations in the transmitted and
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Figure 2.2: Left: Measurement in the HV basis. Right: Measurement in the ±45◦ basis.
A polarization beam splitter separates input light into two orthogonal linear polarizations in
the transmitted and reflected beams. A change of measurement settings between a = 0◦ and
a′ = 45◦ would mean changing from the setup on the left to the setup on the left, or alternatively
just using the setup on the right and rotating the half-wave plate from 0◦ to 22.5◦ to the optical
axis.

reflected beams. The transmitted and reflected beams can be assigned H and V polarizations

respectively. To measure in the ±45◦ basis, we rotate the polarization of the incident light by

45◦ before passing the incoming photons through a PBS. We rotate the polarization plane by

placing a half-wave plate at 22.5◦ with respect to the optical axis. The mathematical description

of the workings of the half-wave plate is presented in Appendix A.2. A change of measurement

settings from a = 0◦ to a′ = 45◦ would mean a rotation of the plane of polarization of incoming

photons from 0◦ to 45◦. It follows that such a rotation must be done within a short interval of

time τ .

In this project, we control the rotation from one plane of polarization to another by 45◦ for a

change in the measurement settings electronically. Even though it could be done mechanically

by rotating a half-wave plate in front of a PBS from 0◦ to 22.5◦, such a mechanical change

is too slow. To illustrate how fast the measurement settings would have to change, let us

place the detectors be placed approximately 2 m apart. If we assume that information about

the measurement travels at the speed of light, we then require a change in the measurement

settings within nanoseconds. In the next section 2.2.2, we show how we achieve an electronical

switch in the measurement bases by utilizing a Pockels cell.
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2.2.2 The Pockels Effect

In order to understand how a fast polarization rotation switch works, we start off by discussing

the working mechanism of the Pockels cell - the Pockels effect.

When an optical light beam passes through a material, the speed of the light through the

material changes. The refractive index n of a material is defined as the ratio of the speed of light

in vacuum to the speed of light in the material and it depends on the wavelength of the incident

light as well as its polarization plane. For example, when linearly polarized light, that has its

electric field oscillating in just one direction, passes through a birefringent crystal, orientated

45◦ to the crystal’s optical axis, the light splits into two as shown in figure 2.3. The light from

Figure 2.3: The separation of a linearly polarized light into two paths of orthogonal planes of
polarization when passing through a birefringent crystal.

each path is still linearly polarized and the plane of polarization of the extraordinary ray (e-

ray) and ordinary ray (o-ray)are orthogonal to each other. One of the planes of polarization is

parallel to the optical axis, while the other is perpendicular to the optical axis. The difference

in the refractive index of the e-ray and the o-ray is known as the birefringence of the material.

Furthermore, in some materials, when an electric field is applied across them, the refractive

index of the materials changes according to the strength and direction of the applied electric

field. Such an effect is known as the electro-optic effect.
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The electro-optic effect is a well-known observable phenomenon. In 1875, Reverend John

Kerr observed that any clear material became birefringent under a static external electric field

[13]. This effect is known as the Kerr effect, where the refractive index of the material varies

with the applied electric field strength in a quadratic manner. In 1893, Friedrich Carl Alwin

Pockels observed that the birefringence of a crystal varies linearly with the applied electric field

for a crystal that lacks inversion symmetry, [14]. This linear change of birefringence ∆n due to

an applied electric field E2 was later known as the Pockels effect,

∆n =
(
n

′

x
′
1

− n′

x
′
2

)
= n3or22E2 (2.11)

where n
′

x
′
1

and n
′

x
′
2

represent the refractive indices of the e-ray and the o-ray respectively when

passing through the LN crystal with an applied electric field. The no is the refractive index of

the o-ray when there is no applied electric field and r22 is known as the electro-optic coefficient of

the crystal used. The rigorous mathematics leading to equation 2.11 can be found in Appendix

A.3. The phase difference Γ between the e-ray and the o-ray is then defined as

Γ =
2π

λ
∆nL =

2π

λ
n3or22E2L (2.12)

Γ = π · V
Vπ

(2.13)

with the so-called half-wave voltage,

Vπ =
λ

2n3or22
· d
L

(2.14)

where V is the applied voltage across the crystal with thickness d, and L is the length of the
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crystal along the propagation of the light. Equation 2.12 tells us that the phase difference

between the e-ray and the o-ray scales proportionally with the applied electric field. When we

apply the half-wave voltage, we find that the phase difference between the e-ray and the o-ray

is π.

2.2.3 Electronic Measurement Basis Switch

.

A Pockels cell is an electronically controlled half-wave plate consisting of an electro-optical

crystal in between a pair of electrodes. For our Pockels cell, the output photon polarization

plane is rotated 45◦ with respect to an input photon polarization plane. Let us consider that

the input linear polarization is orientated 22.5◦ with respect to the electro-optical axis created

once a voltage is applied across the crystal. If the input linear polarization is labelled as H

polarization, it will be rotated by 45◦ to to give us +45◦ polarization light at the output as

shown in figure 2.4. If we rotate the plane of linear polarization of the input light to +45◦

Figure 2.4: A picture showing the H and V polarizations, the +45◦ and −45◦ polarizations and
the respective angles they make with the optical axis. It follows that in such a setting, H and
V polarizations are rotated to +45◦ and −45◦ polarizations respectively and vice versa.

without changing the alignment of the LN crystal, it will make an angle of −22.5◦ with respect
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to that electro-optical axes and gets rotated back to H polarization. Table 2.1 summarizes the

output light polarization for different applied voltages when input light with different linear

polarizations enter the LN crystal.

Table 2.1: Summary of output polarization with different input polarization at different applied
voltages.

Output Polarization

Input Polarization
Applied Voltage Across the Crystal

0 V Half-wave Voltage

|H〉 |H〉 |+〉
|V 〉 |V 〉 |−〉
|+〉 |+〉 |H〉
|−〉 |−〉 |V 〉

where in the normalized Jones Vector representation,

|H〉 =

1

0

 , |V 〉 =

0

1

 , |+〉 =
1√
2

1

1

 , |−〉 =
1√
2

 1

−1

 (2.15)

describing Horizontal, Vertical, +45◦ and −45◦ polarizations respectively.

A modified setup for the two measurement bases using the Pockels cell is shown in figure 2.5.

As shown in figure 2.5, when there is no voltage supplied, there is no rotation of the plane of

Figure 2.5: A schematic diagram of using a Pockels cell to perform measurements in the two
bases. Measurement in one of the bases takes place when no voltage is applied to the Pockels
cell. Measurement in the other basis happens when a half-wave voltage is applied to the Pockels
cell.

polarization of the light and the setup will be measuring in the HV basis. When the switching

voltage is applied, a rotation of 45◦ occurs and the setup would measure the light in the ±45◦
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basis. Therefore, a rotation of incoming photon’s plane of polarization electronically can be

attained.

We note that in order to close the locality loophole, it is insufficient just to have a fast

polarization switch. The switch in the measurement bases must be done randomly such that

the experimentalists carrying out the experiment must not know at any one time, which basis

they are measuring. This is to eliminate any local effect on the experiment due to the actions

of the experimentalists. As such, the switching between voltages will be controlled by a random

signal generator so that at any one time, the experimentalists do not know when and which

basis the detectors are measuring. It is only after the experiment has been performed, when the

total number of coincidence counts at each measurement basis is tallied, we can then calculate

the 〈S〉 value.

In the next chapter, we present the detailed experimental investigations of the feasibility of

using an LN crystal as an electronic measurement basis switch.
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Chapter 3

Experimental Setup

In this chapter we present the experimental details of setting up the components required

for using the Pockels cell as a fast measurement basis switch. We briefly described about the

external cavity laser used to characterize and align the Pockels cell. We also describe the

alignment procedure and measure the visibility.

3.1 Overview of Setup

The description of the setup shown in figure 3.1 can be divided into the two sections - the laser

light source that provides a stable and narrow bandwidth laser light of ≤10 MHz and the LN

crystal setup.

3.2 Grating Stabilized External Cavity Diode Laser

A grating stabilized external cavity diode laser was set up to provide a narrow bandwidth laser

beam at 806 nm with low output power fluctuations for characterizing the LN crystal. The

external laser cavity is important in our analysis since the electro-optic effect depends on the
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Figure 3.1: A overview schematic diagram of our experimental setup. Note that the angle-cut
(AC) end of the optical fibre is facing the laser source.

wavelength of the input light as seen from the half-wave voltage equation 2.14. Figure 3.2 shows

the setup of the laser source and the insert shows the details in the external laser cavity.

Figure 3.2: A schematic diagram of the external laser source, with insert showing details in the
external laser cavity [15].

