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Summary

We investigate both experimentally and theoretically the interaction of a

quantum system with a coherent focused light beam. The strength of this

interaction will determine the viability of implementing several quantum in-

formation protocols such as photonic phase gates and quantum information

transfer from a ‘flying’ photon to a stationary quantum system. We started

with the investigation of colloidal semiconductor nanocrystals (or quantum

dots (QDs)) such as CdSe/ZnS, CdTe/ZnS, and InGaP/ZnS. We set up a con-

focal microscope to observe the optical properties of individual QDs at room

temperature. Our measurements showed that these QDs have absorption

cross sections about a million times smaller than that of an ideal two-level

system, indicating that this physical system can only interact weakly with

light. The most deterring property of colloidal QDs is that they are chemi-

cally unstable under optical excitation. The QDs were irreversibly bleached

within a few seconds to a few hours in all our experiments. The short coher-

ent time and low absorption cross section of these QDs render them difficult

candidate for storage of quantum information.

The second quantum system we investigated was the Rubidium alkaline

atoms having a simple hydrogen-like energy structure. We set up a far-

off-resonant optical dipole trap using a 980 nm light to localize a single
87Rb atom. The trapped atom is optically cooled to a temperature of ∼
100 µK, and optically pumped into a two-level cycling transition. Under

these conditions, the atom can interact strongly with weak coherent light

tightly focused by a lens. We quantified the atom-light interaction strength

by measuring the extinction of probing light by a single 87Rb atom. The

measured extinction sets a lower bound to the percentage of light scattered



by the single atom (scattering probability). A maximal extinction of 10.4%

has been observed for the strongest focusing achievable with our lens system.

Our experiment thus conclusively shows that strong interaction between a

single atom and light focused by a lens is achievable.

We also performed a theoretical study of the scattering probability by

computing the field at the focus of an ideal lens, and thereby obtaining the

power scattered by a two-level system localized at the focus. Our calculations

were based on a paper by van Enk and Kimble [1] except that we dropped two

approximations used in their original model, making the model applicable to

strongly focused light. The predictions of our model agree reasonably well

with our experimental results. In contrary to the conclusion of the original

paper, our results show that very high interaction strength can be achieved

by focusing light onto a two-level system with a lens.

vii
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Chapter 1

Introduction

The past two decades have witnessed the emergence of the quantum infor-

mation science (QIS), which is a synthesis of quantum physics, information

theory, and computer science. It was recognized very early since the estab-

lishment of quantum theory about 80 years ago that information encoded

in quantum systems has weird and counterintuitive properties. However,

the systematic study of quantum information has only become more active

recently due to a deeper understanding of classical information, coding, cryp-

tography, and computational complexity acquired in the past few decades,

and the development of sophisticated new laboratory techniques for manip-

ulating and monitoring the behavior of single quanta in atomic, electronic,

and nuclear systems [2, 3].

While today’s digital computer processes classical information encoded in

bits, a quantum computer processes information encoded in quantum bits,

or qubits. A qubit is a quantum system that can exist in a coherent super-

position of two distinguishable states. The two distinguishable states might

be, for example, internal electronic states of an individual atom, polarization

states of a single photon, or spin states of an atomic nucleus [3]. Another

special property of quantum information is entanglement. Entanglement is

a quantum correlation having no classical equivalent, and can be roughly

described by saying that two systems are entangled when their joint state

is more definite and less random than the state of either system by itself



[2, 3, 4, 5]. These special properties of quantum information bestow upon

a quantum computer abilities to perform tasks that would be very difficult

or impossible in a classical world. For examples, Peter Shor [6] discovered

that a quantum computer can factor an integer exponentially faster than a

classical computer. Shor’s algorithm is important because it breaks a widely

used public-key cryptography scheme known as RSA, whose security is based

on the assumption that factoring large numbers is computationally infeasi-

ble. Another potential capability of a quantum computer is to simulate the

evolution of quantum many-body systems and quantum field theories that

cannot be performed on classical computers without making unjustified ap-

proximations.

Currently, a number of quantum systems are being investigated as po-

tential candidates for quantum computing. They include trapped ions [7, 8],

neutral atoms [9], photons [10, 11], cavity quantum electrodynamics (CQED)

[12], superconducting qubits [13], color centers in diamond [14], semiconduc-

tor nanocrystals [15, 16], etc. Analogous to classical information processing,

any quantum system used for quantum information processing must allow ef-

ficient state initialization, manipulation and measurement with high fidelity,

and efficient operation by a quantum gate [17]. Some of the above listed can-

didates have already fulfilled these requirements, but none have overcome

the obstacle of scalability for constructing a useful quantum computer.

One of the proposals to scale up a quantum information processing system

is by constructing a quantum network, in which each qubit stores informa-

tion and is manipulated locally at a node on the network, and quantum

information is transfered from one node to another at a distant location

[18, 19, 20]. However, transferring quantum information with high fidelity

is a non-trivial task. Unlike classical information, quantum information can-

not be read and copied without being disturbed. This property is called the

non-cloning theorem of quantum information, which follows from the fact

that all quantum operations must be unitary linear transformations on the

state [21]. Therefore, one cannot measure a qubit, and transfer the measured

information classically to another qubit. Instead, the transfer of quantum in-

formation requires (i) interaction between the information-sending quantum

2



system with an auxiliary quantum system (messenger), (ii) transportation

of the messenger to the information-receiving quantum system, and (iii) in-

teraction between the messenger with the receiver. Furthermore, to ensure

efficient information transfer, every step in the information transfer process

must be carried out with high fidelity and low loss.

For quantum information transfer, photons are usually adopted as the

messenger due to its robustness in preserving quantum information over long

distances [18, 19, 20]. The requirement of lossless information transfer implies

that a messenger photon must be absorbed by the receiver with a probability

close to unity. A common approach to enhance the absorption probability of

a photon by a quantum system is by placing the quantum system in a high

finesse cavity [22, 23, 24, 25].

Here, instead of a cavity, we employ a different approach. We attempt

to answer the question whether high absorption probability is achievable by

focusing a photon onto a quantum system with a lens. The reason for asking

such a question is twofold. First, it is not always possible to place a high

finesse cavity around a quantum system. In the few cases where it is possible,

ensuring that every cavity on the network is locked to the same frequency

can be resource demanding. A lens system, on the other hand, is much

simpler to setup. Second, it is of fundamental interests to find the maximum

achievable absorption probability by focusing light onto a single quantum

system, especially since there are opposing opinions in the community on the

feasibility of such a scheme.

As a first step toward the answer, we started by studying the absorp-

tion probability of weak coherent light by single quantum systems instead

of preparing real single photon pulses. Our first attempt was carried out on

colloidal semiconductor quantum dots at room temperature. We observed

that these quantum dots have very small absorption cross sections compared

to an atom, and they are photo-chemically unstable. For these reasons, we

switched our focus to a cleaner quantum system – 87Rb atoms. With this

system, we showed experimentally that strong atom-light interaction can be

achieved by simply focusing light to an atom.

The layout of this dissertation is organized in the following manner.