An aspheric lens of focal length about 4.5 mm (Thorlabs C230-TME B) was used to collimate

the divergent light out of a 806 nm laser diode. A diffraction grating of 1800 lines per millimeter

was then placed in a Littrow configuration such that the first order of the diffraction of the
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collimated light was reflected back into the laser diode to enhance lasing for a narrow bandwidth.

A home-made driver board supplies the current and maintains the temperature of the laser

diode. The temperature was maintained by a Proportional-Integral-Derivative (PID) controller

which was connected to a Peltier element mounted below the laser diode stage. The PID

controller maintains the temperature at a desired value. The current and temperature of the

laser diode was set at around 131 mA and 24 ◦C respectively.

It is seen from figure 3.2 that the laser beam passes through a PBS, a faraday rotator

and then a Glan-Taylor polarization beam splitter (which is essentially a type of PBS). This

combination of optical components acts as an optical isolator that prevents back reflection of

the laser light from getting into the laser diode, thus increases the power stability of the output

beam. Lastly, the laser light was coupled into the AC end of a AC/PC (Angle-Cut/Plane-Cut)

optical fibre via an aspheric lens with 4.5 mm focal length (C230-TME B lens). The AC/PC

fibre served two purposes - it minimized the back reflection of the laser light at the AC surface

and prevented internal and multiple back reflections in a normal PC (Plane Cut) optical fibre

that might cause intensity fluctuations.

3.3 Lithium Niobate Crystal Pockels Cell

3.3.1 Lithium Niobate Crystal

The LN crystal is a negative uniaxial crystal and is cut such that its optical axis is along the z

principle axis of the crystal. Light that is polarized parallel to the optical axis will travel slower

than light that is polarized perpendicular to the optical axis. This intrinsic birefringence effect

could be undesirable in our experiment and therefore, the alignment of the LN crystal such that

the light propagation path is parallel to the optical axis of the crystal is important to minimize

or even eliminate the effect of the intrinsic birefringence of the crystal from interfering with the
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results.

The LN crystal belongs to the trigonal crystal symmetry with the class of R3c and has a

point group of 3m which means that the LN crystal lacks an inversion symmetry. An inversion

symmetry would tell us that an equal but opposite electric field, Ê and −Ê, would have the

same effect on the electronic structure of the crystal. As such, the change in the refractive index

of a crystal with an inversion symmetry would be the same for equal and opposite electric fields.

This is not the Pockels effect because a negative applied electric field would have different effect

from a positive applied electric field across the crystal. Therefore, Pockels effect can only be

observed in crystals that lack an inversion symmetry.

Most of our 806 nm light would pass through the crystal as it is transparent from 400 nm to

5000 nm [16]. However, we do note from the start of the project that the LN crystal is generally

piezoelectric, where an applied voltage across the crystal would change the dimension of the

crystal. In addition, the LN crystal has strong acousto-optical responses where acoustic waves

in the crystal changes its refractive index. Throughout this project, we also investigate how

such responses would affect the outcome of the light after the Pockels cell, and whether or not

such effects limit our ability to perform a loophole free Bell’s inequality experiment.

3.3.2 Setting Up of the Pockels Cell

There are basically two types of Pockels cell, depending on the way in which we apply the

electric field across the crystal as shown in figure 3.3. In a transverse Pockels cell, the applied

electric field is perpendicular to the propagation of the light beam through the crystal, whereas

in a longitudinal Pockels cell, the applied electric field is parallel to the propagation of the light

beam through the crystal.

There are different advantages between the two types of Pockels cell. In the longitudinal

arrangement, d = L in equation 2.14. Therefore, the birefringence is only sensitive to the voltage
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Figure 3.3: Schematic diagrams of a Left: Transverse Pockels Cell. Right: Longitudinal Pockels
Cell.

applied. As such, the dimension of the crystal can be varied to have a wide opening window for

the light beam to pass through the crystal. This increases its field of view and reduces losses due

to clipping of the light. However, it is not applicable for a fast switch as the half-wave voltage

is too high and the power generated during the switch is too great for current electronics to

dissipate. For a fast switch, a low half-wave voltage for our crystal is desirable, thus a transverse

configuration where the birefringence is also affected by the thickness to length ratio d
L of the

crystal is preferred. The smaller the ratio, which implies smaller d and/or larger L, the smaller

is the half-wave voltage. Nevertheless, d cannot be too small as there will be substantial loss

due to clipping since the window that the light can pass through is smaller. However, neither

can L be too large since a homogeneous crystal with large L is not only difficult to find, but

it also poses difficulty in the alignment of the crystal. In this project, we will be using a LN

crystal of dimensions 1.5× 10× 100 mm, where d = 1.5 mm and L = 100 mm.

The alignment of the crystal would depend on the degrees of freedom in rotating the crystal

with respect to a light beam. There are two different holders used to place the LN crystal

in this project. We used the first holder, which we had rotational degrees of freedom in the

x and y axes (rotation in p and q) of the crystal, to determine the half-wave voltage and the

electro-optical axis. For the second holder, which has no rotational degree of freedom, was used
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to investigate the fast switching capability of the crystal.

3.3.3 Alignment with x and y Rotation Crystal Holder

The step-by-step procedure for aligning the LN crystal are detailed in Appendix B.1. The LN

crystal in this holder was held in place by clamping it with a copper plate and two screws.

The output light beam from the external laser cavity was coupled into a single mode fibre and

the output of the fibre is collimated using an aspheric lens with focal length of about 4.5 mm

(Thorlabs C230 TME B) and passed through a Glan-Taylor polarizer, where the output light

beam was defined to be in the H polarization. Without the LN crystal in the light path, we

made the light beam approximately parallel to the optical table by passing the beam through

two pinholes at equal heights. It was ensured that there was sufficient space in between the

two pinholes as the LN crystal and its holder will be placed in between the two pinholes. After

which, the LN crystal was placed in the light path and while the second pinhole was closed.

The output light from the crystal was checked to pass through the pinhole approximately, to

ensure that the light beam was not bent due to coarse misalignment of the crystal. After which,

both pinholes were opened for fine alignment of the crystal. A polarizer was placed at the end

of the two pinholes, 90◦ with respect to the H polarization of the light to look for a minimum

intensity after the polarizer was measured on a power meter.

For the fine alignment of the crystal, since the polarizer was orientated at cross-polarization

to the initial light beam, the intensity should also be at the minimum when the crystal was in

place. The crystal was rotated about the y-axis, which is perpendicular to the optical table,

to find a global minimum intensity. This would ensure that the birefringence axis lies in the

yz plane of the crystal. Next, the power meter was removed and a camera (without lens) was

placed at the back to observe the light through the crystal. The polarizer was also shifted to

the front of the crystal to minimise the intensity of the light reaching the camera such that the
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camera would not saturate. Any clipping of the light due to the crystal would be seen in this

manner. The crystal was then rotated about the x-axis so as to get a nice beam profile, which

was approximately circular in shape without clipping, on the camera. Then, the conoscopic

interference pattern was looked for, which will be discussed later in section 3.3.4.

After the conoscopic interference pattern was observed, fine adjustment in the x-axis rotation

was performed if necessary. A half-wave plate at 22.5◦ was placed before the crystal. The

polarizer was then placed at −45◦ such that it was at cross-polarization with the input light

polarization. The x-axis rotation was finely adjusted so as to get a global minimal intensity at

the output. The camera without lens was also placed at the end of the polarizer and served as

a check on the beam profile, since the clipping will also cause a reduction in beam’s intensity.

Lastly, we sent a voltage across the crystal and a change in the output intensity after a polarizer

indicates that the light beam has indeed being passed through the crystal.

3.3.4 Conoscopic Interference Patterns

When a diverging light beam is passed through a uniaxial crystal along its intrinsic optical axis

(which is the z-axis of the LN crystal), an interference pattern in the form of a ‘maltese’ cross

pattern is seen. Figure 3.4 shows the conoscopic interference pattern that we have obtained in

our LN crystal.

The conoscopic interference pattern obtained tells us that the LN crystal is indeed unaxial

and z-cut, where the propagation of the light is along the z-axis of the crystal. If the crystal

is properly aligned, where the propagation of the light beam through the crystal is parallel to

the z-axis of the crystal, the intensity of the four bright portions should be of the same shape

and intensity. To get the interference pattern, we placed a cellulose tape in front of the crystal

holder to diverge the light entering the crystal. The light after the polarizer, which was still

at cross-polarization with the input light beam. A screen was placed after the polarizer and a
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Figure 3.4: The experimental conoscopic interference pattern through the LN crystal, showing
a distinct ‘maltese’ pattern with the dark crossed bands known as isogyres.

camera (with lens) was used to observe the pattern on the screen.

3.4 Visibility Measurement

Visibility is a measure of the degree of polarization of photons. Using the external cavity diode

laser as the source after passing through a PBS, we know that the input laser beam polarization

is linear with high visibility. By measuring the visibility of the laser beam after the crystal,

we can get a estimate of how well we have aligned our crystal with respect to the laser light.