3



Chapter 2 reports our investigation on individual colloidal semiconductor

nanocrystals (CdSe, CdTe, etc) at room temperature. Chapter 3 gives a the-

oretical overview of the interaction strength between a focused coherent light

field and a two-level system in free space. Chapter 4 presents an experiment

in which we measured the extinction of a light beam due to a single trapped
87Rb atom. In this experiment, we optically pump the 87Rb atom into a two-

level cycling transition and measured an extinction of more than 10%. In

fact, such a high extinction violates the predictions by S. J. van Enk and H.

J. Kimble [1], who suggested that absorption of light by a single atom in free

space would not be efficient. We later realized that approximations made in

their original work greatly underestimated the potential of such a coupling

scheme. An extension of their model was subsequently performed (Chap-

ter 3). Our new model explains our experimental results reasonably well and

suggests the possibility of achieving much higher interaction strength than

what we currently observe. The results of this study are published in [26, 27].

4
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Chapter 2

Investigation of single colloidal

semiconductor quantum dots

A number of quantum systems have been identified as potential candidates

for future quantum information processing. They include ions [7, 8], cavity

quantum electrodynamic systems [12], nuclear magnetic resonance 1 [28],

photons [10, 11], superconducting quantum bits [29], semiconductor QDs

[16], etc. Among these, the solid state system has the advantage of allowing

one to tap into the resource and technology of the solid-state fabrication

industry. It has been speculated that a scalable, and economically feasible

quantum computing device will be created with a solid-state system. Despite

the fact that one has less control over semiconductor QDs compared other

quantum systems due to its stronger coupling to the environment and more

complicated energy structure, many groups are pursuing research on QDs in

the hope of taming these dots for use in quantum computation.

This chapter documents our efforts to characterize single colloidal semi-

conductor quantum dots (QDs) (CdSe/ZnS, CdTe/ZnS) at room temperature

for the purpose of quantum information processing. The main aim is to mea-

sure the absorption cross section of a single QD at room temperature so as to

quantify the interaction strength between light and a single QD. We set up

1Braunstein et al. showed that there was no quantum entanglement in any bulk NMR
experiment, implying that the NMR device is at best a classical simulator of a quantum
computer.



a confocal microscope to observe the fluorescence from single colloidal QDs

embedded in a transparent matrix. We observed clear photon-antibunching

effect in the fluorescence, showing that a single QD can be used as a single

photon source. However, the dense energy levels of colloidal QDs and their

strong coupling to phonons lead to a very short quantum-state coherence

time of picoseconds. Our measurements show that the absorption cross sec-

tions of these dots are a million times smaller than that of a simple two-level

system exposed to a weak resonant field. The fluorescence quenching effects

and the chemical instability of colloidal QDs under photoexcitation will also

be discussed.

2.1 Introduction to colloidal QDs

A semiconductor nanocrystal is a nanoscale crystalline particle that is charac-

terized by the same crystal lattice structure as the corresponding bulk semi-

conductor. Due to the small size of the system, the charge carriers within

a nanocrystal experience strong quantum confinement effect, resulting in a

discrete energy structure similar to that of an atom. Therefore, such a sys-

tem is also called a quantum dot. One way of growing semiconductor QDs

is by using molecular beam epitaxy where the QDs are embedded in a bulk

semiconductor. Another way uses wet chemical synthesis [30, 31, 32, 33, 34],

resulting in colloidal QDs soluble in various solvents. Our study focuses on

the commercially available colloidal heterostructure QDs.

Figure 2.1(i) shows the typical structure of a colloidal heterostructure

semiconductor QD. Such QDs are made up of a core nanocrystal which is

passivated by a shell of a different semiconductor, and a coating of organic

molecules that enables the QDs to dissolve in the solvent. The core typically

consists of 100 to 10,000 atoms. It is generally made up of a semiconductor

with a direct band gap in order to enhance the quantum yield 2 of the dots.

Among the large varieties of semiconductors, only a few semiconductors like

2The quantum yield of a QD is defined as the probability that the decay of an exciton
in the QD is carried out by emission of a photon.
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Figure 2.1: (i) A typical heterostructure colloidal quantum dot in a solvent.
(ii) and (iii): Plots of the bottom of the conduction band (cb) and the top of
the valence band (vb) versus the cross-section of the type I (ii) and type II (iii)
heterostructure QDs.

CdSe, CdTe, InP, GaAs, etc., have band-gap transitions in the near infrared

to visible regime where efficient detectors, light sources and optics are readily

available (see Appendix A.9 for the band gaps of various semiconductors).

As QDs have a very large surface-to-volume ratio, their optical and struc-

tural properties are strongly influenced by the properties of their surface.

Passivating the core nanocrystal with a few monolayers of a second semicon-

ductor can greatly enhance the quantum yield and the chemical stability of

the QD [31, 32, 35, 36, 37]. To maintain the chemical stability of colloidal

QDs and ensure that they do not aggregate or disintegrate in the solvent,

certain organic ligands are dissolved in copious amount in the solvent. The

functions of such ligands are twofold. One end the ligands passivates the

tangling bonds of the shell, making the shell more stable. The other end of

the ligands has functional groups that are attractive to the solvent, enabling

the QDs to be soluble. These organic ligands can also influence the optical

properties of the QDs significantly, signaling the strong coupling of quantum

dots to its environment.

Heterostructure QDs are classified into two types. Figure 2.1(ii)/(iii)

shows the spatial variations of the bottom of the conduction band and the

7



top of the valence band in a type-I/type-II heterostructure QD. In type-I

heterostructure QD, both the excited electrons and holes are confined within

the core rather than in the shell, thereby leading to stronger exchange in-

teraction 3 between the two charges compared to the type-II QDs. For the

particular type-II band structure shown in Fig. 2.1(iii), the excited electrons

would be confined within the core but the holes would be confined within

the shell. The spatial separation of electron and hole, which is a fundamen-

tal feature of type-II QDs, leads to longer radiative lifetimes, lower exciton

binding energy and unusual dynamic and recombination properties of charge

carriers as compared to type-I QDs [38, 39, 40]. Therefore, type-I QDs are

expected to be more suitable for quantum information processing where ef-

ficient interaction between light and the quantum system is essential.

The colloidal QDs we have investigated include toluene soluble (core/shell)

CdSe/ZnS , CdTe/ZnS QDs capped by trioctylphosphine oxide (TOPO), and

water soluble CdTe QD capped by glutathione [41] 4. These colloidal dots

can be fabricated with very high quality. They are almost spherical, and

have a wurtzite (hexagonal) lattice structure. Their diameters can be varied

from 12 to 110 Å with very narrow diameter distribution (< 5% rms) within

each sample [30].

2.2 Energy structure of CdSe QDs

Much experimental and theoretical effort has been spent in the past few

decades to understand the energy structure of various semiconductor QDs.

CdSe is one of the most well understood semiconductor nanocrystals because

these dots can be fabricated in various sizes with high quality [30]. This

section summarizes the main electronic and optical properties of the CdSe

QDs. The models presented here represent the results of a large number

3The exchange interaction between two quantum objects is proportional to the overlap
of the their wavefunctions.