To determine the visibility, incoming photons were passed through a polarizer which was then

rotated for 360◦ and the intensities at various angular positions of the polarizer were noted.

The visibility is defined as,

Visibility =
Imax − Imin
Imax + Imin

(3.1)

For a perfect linearly polarized light, the visibility of 100 % while for a perfect circularly polarized

light, it is 0 %. To determine the Imax and Imin experimentally, we plot the graph of light

intensity against angular position of the polarizer as shown in figure 3.5. The graph was fit to

23



Figure 3.5: Visibility graph of voltage (V) against polarizer angle (◦) which gives us the visibility
of the light. The voltage here would be directly proportional to the intensity of the light.

identify the Imax and Imin. A sample of the visibility curve fitting is discussed in Appendix

C.1.
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Chapter 4

Results and Discussions

In this chapter, we characterize the LN crystal by finding its half-wave voltage and its optical

axis. Since the half-wave voltage was found to be too high for efficient switching, we investigate

how the crystal would perform at low applied voltages. We also calculated the electro-optic

coefficient r22 for the LN crystal at 806 nm. We next examine the fast switching performance

of the LN crystal at such low applied voltages.

4.1 Characterization of Lithium Niobate

In this section we determine the half-wave voltage and the electro-optical axis of the LN crystal.

Incoming photons with polarization set at 22.5◦ to the electro-optic axis to the crystal will have

its polarization rotated by 90◦, thus executing a change in basis in our measurement. From

mathematical calculations detailed in Appendix A.3, under an applied electric field to the LN

crystal in the y direction, the electro-optical axes is approximately in the same directions as the

original principle axes of the LN crystal, and thus we look for the half-wave voltage in a setup

shown in figure 4.1.
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Figure 4.1: A schematic diagram of the setup to determine the half-wave voltage of the crystal.
The external laser cavity is simplified to just a box in this diagram. The insert on the right
shows the predicted electro-optic axis of the crystal, which boundary is represented by the
dotted box. The blue arrow shows the direction of the linearly polarized light input and the
orange arrow shows the direction of the polarizer axis in this setup.

The light from the external laser cavity was made to pass through a Glan-Taylor polarizer

where the light was linearly polarized along the optical table, perpendicular to the propagation

of the light. The light polarization plane was rotated by 45◦ using a half-wave plate at 22.5◦ with

respect to the polarization of the light. This way, when a voltage was applied to the crystal, this

linearly polarized light was decomposed into the e-ray and o-ray in equal weights. A polarizer

was placed after the crystal such that the polarizer axis was orthogonal (at cross-polarization) to

the polarization of the input light as shown by the orange arrow in the insert in figure 4.1. The

light intensity after the polarizer was measured by a power meter. The power meter used was a

photodiode connected in a circuit as shown in figure 4.2. When light falls on the photodetector,

Figure 4.2: A schematic of the photodetector using voltage as a measurement of laser beam’s
intensity.
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the photocurrent produced decreases the resistance of the photodiode. A suitable resistor is

chosen such that the voltage across it is approximately proportional to the intensity of the light

incident upon the detector. This ensures that the maximum voltage reading did not reach 9 V

as the circuit will be saturated. A capacitor was used to act as a low-pass filter that stabilizes

the voltage reading. It is to note here that the absolute intensity or power of the light was

immaterial since we were only interested in the relative intensity of the output light with the

maximum value that the photodiode can detect without saturation. A high voltage output card

was used to supply the voltage across the LN crystal. The characterization of the high voltage

card can be found in the Appendix C.

In the setup above, we look for the half-wave voltage in the following way. Malus law states

that the intensity I of the light after the polarizer is given by

I = I0 cos2 θ (4.1)

where I0 is the maximum intensity obtainable through the polarizer and θ is the angle between

the plane of linear polarization of the light and the polarizer axis. The polarizer axis is at

90◦ with respect to the polarization of the light. When there is no voltage applied to the LN

crystal, the light polarization remains the same at the output. The intensity after the polarizer

is therefore minimum experimentally (or in fact zero theoretically as θ = 90◦).

However, when a voltage is applied to the crystal increases to the half-wave voltage, a plane

of polarization flips of 90◦ takes place, where θ becomes 0◦, a maximum intensity is obtained.

To make it more mathematical, it can be shown in Appendix A.4 that the intensity after the

polarizer is related to the phase difference Γ of the e-ray and the o-ray by,

I = I0 sin2 Γ

2
(4.2)
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Substituting equation 2.12 for the phase difference Γ in equation 4.2, it can be written as,

I

I0
= sin2

[
1

2
· 2π

λ
n3or22

L

d
· V
]

(4.3)

From equation 4.3, we can see that the voltage at which we obtain the maximum intensity is

known as the half wave voltage. The left hand side of equation 4.3 essentially tells us that the

normalized intensity is more important than the absolute power, as the result will be insensitive

to the intensity output of our external laser cavity, as long as there are no huge power fluctuations

in the intensity.

4.1.1 Half-Wave Voltage and its Optical Axis

After varying the applied voltages and observing the respective intensity outputs, the graph of

normalized intensity I
I0

against the voltage V applied is plotted as shown in figure 4.3.

Figure 4.3: The graph of normalized intensity against the voltage applied (V) across the crystal.
The blue points are the experimental data while the black curve is the theoretical fit of the data.
The half-wave voltage of (150 ± 6) V is obtained at the point where the normalized intensity
reaches the maximum. Note that the error bars are too small to be shown on the graph.
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The experimental data points are shown in blue in the graph of figure 4.3. The black curve

is a theoretical result of how the output light should behave. From the graph in figure 4.3,

it is seen that the behaviour of the experimental normalized intensity output follows the sin2

behaviour as described in equation 4.3 until the voltage which gives us the highest normalized

intensity at about (150± 6) V. However, the LN crystal started to deviate from the theoretical

curve at high voltages. It is suspected that when the voltage is too high, the quadratic Kerr

effect dominates which causes the deviation from the Pockels effect. It is not the focus in this

project to understand the Kerr effect primarily because the voltage to utilize the Kerr effect

for a nanosecond switch is too high. Therefore, we shall not be bothered by the deviation at

high voltages. A statistical χ2 test was done with 23 data points (before the deviation perhaps

due to Kerr effect) as described in Appendix C.4 to quantify the fit of the curve. The value of

χ2 = 0.097 which is smaller than 35.17 at 95 % confidence interval. Thus, it is consistent with

the conclusion that our experimental result is a good fit with the theoretical behaviour.

The focus would be at the highest normalized intensity of about (0.998 ± 0.008) at the

voltage of about (150± 6) V. The visibilities of the output light after the polarizer at 0 V and

at (150± 6) V were compared to be (94± 1) % and (95± 1) % respectively. The uncertainty in

the half-wave voltage is due to the fact that when a voltage between 144 V to 156 V was applied

to the crystal, the power meter was not sensitive enough to show any observable change. This

shows that the two visibilities are preserved and that there is a flip in the plane of polarization

of the light beam by 90◦. In addition, these results are also consistent with our guess that

the electro-optic axis created is in the same orientation as that shown in figure 4.1 and that

(150±6) is the half-wave voltage. Since the half-wave voltage was obtained, our guess about the

electro-optical axis was correct and the crystal is cut in the correct orientation that we want.
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4.1.2 Electro-Optic Coefficient r22

Since we have a narrow bandwidth source at 806 nm, our setup gives gives us an experimental

electro-optic coefficient, r22 value at 806 nm. From equations 4.2 and 4.3, it is clear that,

sin−1
√
I

I0
=

1

2
· Γ =

1

2
· 2π

λ
n3or22

L

d
· V (4.4)

Therefore, it follows that,

2 sin−1
√
I

I0
= Γ =

2π

λ
n3or22

L

d
· V (4.5)

Equation 4.5 basically gives us an experimental value to the phase difference Γ on the left hand

side of equation 2.12 that describes the Pockels effect. Therefore, we went further to draw a

linear graph of Γ (rad) against the applied voltage V, with a correlation coefficient value of

0.998 as shown in figure 4.4. The linear graph implies that the proportionality dependence of

the phase difference to the voltage applied is observed in this project and that we are indeed

looking at the Pockels effect of the LN crystal. The gradient of the straight line graph would

give the r22 values. The gradient m of the curve gives,

m =
2π

λ
n30r22

L

d
= (0.0210± 0.0002) rad V−1 (4.6)

There is no previous experimental determination of the refractive index at 806 nm can be found.