4The core/shell QDs were obtained from Evident Technologies, Inc. The glutathione-
capped CdTe QDs were kindly provided by Dr. Yuangang Zheng from the Institute of
Bioengineering and Nanotechnology, Singapore.
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of experimental and theoretical studies performed over the past 30 years.

Therefore, it is not possible to go into detailed descriptions of experimental

evidences for every property stated herein. Two excellent reviews on the

energy structure of CdSe QDs are provided by Norris et al. [42] and Klimov

[43].

2.2.1 Electron-hole pair in an infinitely-deep ’crystal’

potential well

In a bulk semiconductor, absorption of a photon promotes an electron to the

conductor band and leaves a hole in the valence band. The electron and the

hole form an exciton which is a hydrogen-like system with a Bohr radius aexc

(aexc = 5.6 nm for CdSe). If the mean nanocrystal radius ā is greater than

3aexc, one is in the weak-confinement regime [44]: the confinement kinetic

energy is smaller than the Coulomb interaction energy between the electron

and the hole, and the Wannier exciton is confined as a whole. When ā is

a few times smaller than aexc, one is in the strong-confinement regime, in

which both carriers are independently confined [45].

One of the simplest Hamiltonians modeling an exciton in a spherical

nanocrystal, within the effective mass theory and in the absence of band

mixing effect [44], is given by [45, 46, 47]

H =
p2

e

2me
+

p2
h

2mh
− e2

4πǫ|~re − ~rh|
+ V (re) + V (rh). (2.1)

Here the first two terms describe the kinetic energies of the electron and

the hole respectively, where me(mh) represents the effective mass of the elec-

tron(hole) [48]; the third term describes the Coulomb interaction between

the electron and the hole, where the ǫ is the dielectric constant of the semi-

conductor; and the last two terms describe a spherical infinite potential well

of radius a:

V (re(h)) =







0 if re(h) ≤ a,

∞ if re(h) > a.
(2.2)

If one ignores the Coulomb interaction in the strong confinement regime,

9



then the electron and hole become two independent particles confined in a

spherical infinite potential well (the Coulomb interaction can be considered as

a perturbation later). Their energy eigen-wavefunctions are given by [49, 50]

Ψ
e(h)
n,l,m(r, θ, φ) = fn,l,m(~r) ue(h)(~r)

= [An,l jl(kn,lr)Y
m
l (θ, φ)] ue(h)(~r), (2.3)

where fn,l,m(~r) is the envelope function, ue(h)(~r) the cell periodic function

of the conduction(valence) band 5 [48, 50], An,l the normalization constant,

Y m
l (θ, φ) the spherical harmonics, jl(kn,lr) the lth order spherical Bessel func-

tion, and

kn,l =
αn,l

a
(2.4)

with αn,l the nth zero of jl. The eigen-energies of the electron are given by

Ee
n,l =

Eg

2
+

~
2α2

n,l

2mea2
, (2.5)

and those of the hole are given by

Eh
n,l = −Eg

2
−

~
2α2

n,l

2mha2
(2.6)

with Eg being the band gap of the bulk semiconductor. Due to the symmetry

of the system, the eigenfunctions of the electron(hole) are labelled by quan-

tum numbers n(1, 2, 3...), l(s, p, d...), and m, similar to that describing the

atomic electronic configurations. Here only the transitions that conserve n

and l are dipole-allowed, with an oscillator strength proportional to (2l +1).

Figure 2.2 shows a few lowest energy levels obtained using this simplified

model. The model captures the essential facts that the exciton energy in a

QD is quantized, and that the transition band gap of a QD increases when

5The wavefunction of a particle in a periodic potential satisfies the form ψ
n~k

(~r) =

u
n~k

(~r) exp(i~k ·~r) (Bloch’s theorem), where u
n~k

(~r) is the cell periodic function, and n the
energy-band index. ue(h)(~r) is the cell periodic function of the conduction(valence) band

at ~k = 0. Here it is assumed that the cell period function has a weak ~k dependence near
the bottom(top) of the conduction(valence) band.
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Figure 2.2: Transformation from the continuous conduction and valence bands of
the bulk semiconductor to the discrete energy structure in a QD. Using Eqns. 2.5
and 2.6, the band gap of the nanocrystal is related to the band gap of the bulk
semiconductor by ENC

g = Eg + π2
~

2/2mra
2, where mr = (m−1

e +m−1
h )−1.

the radius of the QD gets smaller. However, the model overestimates the

band gap for smaller nanocrystals [30] and is not able to fully explain the

absorption spectra of these dots [51].

There are two major assumptions that go into this model:

1. The wavefunction of the electron(hole) can be expressed as a linear su-

perposition of the conduction(valence)-band Bloch functions [48], and

it satisfies the boundary condition imposed by the infinite potential

well. This results in the electron(hole) wavefunction being finally ex-

pressed as the product of an envelope function fn,l,m(~r), and the cell

periodic function ue(h), which is sometimes called the envelope approx-

imation [52]. This assumption should work when the diameter of the

dot is much larger than the lattice constant of the material.

2. Only the lowest(highest) conduction(valence) band near k = 0 con-

tributes to the lowest(highest) energy levels of the electron(hole) in the

QDs. It is further assumed that these bands are twofold degenerate

(including spin) and isotropic. As it turns out, these assumptions are

not suitable for describing the CdSe crystal. The conduction band of
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Figure 2.3: Simplified illustration of the valence band structure for (i) diamond-
like CdSe and (ii) wurtzite CdSe near k = 0. Details of the structure are explained
in the text.

CdSe arises from the Cd 5S orbitals and is twofold degenerate at k = 0.

The valence band, on the other hand, arises from the Se 4p atomic or-

bitals and has an inherent sixfold degeneracy at k = 0. Due to strong

spin-orbit coupling (∆), this degeneracy is split into a fourfold degener-

ate J = 3/2 band and a twofold degenerate J = 1/2 split-off (so) band

in a diamond-like CdSe, where J denotes the total unit cell angular

momentum. Away from k = 0 the J = 3/2 band splits further into

the Jm = ±3/2 heavy-hole (hh) and Jm = ±1/2 light-hole (lh) bands,

both doubly-degenerate (Fig. 2.3(i)). For a wurtzite CdSe crystal, the

degeneracy of the lh and hh band at k = 0 is further lifted by the crys-

tal field (Fig. 2.3(ii)). Since the spin-orbit splitting (∆ = 0.42 eV) and

the crystal-field splitting (∆cf = 25 meV) are small compared to the

band gap of the CdSe (Eg = 1.84 eV at 10 K), all of the three valence

bands (hh, lh, and so) must be included in the modeling Hamiltonian

in order to explain the absorption spectra of the CdSe dots [44, 49].
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2.2.2 Confinement-induced band-mixing

A more accurate model that describes the absorption spectra of CdSe QDs

has two main improvements over the previous model:

1. The Hamiltonian modeling the electron still takes the same form as

in Eqn. 2.1, but adopts a more realistic spherical finite potential well

[44, 50, 51]. Such an improvement is necessary because the effective

mass of the electron is much smaller than that of the holes. Adopting

an infinite potential well for the electron overestimates the transition

band gap for QDs with smaller diameters [53].