Therefore, the Sellmeier equation used to calculate the refractive index of LN crystal at 806 nm

is used. The Sellmeier equation is given by,

no =

[
A+

B

λ2 + C
+Dλ2

]1/2
(4.7)
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Figure 4.4: The graph of phase difference (rad) of e-ray and o-ray against the voltage (V)
applied across the crystal. Again, the blue points are the experimental data while the black
linear line is a linear fit for the range that obeys the Pockels effect. From the graph, the linear
Pockels effect is observed.

where λ is the wavelength of the incident light and A, B and C are the experimental Sellmeier

equation constants that are specific to respective crystals. It has been shown through the work

in [17,18] that the empirical Sellmeier equation constants for the LN crystal are,

A = 4.9048, B = 0.11768 µm2, C = −0.0475 µm2, D = −0.027169 µm−2 (4.8)

when the wavelength λ is measured in µm. With the constants in 4.8 and equation 4.7, the

refractive index is calculated to be,

no = 2.254± 0.002 (4.9)
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The product of the cube of refractive index and the electro-optical coefficient is,

n3or22 = (4.1± 0.1)× 10−11 mV−1 (4.10)

Taking the refractive index value in equation 4.9, the experimental value for the electro-

coefficient, r22 for a clamped LN crystal of light beam at 806 nm is,

r22 = (3.5± 0.1)× 10−12 m V−1 (4.11)

4.1.3 Rotation of the Polarization Plane at Low Voltages

We have determined the half-wave voltage to be (150 ± 6) V. However, it is still too high for

an effective switch at high frequency. The switching cannot be done by switching on and off a

power supply. It has to be done electronically using a 100 V BLF573 transistor as shown in a

circuit diagram below in figure 4.5. The high power supply shown in figure 4.5 can take two

Figure 4.5: A simplified circuit diagram for light polarization switch using the LN crystal. When
the circuit is switched on, the voltage from the power supply is applied to the crystal but no
constant current is drawn. When the circuit is switched off (where power is not supplied to the
crystal), the high power supply would be connected to the ground and a constant current is
drawn. The switching on and off is done by the transistor controlled by an electrical signal.
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paths - one to the crystal and the other to the ground. A 100 V BLF573 transistor was used to

make the switch between these two paths. This switch is controlled by a driver circuit which is

activated by a NIM signal. When there is no NIM signal to the driver, the high voltage power

supply will be applying a voltage across the LN crystal. Since the LN crystal is effectively a

capacitance, no huge constant current was drawn at this stage. When a NIM signal was sent to

the driver, the high voltage power supply was connected to the ground. As such, a high current

was passed through the circuit and the array of resistors would dissipate the electrical energy.

A water chiller could be placed on top of the array of resistors to prevent the circuit board

from overheating. The NIM signal was generated by a function generator and sent to a pulse

shaper. The pulse shaper ensures that a negative NIM signal output has an approximately 300

pn fall and rise time. The bias voltage was used to operate the crystal at a negative voltage

as well as to correct for any stray charges that are intrinsically stored in the LN crystal. In

essence, during the switch off period, even though a high voltage is not supplied across crystal,

it is still running through the circuit. The electrical power generated by the high voltage has to

be dissipated. As such, if the voltages are too high, the electronic circuit might not be able to

handle such a large power dissipation and cause the circuit to overheat. In addition, we require

a low voltage transistor for a fast switch, as it is known that the response time of a transistor

gets slower as the allowed voltage increases.

Since the half-wave voltage of the LN crystal was high, we went on to look at the behaviour

of the output light at low voltages. From the theory of the Pockels effect, any voltages between

0 V to the crystal’s half-wave voltage, the output light polarization is generally elliptical with

an associated rotation in the plane of polarization in the major axis. If the losses due to

the ellipticity are low, meaning that the visibility is still high while a rotation in the plane of

polarization of the major axis is achieved, we are still able to use the LN for our fast polarization

switch.
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We designed with an experiment to investigate the plane of polarization rotation at low

voltages as shown in figure 4.6. From the setup shown in figure 4.6, a horizontally polarized

Figure 4.6: A schematic diagram of the setup to determine the angle of maximum intensity at
various voltages applied through the LN crystal.

light was sent through the LN crystal. A polarizer was placed after the LN crystal so as to

locate the plane of the polarization with the highest transmission intensity at the output. Unlike

the determination of the half-wave voltage where the scanning of the voltage was started from

0 V, we looked at the behaviour of the output light from −50 V to 50 V. At each voltage,

the polarizer was rotated until the highest intensity was registered by the power meter. The

respective angular position on the polarizer was recorded.

After performing the experiment, the angular position of the maximum intensity of the

output light against the voltage applied to the LN crystal is plotted in figure 4.7. It is seen

from figure 4.7 that if a voltage of about (−39.16 ± 0.02) V was applied to the crystal, the

angular position of the maximum intensity observed was at (71 ± 1)◦. Furthermore, when a

voltage of roughly (32.64± 0.02) V was applied, the angular position of the maximum intensity

observed was at (116 ± 1)◦. In other words, the plane of polarization at (−39.16 ± 0.02) V

was rotated by 45◦ from the angular position of (71 ± 1)◦ to that at (116 ± 1)◦! If the plane

of polarization of the light at angular position of (71 ± 1)◦ is defined as the |H〉 polarization,

the angular position of (116 ± 1)◦ is therefore |+〉 polarization. Table 4.1 shows a summary
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Figure 4.7: The plot of angle of polarizer(◦) for maximum transmission intensity of the output
light against voltage applied (V) across the crystal with H polarization as the input. This shows
that a 45◦ rotation of the light polarization plane from 71◦ to 116◦ is possible at low voltages
of (−39.16± 0.02) V and (32.64± 0.02) V respectively.

of the result that is consistent with our desired outcome as shown in table 2.1. We performed

Table 4.1: Summary of output polarization with different input polarization at new voltages
that are lower.

Output Polarization

Input Polarization
Applied Voltage Across the Crystal

-39.16 V 32.64 V

|H〉 |H〉 |+〉
|V 〉 |V 〉 |−〉
|+〉 |+〉 |H〉
|−〉 |−〉 |V 〉

the visibility measurement at the low applied voltage to the crystal. The result of the visibility

against the voltage applied to the crystal is plotted as shown in figure 4.8. The plateau at high

visibility in figure 4.8 tells us that we indeed can have a rotation of 45◦ while still maintaining

high visibility with about 1% loss due to the linear polarized light becoming elliptical during

the rotation at low voltages. As such, a rotation in the plane of polarization of the light and
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Figure 4.8: The visibility against voltage applied (V) across the crystal with H input polariza-
tion. The high visibility at low voltages shows that the output light polarization is relatively
linear.

the change in the measurement bases are possible.

To investigate how the alignment of the crystal would affect the result, we misaligned the

crystal slightly. We found out that the rotation now happened between (−6.5 ± 0.1) V and

(58.8 ± 0.02) V as we switched from HV basis to ±45◦ basis. This tells us that the switching

voltages are not fixed for a particular alignment. This change in the switching voltages perhaps

could be attributed to the effect of the crystal intrinsic birefringence effect as well as changing

the path L through the crystal. The changing of the L is very sensitive as we are talking about

interference of the e-ray and the o-ray of extremely short optical wavelength.

The main disadvantage of this sensitive alignment to the switching voltages is that for

every alignment of the crystal, a characterization of the switching voltages and the respective

visibilities must be done prior to any data acquisition process. This is because to get back the

exact alignment that gives the same switching voltage is not a trivial task. The characterization

step was hence always done prior to the investigation of the fast switching capability of the
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crystal.

The discussion on the characterization of the LN crystal at an ultra slow (as compared to

the 6 ns range) condition - where once the voltage is applied, the readings were taken after a

few seconds - is complete and sufficient for the purpose of our project. We next investigate the

effect of switching the voltage across the crystal at high frequency on the electro-optical crystal.

Most importantly, the question is still are we able to rotate the polarization plane by 45◦.

4.1.4 Investigating the Fast Switching Capability

Figure 4.9: A schematic diagram of the setup to investigate the fast switching capability of the
LN crystal.

Before we discuss the setup to investigate the fast switching response of the LN crystal,

there are considerations that we have taken note in the design of the experimental setup. The

LN crystal in the Pockels cell is like a capacitor and time is required for charges to accumulate

on the gold plated electrode. Therefore, a high voltage power supply capable of supplying 6

A was used in this part of the experiment. In addition, this large power would have to be

dissipated within nanoseconds range during the time in which the crystal is doing a switch. As

such, it requires us to have an array of resistors capable of dissipating such a high power. The
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experimental setup to test for the fast switching in the LN crystal is shown in figure 4.9. It is

expected that there will be a large amount of heat generated and therefore a cooling method

has to be included in the experiment setup which is not shown in figure 4.9.

A fast oscilloscope (∼ 2 GHz) was used to monitor the NIM output signal from the pulse

shaper as well as to measure the from the fast photodiode (Hamamatsu S5972 (at 500 MHz)).