2. The hole is modeled using the ‘spherical’ Luttinger’s Hamiltonian 6

together with an infinite potential well [44, 49]. The wave functions of

the hole is assumed to have the following form:

Ψh =

3/2
∑

µ=−3/2

f3/2,µ(~r)u3/2,µ +

1/2
∑

µ=−1/2

f1/2,µ(~r)u1/2,µ, (2.7)

where u3/2,µ and u1/2,µ are the periodic cell functions of the fourfold

degenerate (hh, lh) and twofold degenerate (so) valence bands, and

f3/2,µ and f1/2,µ are their corresponding envelope functions 7. The hole

states are now characterized by the total angular momentum ~F = ~J+~L,

where ~J is the angular momentum of the periodic cell function, and ~L

is the orbital angular momentum of the hole envelope function.

The band mixing effect leads to a more complex energy structure of the

hole states and a different set of transition selection rules [44] (Fig. 2.4).

The new model is able to explain the absorption spectra of the CdSe QDs

6For bulk diamond-like semiconductor, the 6-fold degenerate valence band is described
by the Luttinger Hamiltonian [54, 55]. This expression, a 6 by 6 matrix, is derived within

the context of degenerate ~k · ~p perturbation theory [56]. The Hamiltonian is commonly
simplified further using the spherical approximation, in which the terms that have strict
cubic symmetry are neglected, saving the term that is spherically symmetric [57, 58].

7As CdSe is wurtzite, use of the Luttinger Hamiltonian for CdSe QDs is an approxi-
mation. It does not include the crystal field splitting that is present in wurtzite CdSe.
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Figure 2.4: Mixing between different valence subbands due to the quantum con-
finement effect leads to more complex energy structure of the hole states compared
to those shown in Fig. 2.2. Arrows indicate dipole-allowed interband transitions.

quantitatively when the electron-hole Coulomb interaction is included as a

first order energy correction [44, 51]. The success of the model, i.e. the

fact that the quantum state of the charges depends strongly on the band

structure of the bulk material, suggests that a nanocrystal inherits much

of its properties from the bulk. Although such a result may not be too

surprising, it can be undesirable if one would like to use such a system for

quantum information processing. This point will become clearer when we

further discuss the properties of these dots.

2.2.3 Emission properties of CdSe QDs

The absorption spectrum and the emission spectrum of a CdSe QD are differ-

ent. The absorption spectrum shows a number of absorption peaks that can

be explained well by the model discussed in Section 2.2.2. The emission spec-

trum, on the other hand, shows none of the absorption features, independent

of the excitation light frequency. It only shows an emission peak red shifted

from the band edge absorption, together with the bulk longitudinal-optical

(LO) phonon replicas of this peak (Fig. 2.5). Such differences are due to the

rapid (< 1 ps) decay of the exciton into the photo-emitting states even at
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Figure 2.5: Simplified illustration of the emission spectrum of a CdSe QD at liquid
He temperatures. The main emission peak is always red shifted from the lowest
energy absorption peak. The highest-energy emission peak is separated from other
lower-energy emission peaks by integer numbers of the bulk LO phonon’s energy
(25.4 meV). The LO replicas of the absorption peaks are not shown for simplicity.

liquid He temperatures [59, 60].

The rapid relaxation of a high energy hole to the 1S3/2 ground state is

facilitated by acoustic phonons. This is possible because of the small en-

ergy separation among the hole levels. On the other hand, the separation of

the lower electron levels are much larger than the energy of the LO phonon,

therefore rapid relaxation of a higher lying electron is unexpected. Efros et

al. [61] proposed that a higher energy electron can jump to the 1S ground

state by transferring its energy to the hole using the Coulomb interaction

between the charges, a process termed electron-hole Auger collision. An-

other relaxation route is through the coupling of an excited electron to the

nanocrystal’s surface states that act as an efficient heat bath. Both explana-

tions were supported by a number of experiments [62, 63, 64].

The origin of the red-shifted emission is more controversial because the

luminescence properties of nanocrystals are highly dependent on the sample

preparation methods. Some nanocrystals can exhibit a very broad (up to

few hundred meV) and strongly red-shifted emission spectrum [65, 66]. The

emission states are generally thought to be related to the surface/interface-
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related states of the nanocrystals [65, 66]. High quality CdSe nanocrys-

tals, on the other hand, emit with high quantum yield (0.1 to 0.9 at 10 K)

near the band edge with a line width of less than a few meV at liquid He

temperatures [30, 67, 68] (Fig. 2.5). The fact that the emission peak is

accompanied by strong LO phonon replicas suggests that radiative relax-

ation is dipole-forbidden. Furthermore, the radiative lifetime of CdSe dots is

strongly temperature dependent, changing from hundreds of nanoseconds to

approximately 1 µs at liquid He temperatures, to 20 ns at room temperature

[69, 70, 71]. The emission properties of the high quality CdSe nanocrystals

can be explained by the dark/bright-exciton model [69, 72], which accounts

for the splitting of the band-edge exciton produced by the combined effect of

the electron-hole exchange interaction and anisotropies associated with the

crystal field and non-spherical shape of the nanocrystals.

In the spherical model (Section 2.2.2), the band edge exciton (1S(e)1S3/2(h))

is 8-fold degenerate. The degeneracy is broken by the electron-hole exchange

interaction. As the exchange interaction is proportional to the overlap be-

tween the electron and hole wave functions, it is greatly enhanced, up to tens

of meV, in QDs compared with bulk materials. In the presence of the strong

exchange interaction, the electron and hole cannot be considered indepen-

dently and are described by the total angular momentum quantum number

N . The 8-fold degenerate band edge exciton is split into a higher energy

3-fold degenerate, optically active, N = 1 bright exciton, and a lower energy

5-fold degenerate, optically passive, N = 2 dark exciton (Fig. 2.6). These

states are further split into five sublevels because of the anisotropy of the

wurtzite lattice and the nonspherical nanocrystal shape (CdSe nanocrystals

are usually slightly prolate [30]), forming two manifolds of upper (U) and

lower (L) substates, which are labeled according the projection of the total

exciton angular momentum N along the unique crystal axis, Nm (Fig. 2.6).

The lowest-energy state is labelled Nm = 2 and is optically passive. It is

separated from the next higher energy bright state (Nm = ±1L) by ∼1 meV

to more than 10 meV, depending on the size of the nanocrystal [69]. The

energy separation, typically referred to as the resonant Stokes shift, can be

measured experimentally [73, 74].
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Figure 2.6: Schematic diagram of splitting of band-edge (1S(e)1S3/2(h)) exci-
ton in CdSe nanocrystals induced by the electron-hole exchange interaction and
anisotropies associated with the crystal field in the hexagonal lattice and nanocrys-
tal shape asymmetry.

The thermal redistribution of excitons between the Nm = 1L (bright) and

Nm = 2 (dark) states is the major factor that leads to the strong dependence

of the recombination dynamics in CdSe dots on sample temperature. At

low temperatures, only the Nm = 2 dark state is populated. Therefore the

recombination is slow and is typically assisted by the LO phonons. As the

temperature increases, the excitons are thermally excited from the dark to

the Nm = 1L bright state, which produces faster recombination. At suffi-

ciently high temperature, the population of the exciton is equally distributed

between the bright and the dark states, resulting in a decay lifetime twice

the bright-exciton lifetime (∼20 ns for CdSe nanocrystals).

To summarize, the rapid relaxation of an exciton to the Nm = 2 ground

state sets an upper limit to the exciton’s coherent time of 1 ps in CdSe

nanocrystals. Such a short coherent time is undesirable if one is to use the

exciton states for the purpose of quantum information processing. In fact,

short coherent times pose a problem common to all solid state quantum sys-

tems even though they might have a different electronic structure from that

of colloidal CdSe nanocrystals. It would be one of the main obstacles to over-

come before such system can be used for quantum information processing.
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2.2.4 Multiple excitons and Auger relaxation

So far, we have discussed the electronic and optical properties of CdSe

nanocrystals under the assumption of a single exciton. This is rather in-

complete because many optical properties of these dots are in fact caused by

the excitation of multiple excitons.

When there is more than one exciton in a CdSe nanocrystal, the decay of

the excitons are dominated by the nonradiative Auger recombination [75, 76].

Auger recombination is a process in which the electron-hole recombination

energy is not emitted as a photon but is instead transfered to a third particle

(an electron or a hole) that is re-excited to a higher-energy state. The Auger

recombination lifetime is shorter than 1 ns in CdSe nanocrystals. It gets

shorter when there are more excitons in the nanocrystals [75]. During the

multi-exciton Auger recombination process, an energy-receiving electron or

hole may be ejected out of the CdSe interior, leaving the QD in an ionized

state. When this happens, the QD gets into the “dark” state and it no

longer fluoresces. This is because subsequent electron-hole pair excitations

of the ionized QD will relax nonradiatively due to efficient three-body Auger

recombination [77]. The QDs only returns to the “bright” state when it is

neutralized again. Therefore, the fluorescence signal of a single CdSe QD

exhibits a blinking effect under light excitation.

2.3 Experiments on bulk colloidal QDs

This section discusses two experiments we performed on bulk colloidal QDs

in solution. One experiment measures the spontaneous decay rates of these

dots. Another measures the emission spectra and absorption cross sections

of these dots.

2.3.1 Spontaneous decay rates of colloidal QDs

Figure 2.7 shows the schematic setup used for measuring the spontaneous

decay rate of colloidal QDs in solution. The main idea of the experiment

is to excite the QDs with a short (femtosecond) pulse, and to observe the
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Figure 2.7: Schematic setup for measuring the spontaneous decay rate of QDs in
water/toluene. AOM: acousto-optic modulator, BBO: Beta Barium Borate crystal
for second harmonic generation.

decay of the QD’s fluorescence intensity after the pulse excitation. We use

a Ti-sapphire laser that generates light pulses with a width of 120 fs and

a center wavelength of 780 nm. Since the original pulse separation (13 ns)

is smaller than the spontaneous decay time of the QDs (> 20 ns), we use

an acousto-optic modulator (AOM) to pick a pulse out of every M pulses

to ensure that the QDs to relax back to their ground states before being

excited again by the consecutive pulse. After passing the AOM, the pulses

are focused into a BBO (Beta Barium Borate) crystal, where part of the

780 nm light is up-converted to 390 nm light 8. This up-conversion process

is necessary because the QDs we used absorb 390 nm but not 780 nm light 9.

The 390 nm light is then separated from the 780 nm light with a prism, and

is focused into a QD solution in a fused-silica cuvette. The fluorescence from

the QDs is detected with a fast Si-photodiode 10, whose signal is recorded by

8Note that the sequence of AOM to BBO (instead of BBO to AOM) gives a better on/off
ratio for the picked pulses due to the nonlinearity of the frequency doubling process.

9CdSe QDs have a band gap larger than 1.73 eV (Appendix A.9).
10Hamamatsu S5973 (cut-off frequency 1 GHz).
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Figure 2.8: Fluorescence intensity of InGaP/ZnS QDs exposed to femtosecond ex-
citation pulses (emission wavelength: 650 nm). The decay curve of the fluorescence
is fitted to A exp(−t/τ) where τ = 73.5 ± 0.3 ns.

Table 2.1: Excitation lifetimes of various colloidal QDs.

QD Type Emission wavelength Solvent Lifetime (ns)
CdSe/ZnS 560 nm toluene 23.1 ± 0.3
CdSe/ZnS 580 nm toluene 23.7 ± 0.2
CdSe/ZnS 615 nm toluene 19 ± 1
InGaP/ZnS 650 nm water 73.5 ± 0.3

an oscilloscope with a 2 GHz bandwidth.

Figure 2.8 shows the fluorescence decay of InGaP/ZnS QDs after pulse

excitations. The excitation lifetime of the QD is obtained from the fit of

the QD fluorescence decay curve to an exponential function with a single

exponent. Table 2.1 shows the excitation lifetimes of various QDs we have

measured.
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2.3.2 Absorption cross sections of CdSe QDs

Figure 2.9 shows typical absorption and emission spectra of CdSe/ZnS QDs

in toluene at room temperature. The absorption spectrum (more precisely,

absorptivity A = log(1/T )) is measured with a PerkinElmer spectrophotome-

ter. The transmission T is related to the absorption cross section σ of a single

QD by the Beer-Lambert law:

T = e−σlN , (2.8)

where N is the number density of the QDs in the solution, and l the thickness

of the sample. Therefore, we can convert the absorptivity into the absorption

cross section of a QD, using the QD concentrations given by the manufac-

turer. The absorption cross sections so obtained are consistent with the

estimations based on our observations on single QDs (Section 2.4.4). On the

other hand, the emission spectrum of the QDs is measured using a home-built

spectrometer. The QDs in toluene/water are excited by 405 nm radiation

from a diode laser during the measurement.

Both the absorption and emission spectra in Fig. 2.9 are greatly broad-

ened by the size inhomogeneity of the QDs, and by acoustic and LO phonons 11.

The absorption spectrum reveals a band edge absorption (1S(e) − 1S3/2(h)

transition) at 586 nm, and a few other lowest energy transitions. However,

the origin of the background continuum in the absorption spectrum cannot be

explained by the simple exciton in a box model (Section 2.2.2). Leatherdale

et al. demonstrated that the absorption continuum may instead be modeled

using off-resonant light scattering by small particles [78, 79]. The absorption

cross section of a CdSe QD, dominated by the small-particle scattering cross

section, is on the order of the physical cross section of the nanocrystals. For

example, at the excitation wavelength of 405 nm, the absorption cross sec-

tions of single CdSe QDs are less than 1 nm2 for various QD sizes. This value

is about a million times smaller than σmax = 3λ2/2π, the resonant scattering

cross section of a two-level system exposed to a plane wave.