A simplified circuit diagram for photodetection using the high speed photodiode is shown in

figure 4.10. The voltage of the fast photodiode is bias of about 12 V was sent into the circuit.

Figure 4.10: A simplified circuit diagram for the high speed Hamamatsu photodiode used to
measure the fast optical response of LN crystal.

When the light was shone on the photodiode, a photocurrent was generated. The circuit was

coupled to 50 Ω of the oscilloscope which would measure the fast response of the light intensity.

A new holder with the necessary electronics was constructed. Due to its larger size, we did

not have the freedom of rotating the crystal with respect to a beam as described in section

3.3.3. Thus, for the alignment in this part of the experiment, a mirror was placed in front of the

crystal so that there were enough degrees of freedom to walk the beam such that it was passed

through the crystal properly. The alignment method is as follows. The crystal was placed

roughly in the path of the laser beam. The laser beam was walked such that a nice circular

beam profile observed with a camera on the other end of the crystal. A cross polarizer was

placed before the crystal to minimize the intensity of the beam. Next, the crystal was removed

and a pinhole was placed at a position after the crystal such that the beam was passed through
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the pinhole. Thus, by placing the crystal back into the path of the laser beam (without the

polarizer before the crystal), it was checked that the beam after the crystal did not deviate

from the pinhole, ensuring that the beam has passed through the crystal in a straight path.

The conoscopic interference pattern was also checked using the same method as mentioned in

3.3.3. Finally, fine adjustments were made such that the cross polarizer placed after the crystal

registered a global minimum.

Table 4.2: A summary of the input light polarization on the left and the intensity at various
output polarization at an applied voltage across the crystal of (−32.45±0.02) V. A power meter
was used to measure the intensity and the unit is in mW.

At Applied Voltage
of -32.45 V

Output Polarization

Input Polarization |H〉 |V 〉 |+〉 |−〉
|H〉 2.758 0.01093 1.397 1.325

|V 〉 0.009662 2.744 1.385 1.430

|+〉 1.453 1.300 2.692 0.06492

|−〉 1.430 1.323 0.05964 2.700

Table 4.3: A summary of the input light polarization on the left and the intensity at various
output polarization at an applied voltage across the crystal of (38.94± 0.02) V. A power meter
was used to measure the intensity and the unit is in mW.

At Applied Voltage
of 38.94 V

Output Polarization

Input Polarization |H〉 |V 〉 |+〉 |−〉
|H〉 1.414 1.330 2.736 0.01344

|V 〉 1.321 1.455 0.01205 2.750

|+〉 2.729 0.03317 1.268 1.451

|−〉 0.04998 2.723 1.518 1.248

We repeated the experiment mentioned in section 4.1.3 to find the switching voltage of the

LN crystal in the new holder. We obtain a visibility of about (99 ± 1) % when H polarized

light was passed through the crystal. The LN crystal was placed in between two copper slabs

to minimise piezoelectric oscillations which will be discussed later. The voltages sent to the

LN crystal were (−32.45± 0.02) V and (38.94± 0.02) V with the visibility high at (99± 1)%.

Furthermore, we varied the input light polarization and measured the intensity output at various
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polarizations at two switching voltages (−32.45± 0.02) V and (38.94± 0.02) V. The results are

summarized in tables 4.2 and 4.3. The results in table 4.2 and 4.3 shows consistent results with

the required rotation in the polarization planes as shown in table 4.1. Therefore. it shows that

with a voltage step of about (71.4 ± 0.1) V, the rotations of the planes of polarization by 45◦

and the change in the measurement bases required in a Bell’s inequality experiment is possible.

Next, we set the high voltage supply at about (71.4±0.1) V and the bias voltage at (−32.45±

0.02) V. In addition, as a start of this investigation, we would want to set a low duty cycle of

the circuit. The duty cycle is the time proportion that the circuit is dissipating the electrical

energy against the overall usage of the circuit. Thus, the function generator was used to set

a pulse signal with a period of 100 ms and a pulse width of 20 µs that gives us a low duty

cycle of about 0.0002 %. The height of the peak was set between -200 mV to -800 mV, as a

negative pulse was required to generate a NIM pulse from the pulse shaper card. The polarizer

was aligned parallel at the a voltage of (−32.45 ± 0.02) V was applied to the crystal. After

switching on the NIM signal to our crystal holder, the result was obtained in figure 4.11. It can

Figure 4.11: A clear piezoelectric ringing is seen in the optical response. Yellow trace shows
the optical response: 20.0 mV/div. Blue trace shows the electrical response of the crystal: 20.0
mV/div. Red trace shows the electrical response of the crystal: 205 mV/div. The time scale
was set at 5.00 µs/div.

be seen from figure 4.11 that there are oscillations in our optical responses instead of the ideal
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flat plateau. The oscillations suggest that the output light from the crystals could be oscillating

between two angles, or the light’s polarization could be changing from less elliptical to more

elliptical or a combination of the two effects as the LN crystal resonates. This is undesirable as

they imply huge losses as their polarizations and the measurement bases are ‘oscillating’. The

loophole-free Bell’s inequality experiment cannot afford such resonance effects.

The origin of such a resonance pattern could be termed as the piezoelectric ringing of the

LN crystal. During the instance of switching off the voltages, due to the piezoelectric effect of

the LN crystal, the distortion in the arrangement of atoms and electron clouds give rise to an

oscillating change in the dimension of the crystal, especially in the direction where the voltage

is applied. Since the birefringence effect is affected by the electric field across the crystal, which

is in turn affected by the dimension of the crystal d, the optical response of the output light

would oscillate as shown in figure 4.11. Using a simple model of explanation, the electric field

across the crystal is given by

E =
V

d
(4.12)

Taking the derivative with respect to the crystal thickness d that is changing significantly as

compared to the other dimension,

∂E

∂d
= −V 1

d2
(4.13)

4E ≈ −V 1

d2
4d (4.14)

Since the birefringence is proportional to the applied electric field, and if d is oscillating, equation

4.14 tells us that the electric field across the crystal would oscillate as well, thus leading to the
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oscillation in birefringence that affects the optical output response. Furthermore, the larger

the voltage across the crystal, the larger the oscillations of the electric field. In addition, there

is also effect due to the acousto-optical response of the LN crystal that might add on to the

piezoelectric ringing, where the refractive index could change with the acoustic wave in the

crystal. More understanding on this acousto-optical response is required and the simple model

above did not take this into consideration.

From the traces in figure 4.11, the piezoelectric ringing dies off at about 5 µs at both the

switching on and off of the high voltage power supply to the LN crystal. It is still considered

long in terms of the nanosecond range that we wish to have for our switch. The amplitude of

the piezoelectric ringing during the off period is smaller than that in the switching on period.

This is consistent with the fact that the electrical response at the switching on period oscillates

with larger amplitude that that of the switching off period. Hence, it implies that we might also

reduce the effect of piezoelectric ringing by improving the LN crystal electronics circuit. More

work in the future is required to investigate the effect on the piezoelectric ringing by varying

the electrical components of the circuit.

Figure 4.12: A zoomed in oscilloscope traces of the electrical signal, optical response and the
trigger NIM signal at the switching off portion. The time scale here is zoomed in to 20.0 ns/div.

Lastly, to investigate the effectiveness of the circuit in switching, we zoomed in on the traces
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to look at the response time of the electrical signal and the optical response of the LN crystal.

The traces when the circuit is switched off are shown in figure 4.12. We see in figure 4.12 that

the voltage across the crystal which is shown by the electrical signal (blue trace) takes about

(14± 2) ns after the trigger switched off the circuit to start falling. The optical response would

take a whole (20±2) ns to start its discharging. The time constant for the electrical signal to fall

to 3
8 of the initial value is about (4±2) ns and that for the rising of the optical signal to 5

8 of the

maximum value is about (6± 2) ns. Therefore, assuming that the problem of the piezoelectric

ringing is solved, we know that in our circuit, we require a rise time of about (26± 4) ns for a

complete swap from |+〉 basis to |H〉 basis using the LN crystal.
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Chapter 5

On Going and Future Work

There are mainly three broad areas that we have to work on in the future. Firstly, we have

to solve the piezoelectric ringing of the LN crystal. Secondly, we are currently work on closing

the detection loophole. Finally, we would want to perform a loophole-free Bell’s inequality

experiment.

5.1 Minimzing the Piezoelectric Ringing

The results for the piezoelectric ringing in section 4.1.4 were obtained by placing the LN crystal

in between two copper slabs with the hope of damping the oscillation in the optical response.

The optical response before using the copper slabs is shown in figure 5.1. This shows that the

oscillations persisted for a much longer time than when the copper slabs were used. This shows

that we are in the right direction in resolving for the piezoelectric ringing effect. It is hoped that

by encasing the LN crystal with other materials such as Manganese Oxide, which has similar

acoustic impedance to the LN crystal, it can reduce the time in the damping of the oscillation.