11The LO phonons have a single phonon energy of 25.4 meV (6.13 THz)
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Figure 2.9: Absorption and emission spectra of CdSe/ZnS QDs in toluene (QDs’
emission wavelength: 605 nm). The fluorescence spectrum shows a single strong
emission peak, and a broad but weak emission tail at longer wavelengths. The
broad emission tail could be due to surface state-related recombination [65, 66].

At liquid He temperatures, the absorption cross section of a colloidal

CdSe QD is expected to be much higher. However, it would still be a few

orders of magnitude smaller than σmax due to the spectral diffusion of the

QDs. Empedocles and Bawendi [67, 68] observed that the emission spectrum

of a single CdSe QD diffuses spontaneously over a few meVs (∼1 THz) within

a time scale of seconds to minutes. Such an effect could be caused by the

Stark shift resulting from the variation of local electric fields, possibly due to

QD photoionization and trapping of charges in the surrounding matrix [67,

80]. The variation of local electric fields is expected to affect the absorption

spectrum in the same manner as it does to the emission spectrum. One

would thus expect the absorption spectral width of a single colloidal QD

to be broadened by approximately 1 THz, resulting in a greatly reduced

absorption cross section even at liquid He temperatures.
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2.4 Experiments on single colloidal QDs

2.4.1 Confocal microscope setup

We set up a confocal microscope to observe individual QDs. The main part

of the setup consists of a Nikon Plan Fluorite microscope objective (MO)

of 0.9 NA (Fig. 2.10(i)). The MO focuses a 405 nm light beam, that is

delivered through a single mode fiber from a laser diode, onto single QDs.

Red-shifted fluorescence from the dot is collected by the same MO. It passes

through a longpass filter used to remove the 405 nm excitation light reflected

by the MO, and is coupled into a single mode fiber. Either a Si-avalanche

photodiode D1 or a Hanbury-Brown-Twiss setup (Fig. 2.10(ii)) is connected

to the output end of the single mode fiber. The Hanbury-Brown-Twiss setup

is used for measuring the second order correlation function g(2)(τ) of the QD

fluorescence. A 5 nm bandpass filter centered at the QD emission wavelength

is placed between the two Si-avalanche photodiode detectors, D2 and D3, to

prevent optical cross-talk between the two detectors 12.

The nanocrystals under study are embedded in a transparent polymer

sandwiched between a fused silica cover slip and a glass slide. The sample

is placed on a 3D-nanopositioning unit 13 that has nanometer resolution and

a translational range of 80 µm in three orthogonal directions. The nanopo-

sitioning unit is itself mounted to a 3D-mechanical translational stage to

facilitate larger sample movement.

The setup has an estimated fluorescence detection efficiency of 2.6% if the

output of the fluorescence collection fiber is directly connected to a Si-APD.

The detection efficiency is obtained by considering the collection efficiency

of the MO (≃ 10%), reflection losses due to optical elements (15%), coupling

efficiency into the single mode fiber (76%), and the quantum efficiency of the

Si-avalanche photodiode (≃ 40%). If the output of the fluorescence collection

12An avalanche photodiode used for single photon detection in Geiger mode emits a
non-negligible amount of light [81]. The emitted light can be detected by another detector
in the Hanbury-Brown-Twiss setup, resulting in artefacts in the measured g(2)(τ) function.

13Tritor 103 CAP, Piezosystem Jena GmbH.
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Figure 2.10: (i) The confocal-microscope setup for observing single colloidal

quantum dots. (ii) A Hanbury-Brown-Twiss setup for measuring the g(2) function
of the fluorescence from the quantum dots. BS: 50/50 beam splitter, D1, D2, D3:
Si-avalanche photodiodes.

fiber is connected to the Hanbury-Brown-Twiss setup (Fig. 2.10(ii)), the

fluorescence detection efficiency is about 0.8% per detector.

Alignment of the confocal microscope

The two single mode fibers used in the confocal microscope function as spa-

tial mode selectors. They reduce the targeted excitation and fluorescence

collection volumes, thus leading to high spatial resolution of the setup. Since

the polymer in the sample fluoresces under UV excitation light, using single

mode fibers also reduces the background noise contribution to the fluores-

cence detection. However, the small focal volumes of the excitation and

the fluorescence target modes also make overlapping the focal volumes more

challenging.
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To align the confocal microscope, 590 nm light 14 is sent into the confocal

setup through the fluorescence collection fiber to model the propagation of

the fluorescence beam. This beam is collimated and has a Gaussian waist of

≃ 2 mm before entering the MO (slightly overfilling the aperture of the MO).

The excitation light is collimated with a smaller Gaussian waist of 1.4 mm

to avoid scattering by the MO. The excitation beam joins the fluorescence

beam at the dichroic mirror. The two beams are then made coaxial within

0.2 mm over a distance of 4 meters before the MO is installed. With such

pre-alignment, the two foci after the MO should overlap within 0.2 µm 15

in the direction transverse to the propagation axis. In the longitudinal di-

rection, however, the two foci could be separated up to 15 µm because the

chromatic abberation of the MO 16. The fluorescence beam is then removed

and a Si-avalanche photodiode is connected to the fluorescence collection

fiber instead. Ideally, at this stage, one can effectively overlap two foci trans-

versely and longitudinally by maximizing the detected fluorescence from a

single stable light emitter. Unfortunately, CdSe QDs do not fluoresces sta-

blely (Section 2.4.5), and thus cannot be used for such alignment. One stable

point-like emitter is the nitrogen-vacancy (NV) centers in diamonds. How-

ever, as the emission wavelength of diamond-NV centers is different from

that of the CdSe QDs, using diamond-NV centers for overlapping the foci is

not ideal due to chromatic abberation of the MO.

To overcome this problem, we cut a circular 100 nm-diameter through

hole using ion beam milling in a 1 µm thick gold film coated on a fused

silica cover slip. We then illuminated the hole with 405 nm and 590 nm

light to mimic a point source (Fig. 2.11(left)). Here, both the excitation and

fluorescence-path-simulating light sources connected to the single mode fibers

14The wavelengths of the CdSe QD’s fluorescence range from 500 to 620 nm, depending
on the dot’s diameter. Depending on the QD under studies, 632 nm light may also be
used to model the propagation of the fluorescence.

15Nikon adopts a tube-lens focal length of 200 mm. A magnification of 100× thus
translates into an effective MO focal length of 2 mm. The transverse overlap of the foci is
estimated to be ∆ = 2 × 0.2 mm

4 m × 2 mm = 0.2 µm.
16The foci separation of 15 µm in the longitudinal direction is observed by using the

100 nm-hole alignment method that would be mentioned shortly.
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Figure 2.11: (Left) Schematic setup during alignment of the confocal microscope.
D1 and D4 are two Si-avalanche photodiode. The 590 nm and 405 nm light are
incident upon the gold film from below. (Right) Photocounts of detector D1 when
rastering the nano-positioning unit in the XY plane.

are replaced by two single photon detectors (Fig. 2.11(left)). To overlap the

excitation and ‘fluorescence’ foci, we first illuminate the hole with 590 nm

light and find the position of the ‘fluorescence’ focus by rastering the nano-

positioning unit. When the position of the hole (point-source) coincides with

the ‘fluorescence’ focus, the photocount rate of detector D1 is at its maximum

(Fig. 2.11(right)). We then illuminate the hole with 405 nm light. This time,

the hole is fixed at the position of the ‘fluorescence’ focus, and the optical

elements in the excitation arm is adjusted such that the photocount rate at

detector D4 is optimized. With such an alignment scheme, we can overlap

the excitation and fluorescence foci to less than 30 nm uncertainties in the

transverse direction, and 0.4 µm in the longitudinal direction.