In addition, further investigation at a switching period of nanosecond range is to be done once
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Figure 5.1: The piezoelectric ringing in the LN without the two copper slabs does not die out
within 5 µs. The pink trace here is the optical response: 5.00 mV/div while the yellow trace is
the NIM trigger: 200 mV/div. The time scale here is 5.00 µs/div.

the piezoelectric ringing issue is solved.

5.2 Closing the Detection Loophole - The Transition Edge Sen-

sor

In the course of this project, we also work towards closing of the detection loophole concurrently.

Nonetheless, due to various technical issues during the course of the project, we have to place this

as an agenda in the near future. For closing of the detection loophole, we are working towards

the detection efficiency limit of 66.6 % as shown by Eberhard [9]. Typical Silicon Avalanche

Photodetectors (APDs) have low detection efficiency and thus, cannot be satisfactorily used to

close the detection loophole. A new type of photodetector known as the Transition Edge Sensor

(TES) would give us a detection efficiency of 99 % [12] and this seems promising in closing the

detection loophole. The brief theory on how the TES works is as follows. The TES, which could
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be made up of a Tungsten element is constantly cooled below its transition temperature where

the tungsten is at its superconducting to normal transition state. The TES is then placed in

a circuit as shown in figure 5.2. Before any photons shine on the TES, the bias voltage and

Figure 5.2: A simplified circuit of the TES. The changing magnetic field around the induc-
tance coil due to the different number of photons impinging on the TES is measured by the
Superconducting QUantum Interference Device - SQUID. The SQUID signal is amplified for
display.

the resultant bias current create a bias power which the TES is heated up to and maintained

at its transition temperature. After which, as photons hit on the TES, it absorbs the photons

and gets heated up. As a result, the TES resistance increases further and causes a change in

the current of the circuit. This change in the current would cause a change in the magnetic

field in the vicinity of the inductance coil and gets picked up by the Superconducting QUantum

Interference Device (SQUID), which is essentially a magnetometer. The output signal from the

SQUID would give us a measurement on the amount of photons that impinge onto the TES.

The circuit also self corrects itself to the transition temperature. Since the TES is constantly

cooled, as its resistance increases, the bias power decreases and causes a decrease in the TESs’

temperature back to its transition temperature. It is reported that such a method would give

a detection efficiency of 99 % [12].

The cooling of the TES in this project was carried out in Graphene Research Laboratory led

by Asst. Professor Ö. Barbaros while waiting for our own demagnetization refrigerator to come.
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Work has been done on mounting the TES to a probe that will be inserted into the refrigerator

for cooling. The pre-amplifier electronics to amplify the small signals from the SQUID and the

necessary optical fibre in guiding the light to the TES have been completed. Up to the point of

writing this thesis, our own demagnetization refrigerator has arrived. More work is required in

the characterization of the TES for closing the detection loophole.

Finally, together with the photon pairs source that uses a Sagnac interferometer as shown

in figure 5.3, we would want to perform a loophole-free Bell’s inequality experiment eventually.

Figure 5.3: The overall experiment setup for the loophole-free Bell’s inequality experiment.
Note that the LN crystal and the TES are represented by the yellow box in this figure.
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Chapter 6

Conclusion

There were several achievements accomplished in this project. The Pockels effect was ob-

served in a LN crystal of dimension 1.5×10×100 mm and its half-wave voltage at slow switching

voltages was successfully determined to be approximately (150 ± 6) V. In addition, investiga-

tions show a rotation of the linear plane of polarization by 45◦ with reasonable visibility at a

much lower voltage step about (71.4±0.1) V. Different alignments would also cause the switch-

ing voltage to vary, therefore, a characterization of the voltages that allowed a rotation of 45◦

should be done after each alignment of the crystal before any meaningful data can be taken.

Furthermore, we also found that the low frequency electro-optic coefficient r22 for a clamped

LN crystal at 806 nm is experimentally determined to be about (3.5± 0.1)× 10−12 mV−1 with

the assumption from the Sellmeier equation that the o-ray refractive index of the LN crystal is

(2.254± 0.002).

We also face a few challenges during the course of this project. The main challenge is

the piezoelectric ringing of the LN crystal. Work must be done in the future to damp the

oscillation as much as possible, or even remove the effect of such piezoelectric ringing. It

is hoped that material with lower acoustic impedance like Manganese Oxide would help in
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damping the peizoelectric ringing. The electrical response of our circuit gives us a minimum

swapping time about (26 ± 4) ns, provided the problem with approximately 5 µs piezoelectric

ringing is solved. The 5 µs piezoelectric ringing is still long as compared to the nanosecond

time range that is required for our polarization switch. In addition, there are still more work

to be done for the characterization of the TES for use in a Bell’s inequality experiment, but

preliminary results look promising.

In conclusion, the characterization of the LN crystal and the preliminary results from the

TES in closing the detection loophole in this project suggest the possibility of eventually having

a loophole-free Bell’s inequality experiment and we are working in the right direction. It is only

a matter of time before a convincing loophole-free Bell’s inequality experiment is done and the

race to be the first to accomplish it is perhaps the greatest motivation for the experimentalist

in this field of research.
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Appendix A

Calculations

A.1 CHSH Bell’s Inequality

A.1.1 State Invariant of Measurement Basis

We consider the state,

|Ψα〉 =
1√
2

(|Hα〉1 ⊗ |Vα〉2 − |Vα〉1 ⊗ |Hα〉2)

=
1√
2

[(− sinα|V 〉1 + cosα|H〈1)(cosα|V 〉2 + sinα|H〉2)

− (cosα|V 〉1 + sinα|H〉1)(− sinα|V 〉2 + cosα|H〉2)]

=
1√
2

[
(sin2 α+ cos2 α)|H〉1|V 〉2 + (− sin2 α− cos2 α)|V 〉1|H〉2

]
=

1√
2

(|H〉1 ⊗ |V 〉2 − |V 〉1 ⊗ |H〉2) (A.1)

= |Ψ−〉 (A.2)
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A.1.2 Probability Calculations

We present sample quantum mechanical calculations for the probabilities,

P (V, V |a, b) = |〈Va|1〈Vb|2|Ψ−〉|2

= |(cos a〈V |1 + sin a〈H|1)(cos b〈V |2 + sin b〈H|2)|Ψ−〉|2

=
1

2
(sin a cos b− cos a sin b)2

=
1

2
sin2(a− b) (A.3)

P (H,V |a, b) = |〈Ha|1〈Vb|2|Ψ−〉|2

= |(− sin a〈V |1 + cos a〈H|1)(cos b〈V |2 + sin b〈H|2)|Ψ−〉|2

=
1

2
(sin a sin b+ cos a cos b)2

=
1

2
cos2(a− b) (A.4)

which are shown in equations 2.6.

A.1.3 Derivation

The derivation of the CHSH inequality shown in equation 2.5 is inspired from the Appendix 2 of

chapter 16 - Bertlmann’s Socks and the Nature of Reality found in [19]. Starting from equation

2.4, the expectation value for settings a and b is given by,

E(a, b) = P (+1,+1|a, b) + P (−1,−1|a, b)− P (+1,−1|a, b)− P (−1,+1|a, b) (A.5)

=

∫
f(λ) [P1 (+1|a, λ)− P1 (−1|a, λ)] [P2 (+1|a, λ)− P2 (−1|a, λ)] dλ (A.6)

=

∫
f(λ)Ā(a, λ)B̄(b, λ) dλ (A.7)
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where Ā and B̄ represent the first and the second brackets respectively. The integral is taken

over all values of the hidden variables, and f(λ) is the appropriate probability distribution for

λ. Since the probability P s are always between 0 and 1,

|Ā(a, λ)| ≤ 1 and |B̄(b, λ)| ≤ 1 (A.8)

Now we consider the addition of the expectation values such as,

E(a, b)± E(a, b′) =

∫ [(
f(λ)Ā(a, λ)B̄(b, λ)

)
±
(
f(λ)Ā(a, λ)B̄(b′, λ)

)]
dλ (A.9)

=

∫
f(λ)Ā(a, λ)

[
B̄(b, λ)± B̄(b′, λ

]
dλ (A.10)

From equation A.8, it follows that,

|E(a, b)± E(a, b′)| ≤
∫
f(λ)

[
B̄(b, λ)± B̄(b′, λ

]
dλ (A.11)

Similarly,

|E(a′, b)∓ E(a′, b′)| ≤
∫
f(λ)

[
B̄(b, λ)∓ B̄(b′, λ)

]
dλ (A.12)

Again, from equation A.8,

|B̄(b, λ)± B̄(b′, λ)|+ |B̄(b, λ)∓ B̄(b′, λ)| ≤ 2 (A.13)

Like all probability distribution, f(λ) is non negative and must satisfy the normalization con-

dition,

∫
f(λ) dλ = 1 (A.14)
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Therefore, it follows that,

|E(a, b)± E(a, b′)|+ |E(a′, b)∓ E(a′, b′)| ≤ 2 (A.15)

which is included in equation 2.5.

A.2 Working of a Half-Wave Plate

The π phase difference between the e-ray and the o-ray is a property that we intend to use for our

Pockels cell when the half-wave voltage applied to it. To see how the π phase difference changes

our output light after passing through the crystal, let us first look at the matrix representation

of an anticlockwise rotation of the light in a HV basis by an angle of Θ, which is given by

T =

 cos Θ sin Θ

− sin Θ cos Θ

 (A.16)

Keeping equation A.16 in mind, we look at the axes of the orthogonal polarizations of the e-ray

and the o-ray, which could be labelled as the F̂ and Ŝ axes respectively. In practical situations,

the F̂ and Ŝ axes of the crystal can be rotated with respect to the linearly polarized light. If

we choose a HV basis to describe the linear polarization of the light, the F̂ and Ŝ axes could be

rotated anticlockwise with respect to the HV basis as shown in figure A.1. As such, we could

write the transformation equation in the form of,

F̂
Ŝ

 =

 cos θ sin θ

− sin θ cos θ

 ·
Ĥ
V̂

 (A.17)
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Figure A.1: The anticlockwise rotation of the F̂ and Ŝ axes by an angle θ from the original HV
basis.

and the clockwise rotation from the HV basis to the F̂ and Ŝ axes is,

Ĥ
V̂

 =

cos θ − sin θ

sin θ cos θ

 ·
 F̂

eiφŜ

 (A.18)

Since we are interested in the phase difference between the F̂ and Ŝ axes, we consider the Ŝ is

the only ray that is retarded with respect to F̂ , such that Ŝ → eiφŜ while F̂ → F̂ , where eiφ

describes a retardation by φ. When the phase difference is π, eiπ = −1. Combining this fact

with equations A.17 and A.18, it can be shown that

Ĥ
V̂

 =

 cos 2θ sin 2θ

− sin 2θ cos 2θ

 ·
Ĥ
V̂

 (A.19)

Now, comparing the transformation matrix in equation A.19 with the anticlockwise rotation

matrix in equation A.16, it essentially tells us that as the linearly polarized light passed through

the crystal at an angle θ with respect to the F̂ axis, the plane of polarization of the output light

will be rotated by 2θ with respect to the input light. The transformation matrix,

T ′ =

 cos 2θ sin 2θ

− sin 2θ cos 2θ

 (A.20)
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is also known as the Jones matrix of the optical element known as the half-wave plate (HWP)

which is used to rotate linear polarization of light.

A.3 Mathematics of Pockels Effect

The mathematics for the Pockles effect can be found in more details in [14]. We will discuss the

important steps in the mathematical treatment in a concise manner that leads to a conclusion

of the linear proportionality of a birefringence with an applied electric field. The magnitude

of refractive indices and their respective orientations in the crystal can be described by the

mathematics diagram known as the index ellipsoid. The index ellipsoid equation of an optically

uniaxial medium is given by,

1 =
3∑
i=0

x2i
n2xi

= (x1, x2, x3) ·


1
n2
x1

0 0

0 1
n2
x2

0

0 0 1
n2
x3

 ·

x1

x2

x3

 (A.21)

where x1, x2 and x3 are the principal axes of the crystal and nx1 , nx2 and nx3 are the principal

refractive indices in the x1, x2 and x3 directions respectively. The refractive indices have to fit

the description of equation A.21 when there is no applied electric field. As we turn on an applied

DC electric field that is directed along the principal axes of the crystal, the index ellipsoid is,

1 =

3∑
i=0

x2i
n2xi

+
(
x21, x

2
2, x

2
3, 2x2x3, 2x1x3, 2x1x2

)
·



r11 r12 r13

r21 r22 r23

r31 r32 r33

r41 r42 r43

r51 r52 r53

r61 r62 r63



·


Ê1

Ê2

Ê3

 (A.22)
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where rij are the electro-optic coefficients of the crystal and the 6 × 3 matrix of the electro-

optic coefficients is often known as the electro-optic tensor. More than often, the symmetry

considerations vanish some of the 18 elements of rij . For the LN crystal in this project, its

electro-optic tensor is,

r̄ =



0 −r22 r13

0 r22 r13

0 0 r33

0 r51 0

r51 0 0

−r22 0 0



(A.23)

With that, equation A.22 becomes,

(
1

n2x1
− r22E2

)
x21 +

(
1

n2x2
+ r22E2

)
x22 +

x23
n2x3

+ 2r51Ex2x2x3 = 1 (A.24)

From equation A.24, we can see that if there is no applied electric field to the crystal, equation

A.24 neatly collapses into equation A.21. This is consistent with the physical observation of the

electro-optic effect. It is also intuitively logical that if we are able to write equation A.24 in the

same form as the index ellipsoid in equation A.21, meaning,

1 =
3∑
i=0

x
′2
i

n
′2
x
′
i

=
x

′2
1

n
′2
x
′
1

+
x

′2
2

n
′2
x
′
2

+
x

′2
3

n
′2
x
′
3

(A.25)

we would be able to find the new principal axes x
′
i and new refractive indices n

′

x
′
i

along the new

axes due to the effect of the applied electric field. The rigour mathematics in getting equation

A.24 has been done in [20]. Applying the static DC electric field along the x2 axis of the crystal,
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it gives the following results to the first order approximation,

n
′

x
′
1

= no +
1

2
n3or22E2 (A.26)

n
′

x
′
2

= no −
1

2
n3or22E2 (A.27)

n
′

x
′
3

= ne (A.28)

where the new x
′
1 and x

′
2 axes are approximately no change with the initial x1 and x2 axis. The

new refractive indices allow us to calculate the birefringence due the applied electric field,

(
n

′

x
′
1

− n′

x
′
2

)
= ∆n = n3or22E2 (A.29)

which exactly shows the Pockels effect where the birefringence is proportional to the applied

electric field. The phase difference Γ between the e-ray and the o-ray would then be defined as,

Γ =
2π

λ
∆nL =

2π

λ
n3or22E2L (A.30)

Γ = π · V
Vπ

(A.31)

with the so-called half-wave voltage,

Vπ =
λ

2n3or22
· d
L

(A.32)
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where V is the applied voltage across the crystal with thickness d and L is the length of the

crystal along the propagation of the light.

A.4 Analyzer Intensity Dependency on Phase Difference

The electric field of the light after the first polarizer at +45◦ is,

Ê = E0 cos(ωt)â

=
1√
2

cosωt

[
1√
2

(â+ b̂)

]
+

1√
2

cosωt

[
1√
2

(−â+ b̂)

]
(A.33)

where E0 is the amplitude of the electric field, ω is the frequency of the light and â and b̂ is

the unit vectors in the +45◦ and −45◦ directions respectively. It is to note that 1√
2
(â + b̂)

and 1√
2
(−â+ b̂) are the x̂ and ŷ of the principle axes of the crystal respectively. After passing

through the LN crystal, the light wave would be,

Ê2 =
1√
2
E0 cos(ωt+ Γ)x̂+

1√
2
E0 cos(ωt)ŷ (A.34)

where it can be said that the light with its electric field oscillating parallel to the x axis is

retarded while the the light with its electric field oscillating parallel to the y is not retarded.

The polarizer after the crystal is placed parallel to the b̂ direction. Therefore, the electric field

after the polarizer is given as,

Ê3 = (Ê2 · b̂)b̂

=

[
1√
2
E0 cos(ωt+ Γ)x̂ · b̂+

1√
2
E0 cosωtŷ · b̂

]
b̂

=
1

2
E0[cos(ωt+ Γ)− cosωt]b̂

= −E0 sin
∆Γ

2
sin

[
ωt+

Γ

2

]
(A.35)
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The intensity is directly proportional to the electric field of the light. Therefore, the intensity

after the polarizer is given by,

I = | − E0 sin
Γ

2
|2

= E2
0 sin2 Γ

2

= I0 sin2 Γ

2
(A.36)

which is shown in equation 4.2.
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Appendix B

Alignment Steps for Lithium

Niobate

B.1 Alignment With x and y Rotation Crystal Holder

Figure B.1: Step 1: Ensure that the light is collimated through C230 TME B Lens of about 4.0
mm focal length. Light is H polarized here.

Figure B.2: Step 2: Place 2 pinholes of equal height in. Ensure the light passes through both
pinholes. In the diagrams under this section, filled pinhole means that the pinhole is closed,
clear means otherwise.
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Figure B.3: Step 3: Insert the crystal, ensure that the light still passes through the pinhole
after the crystal, thus the light beam is not bent while passing through the crystal.