2.4.2 Sample preparation

In order to observe individual QDs, we sparsely embed the QDs into a trans-

parent matrix that is sandwiched between a 110 µm thick fused silica cover
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slip and a normal glass slide 17. The cover slips and glass slides are first

washed with methanol, and then rinsed with plenty of distilled water. After

that, they are baked at 150 ◦C in a glove box filled with pure nitrogen for

about an hour to remove water molecules and other chemical species ab-

sorbed on the glass surface 18. We then prepare a CdSe or CdTe QD-toluene

solution with a concentration of ≃ 10−2 nmol/ml. This solution is further di-

luted a hundred times using a toluene solution containing 3% (by weight) of

poly(methyl methacrylate) (PMMA) or polystyrene (PS). The QD-polymer-

toluene solution is finally spin-coated on the glass slide and sealed with the

cover slip, forming a polymer layer of about 10 µm thick.

For water-soluble glutathione-capped CdTe QDs that do not dissolve in

toluene, we dilute the QDs in a SiO2 ·NaOH water solution (liquid glass) 19

before spin-coating. The fluorescence behaviours of the colloidal QDs, be

it CdSe, CdTe, or InGaP embedded in the PMMA, PS or the liquid glass,

do not differ significantly. Therefore, we only report our observations of

CdSe/ZnS QDs embedded in the PMMA matrix in the following sections.

2.4.3 Observing single quantum dot

Figure 2.12 shows the photocounts of detector D1 (Fig. 2.10(i)) in a XY scan

of a CdSe/ZnS-PMMA sample 20. The figure clearly reveals the blinking

behaviour of the fluorescence from a single QD. The dark stripe at the center

of the ‘dot’ occurs because the QD goes into the dark state temporarily. Note

that a QD has a size of 1–2 nm, the bright dot with a FWHM of ≃ 400 nm

in the XY scan represents the resolution of the confocal setup. Occasionally,

a number of QDs may cluster within the resolution limit and appear as a

single dot. However, since it is unlikely that all the QDs fall into the dark

17Fused silica cover slips are used because normal glass cover slips fluoresce under UV
light. As the matrix is thicker than 10 µm, fluorescence from the glass slide is not collected
by the MO.

18With baked cover slips and glass slides, we observed longer active times of the QDs
before they are bleached by excitation light.

19The liquid glass forms a transparent matrix after water in the solution evaporates.
20The XY plane is perpendicular to the lens axis (Fig. 2.11(left)).
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Figure 2.12: A XY scan showing a single CdSe/ZnS quantum dot embedded in
a PMMA thin film. The dark stripe at the center of the bright dot is due to the
QD falling into the dark state.

state simultaneously, the observation of a completely dark stripe during the

XY scan is a convenient criterion for picking out real single QDs.

2.4.4 Estimation of absorption cross section by observ-

ing a single QD

Figure 2.13 is another XY scan showing two single QDs. The power of the

405 nm excitation light is about 1 µW before entering the MO. This power

corresponds to a photon flux of ≃ 2×1012 photons per second. However, the

largest photocount rate in this scan is about 2500 s−1 (Dot A). This number

corresponds to a fluorescence rate of only ≃ 1× 105 s−1 if we assume a fluo-

rescence detection efficiency of 2.6% (Section 2.4.1). Such a large ratio of the

excitation to fluorescence photon numbers is caused by the small absorption

cross section of the dots at room temperature.

To estimate the absorption cross section σ of a single QD, we note that
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Figure 2.13: A XY scan showing two single CdSe/ZnS QDs embedded in a PMMA
thin film.
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Figure 2.14: The ‘cross-sectional view’ of Fig. 2.13. The solid line is fitted using

two Gaussian functions, h exp
[

−2(x−x0)2

w2

]

. Peak A has a width w of 0.50µm.

Peak B has a lower fluorescence counts and a larger width w of 0.60µm, because
QD B is 2 to 3µm off the focal plane.
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the detected fluorescence photocount rate Rd is given by

Rd = Ieσηqηd/~ω, (2.9)

where Ie is the intensity of excitation light at the focus, ηq the quantum yield

of the QD, ηd the fluorescence detection efficiency, and ~ω the single photon

energy at the excitation wavelength.

The excitation field intensity at the focus can be estimated using the in-

tensity distribution at the focal plane. Figure 2.14 shows the ‘cross-sectional

view’ of Fig. 2.13. Fitting the spatial distribution of the photocounts with

a Gaussian function gives a waist of w = 0.5 µm for dot A that lies in the

focal plane. Note however that the so obtained waist is not identical to the

focal waist of the excitation beam. For a confocal microscope, the spatial

profile of the photocounts in a XY scan is determined by both the spatial

distributions of the excitation and fluorescence collection efficiencies. More

explicitly, if we assume the intensity distributions of the 405 nm excitation

light and the 590 nm fluorescence-simulating light are Gaussian in the focal

plane, then the normalized spatial distribution of the observed fluorescence

is given by 21

Ψ(ρ) = exp(−2ρ2

w2
e

) exp(−2ρ2

w2
f

), (2.10)

where ρ is the distance from the center of the dot in the focal plane, we and

wf are the focal waists of the excitation and ‘fluorescence’ light respectively.

As a result, if we assume that we ≃ wf for simplicity, the focal waist of the

excitation beam is given by
√

2 × 0.5 µm = 0.7 µm. This leads to a focal

excitation intensity of Ie ≃ 2×1 µW
π(0.7 µm)2

= 1.3 × 106 W/m2.

By substituting Rd ≃ 2500 s−1, ηq ≃ 0.5 22, ηd ≃ 2.6% and Ie into

Eqn. 2.9, we estimate the absorption cross section of a single CdSe QD to be

0.1 nm2. This value is in good agreement with the absorption cross section

measured in the bulk experiment (Section 2.3.2). We emphasize that the

21Here, we implicitly assume that the confocal microscope is well aligned, such that the
excitation beam and the fluorescence collection beam coincides.

22The quantum yield of the CdSe QDs is above 0.5 according to the supplier. This value
is also supported by other reports [31, 32, 35, 36, 37].
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Figure 2.15: (a) Typical fluorescence observed from a single CdSe/ZnS QD. The
QD is irreversibly photobleached after one hour. (b) A zoom-in of (a) showing
the QD going into the dark state intermittently. The dot also goes into a fluo-
rescence quenching state very briefly when it is ‘bright’, resulting in non-uniform
photocounts which are integrated over 100 ms in this case.

QD is not saturated by the excitation light in this experiment, thus the

small absorption cross section is not due to over-saturation. Instead, it is

due to the broadening of the transition lines by the phonons.