Figure B.4: Step 4: Place a crossed polarizer and the power meter. Look for a global minimum
by rotating the crystal about the y axis.

Figure B.5: Step 5: Shift the polarizer before the crystal, replace the power meter with a
camera, without its lens. Look for a circular beam profile by rotating the crystal about the x
axis.

Figure B.6: Step 6: Shift the polarizer back to the position after the crystal, stick a cellulose
tape in front of the crystal holder. Place a screen to capture the output image and look for the
conoscopic interference pattern through the camera with the lens.
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Figure B.7: Step 7: Insert a hwp at 22.5◦ and the polarizer at 45◦. Perform fine rotation in the
x axis to obtain a global minimum intensity after the polarizer.

B.2 Alignment Without x and y Rotation Crystal Holder

Figure B.8: Step 1: Ensure that the light is collimated through C230 TME B Lens of about 4.0
mm focal length. Light is H polarized here.

Figure B.9: Step 2: Insert polarizer at 90◦, crossed polarizer with the H polarized light. Place
in the crystal and camera without lens to get a nice circular beam profile.

Figure B.10: Step 3: Remove crystal and place in a pinhole. Ensure that the light passes
through the pinhole.
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Figure B.11: Step 4: Place back the crystal. Ensure that the light still passes through the
pinhole.

Figure B.12: Step 5: Insert a polarizer at 90◦ and walk the bottom screw of the mirror mount
to obtain a global minimum intensity after the polarizer.

Figure B.13: Step 6: Replace the power meter with a screen and check for conoscopic interference
pattern by sticking a cellulose tape in front of the LN crystal.

66



Appendix C

Error Analysis

C.1 Visibility Calculations

From the visibility graph obtained in figure 3.5, we plot a curve fit with the function,

f(x) = a sin

(
2π

180
x

)
+ b cos

(
2π

180
x

)
+ c (C.1)

where a, b and c are the fitting parameters and x is the polarizer angle. The curve fit using the

SciDAVis programme is shown in figure C.1. The R2 of the fit is 0.991 and the values generated

for the fitting parameters are,

a = 0.853± 0.012, b = −1.450± 0.012 and c = 2.146± 0.0085 (C.2)
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Figure C.1: The visibility curve fit used to calculate the visibility and its error.

Defining,

A1 =
√
a2 + b2 (C.3)

∆A1 =
a

a2 + b2
∆a+

b

a2 + b2
∆b (C.4)

Imax = A1 + c (C.5)

Imin = −A1 + c (C.6)

∆Imax = ∆Imin (C.7)

= ∆A1 + ∆c (C.8)

The visibility is then calculated using equation 3.1 is given to be 78.4 %, with uncertainty,

∆Visibility =
∂Visibility

∂Imax
∆Imax +

∂Visibility

∂Imin
∆Imin (C.9)

=

[
1

Imax + Imin
− Imax − Imin

(Imax + Imin)2

]
∆Imax (C.10)

−
[

1

Imax + Imin
+

Imax − Imin
(Imax + Imin)2

]
∆Imin (C.11)

≈ 0.004 (C.12)
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C.2 High Voltage Card

Arbitrary inputs to a computer programme control the actual voltage applied across the crys-

tal. Therefore, characterization of the high voltage card of actual voltage outputs against the

arbitrary inputs is done and shown in figure C.2. The voltage output was measured using a

Digital Multimeter (DMM). The calibration curve was used to determine the voltage applied

Figure C.2: Graph of actual voltage outputs against the arbitrary inputs. The fluctuations was
not observed in the DMM, thus the error bar is taken to be ±0.1 V which is too small to be
shown on the graph.

to the crystal in various the investigations. The minimum uncertainty in the voltage value ∆V

is given to be,

∆V =
∆m

m
× x+ ∆c (C.13)

where m and c are the gradient and vertical axis intercept. ∆m and ∆c are the standard

deviations of the gradient and the intercept obtained from the graph. x is the arbitrary inputs.
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C.3 Error bars

C.3.1 Half-Wave Voltage Graph

The horizontal error bars for the graph in figure 4.3 that gives us the half-wave voltage is given

(as well as that for the linear graph in figure 4.4 for determining the r22 and for the graph in

figure 4.7) by equation C.13. Showing a sample calculation to illustrate the magnitude of the

error bar at half-wave voltage,

∆V = 65.279× 2.3
0.007

65.279
+ 0.017 ≈ 0.034V (C.14)

The vertical error bar for the graph in figure 4.3 that gives us the half-wave voltage is given by,

∆

(
I

I0

)
=

I

I0

√(
∆I

I0

)2

+

(
∆I

I

)2

(C.15)

where ∆I is the intensity fluctuations observed from the power meter. As the external laser

cavity produce a laser beam with power stability, occasional power fluctuation is at 0.05 V,

even though most of the time it was observed that the power fluctuation is within 0.02 V. Thus

∆I = ±0.05 V Using the data at the half-wave voltage to exemplify the order of the error bar,

∆

(
I

I0

)
= 3.18

√(
0.05

8.43

)2

+

(
0.05

8.41

)2

≈ ±0.0084 (C.16)

Both error bars are too small to be shown on the graph. This is especially so for the horizontal

error bars for all graphs in this project.
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C.3.2 r22 Linear Graph

Let y the normalized intensity I
I0

. Since Γ = 2 sin
√

I
I0

, the vertical error bars for the linear

graph in figure 4.4 to determine the r22 is given by,

∆Γ = 2
∂(sin

√
y)

∂y

∣∣∣∣
y

∆y =
2√
y − y2

∆y (C.17)

Using the half-wave voltage as an example,

∆Γ =
2√

0.998− 0.9982
× 0.0084 ≈ ±0.34 rad (C.18)

C.4 Curve Fitting

The r2 value and the χ2 value for the graph used to determine the half-wave voltage are

determined to compare the experimental results with the theoretical fit as shown in figure 4.3

from 6.315 V to the half-wave voltage. The analysis excludes the possible Kerr effect at higher

voltage. Using the SciDAVis software, the r2 value is given to be 0.9892. The χ2 values is

calculated from,

χ2 =
∑
i=1

ye − yt
yt

= 0.09692 (C.19)

Using the χ2 distribution table with 23 degrees of freedom (23 data points), the χ2 value at 95

% confidence is 35.17. Since the experimental χ2 = 0.09692 which is smaller than 35.17, the

experimental trend is consistent with the theoretical trend within 95% confidence interval.
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C.5 Uncertainty in n3
or22 Determination

The bandwidth of the laser beam from the external laser cavity is around 50 fm. The uncer-

tainty in the refractive index ∆no using the Sellmeier equation is (assuming no error in the

determination of the Sellmeier constants),

∆no =
∂no
∂λ

∆λ

=

2Bλ
(λ2+C)2

+ 2Dλ

2
[
A+ B

λ2+C
+Dλ2

]∆λ

≈ ±0.002 (C.20)

As such, the uncertainty in the product of n3or22 is,

∆n3or22 =

√(
∆m

m

)2

+

(
∆λ

λ

)2

× n3or22

≈ ±0.03× 10−11 mV−1 (C.21)

Thus, the uncertainty in the r22 is

∆r22 =

√
3

(
∆n0
n0

)2

+

(
∆n3or22
n3or22

)2

× r22

≈ ±0.085× 10−12 mV−1 (C.22)

Generally, due to the difficulty in determine the electro-optical coefficient of crystals, the electro-

optical coefficient is usually reported to two significant figures. Since our statistical calculation

is still less than that, we take the nearest ceiling of the uncertainty of ±0.1×10−12 mV−1. This

is done similarly to the product of n3or22 - rounding up its uncertainty to 1 decimal place.
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C.6 Other Experimentally Assigned Uncertainties

The lowest division for the angular position of the polarizer is 2◦, thus the uncertainty and

error bar of the angular positions is ±1◦. The lowest division that can be read off from the

oscilloscope directly is used to give the uncertainties for the rise and fall times of the optical

response and the electrical signal. The uncertainty of the high voltage power supply is taken to

be ±0.1 V.
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Appendix D

Pictures of Experimental Setups

Figure D.1: The external laser cavity setup. The red arrows show the propagation of the laser
beam.
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Figure D.2: The setup for LN crystal characterization. The empty holders allow us to shift the
polarizers and pinholes during the alignment of the crystal.
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Figure D.3: A close up on the some of the important component of the electronic circuit on the
holder. The two copper slabs are not considered during the initial design of the holder. Thus,
the cover is not shown in this figure.

Figure D.4: The covered crystal holder without the two copper slabs. The water chiller com-
ponent is placed directly above the array of resistors to remove the any heat generated.
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Figure D.5: The detectors used in characterization of the LN crystal. Left: Fast photodiode for
registering fast optical response from the crystal. Right: The Silicon photodiode using the 9V
supply.
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