2.4.5 Fluorescence from a single QD

Figure 2.15 shows typical photocounts of detector D1 (Fig. 2.10(i)) when

the focus of the confocal microscope is fixed on a single QD. Under light

excitation, the fluorescence of a QD exhibits an on/off behaviour when it

transits between the bright and dark states (Fig. 2.15(b)). The transitions

are believed to be related to the random ionization and neutralization of

the QD (Section 2.2.4). Overall, the fluorescence intensity of single QDs

decreases over time. All QDs are photobleached irreversibly after a number

of seconds to at most a few hours. We have spent a considerable amount of

effort in trying to extend the active times of the QDs. However, as the active
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times of different QDs within the same sample can vary significantly (from

seconds to hours), it is difficult to clearly identify the effects of different

sample preparation techniques. Nevertheless, we observed that removing

oxygen and water contaminations in the sample increases the active time of

the QDs in general.

2.4.6 The g(2)(τ) function

To show conclusively that we are observing single QDs, we measure the

second order correlation function g(2)(τ) of a QD’s fluorescence using the

Hanbury-Brown-Twiss setup shown in Fig. 2.10(ii) (see Section 4.3 for defi-

nition of g(2)(τ)). Figure 2.16 shows the g(2)(τ) obtained from the fluorescence

of a CdSe/ZnS QD in PMMA. The signal-to-noise ratio in this figure is poor

because the QD was photobleached after 50 minutes. Nevertheless, the dip

to zero at delay τ = 0 is a signature of fluorescence from a single quantum

system. In the case of a single 87Rb atom (Section 4.3), emission of a photon

signifies that the atom is in its ground state and cannot immediately emit

a consecutive photon, therefore resulting in an anti-bunching behaviour in

the fluorescence. The fluorescence of a CdSe nanocrystal, on the other hand,

shows anti-bunching behaviour for a slightly different reason. The main dif-

ference is that there is only one outer electron in a Rb atom, whereas there

can be multiple excitons in a single CdSe nanocrystal. Therefore, emission of

a photon from a CdSe nanocrystal does not guarantee that the nanocrystal is

in its ground state (zero exciton). The observation of a strong anti-bunching

effect in CdSe QDs is assisted by the fact that the dots do not fluoresce when

there is more than one exciton in the QDs. That is, multi-exciton relaxation

is always carried out by the much more efficient Auger recombination pro-

cess (Section 2.2.4). This effect suppresses the contribution of multi-photon

emission [82].

Another feature of the g(2)(τ) of fluorescence from a single CdSe QD is the

lack of Rabi oscillations [82] as compared to that of an atom (Fig. 4.5). This

feature is to be expected because of the short (< 1 ps) intraband relaxation

time of the electron and hole in the nanocrystal that destroys the coherence
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Figure 2.16: Normalized histogram of the time delays τ between photodetection
events at detectors D2 and D3, obtained from the fluorescence of a single CdSe/ZnS
QD (not corrected for background counts). The smooth black line is a fit to the
data points using g(2)(τ) = 1 − exp(−|τ |/τ0) with τ0 = 10.0 ± 1.2 ns.

necessary to observe the Rabi oscillations.

2.5 Conclusion

In this chapter, we reviewed the properties of colloidal QDs (CdSe/ZnS,

CdTe/ZnS) and documented our attempt to characterize these dots for the

purpose of quantum information processing. The main electronic properties

of these dots can be described by modeling the excited electron and hole as

particles in a spherical box using the effective mass approximation. To fully

explain the low temperature absorption and emission spectra of these dots,

one must take into account (i) quantum-confinement induced band mixing of

the bulk CdSe valence bands, (ii) exchange interaction between the electron

and hole, and (iii) anisotropy of the nanocrystal due to the hexagonal crystal

field and prolated shape of the nanocrystal.

The excitons in the colloidal QDs have a coherent time of less than 1 ps.
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This phenomenon is due to the rapid intraband relaxation assisted by the

acoustic phonons and the closely-spaced energy levels of the hole. At room

temperature, the transition linewidths of these QDs are greatly broadened

by the acoustic and LO phonons. We consistently found that the absorption

cross section of a CdSe/ZnS QD to be on the order of 0.1 nm2. This value is a

million times smaller than that of a dipole-allowed non-broadened transition.

Even at liquid He temperatures, the absorption cross section of these dots is

expected to be a few orders of magnitude smaller than the maximum allowed

due to random spectral diffusion of a few meV (1 THz) wide.

In order to observe single QDs individually, we set up a confocal micro-

scope, and prepared samples where colloidal QDs (CdSe/ZnS, CdTe/ZnS, In-

GaP/ZnS) were sparsely embedded in transparent matrices such as PMMA,

PS, and liquid glass. Like other quantum systems, colloidal QDs can be used

to generate single photons. However, these dots fall into the dark state inter-

mittently when ionized and thus its fluorescence intensity is not stable. The

biggest problem with colloidal QDs is that they are chemically unstable un-

der optical excitation. They become irreversibly bleached after an excitation

period ranging from a few seconds to a few hours.

In short, we conclude that the short coherent time and low absorption

cross section of the colloidal QDs render them a very difficult candidate

for storage of quantum information. Until the photobleaching problem is

overcome, using these QDs for quantum information processing remains un-

tenable.

Due to the aforementioned problems of colloidal QDs, we switched our

focus to a ‘cleaner’ system – a single atom. We again tried to quantify the in-

teraction strength between light and a single atom in free space. Our results,

which include an experiment (Chapter 4) and a theoretical study (Chap-

ter 3), show conclusively that efficient atom-light interaction is achievable by

focusing light onto an atom without a cavity.
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Chapter 3

Interaction of focused light

with a two-level system

Atom-light interaction at the single quanta level plays an important role in

many quantum communication and computation protocols [2]. While sponta-

neous emission allows a simple transfer of atomic states into ‘flying’ qubits,

strong interaction of light with an atom is needed to transfer a photonic

qubit into internal atomic degrees of freedom (stationary qubit). This pro-

cess is essential to implement quantum light-matter interfaces [18, 19, 83],

unless post-selection techniques are used [84]. A useful measure of interaction

strength for a variety of physical configurations is the excitation probability

of an atom by a single photon, independent of any particular scheme of in-

formation transfer from a photon to an atom.

The common approach to achieve this strong interaction is to use a high

finesse cavity around the atom, in which the electrical field strength of a

single photon is enhanced by multiple reflections between two highly reflective

mirrors, resulting in a high probability of absorption [22, 23, 24, 25].

Another approach is to increase the excitation probability of an atom due

to a single photon simply by focusing the light field of a single photon down

to a diffraction limited area, motivated by the fact that the absorption cross

section of an atom is on the order of the square of the optical wavelength.

Recent theoretical research in this direction predicts that the absorption



probability may reach the maximal value of 100% [85]. There, the authors

suggested placing an atom at the focus of a large 1 parabolic mirror, and

focusing a ‘radially’ polarized light beam onto the atom [85]. However, such

a coupling scheme is challenging to realize experimentally. A simpler scheme

would be to use a lens to tightly focus light to the position of the atom.

Such a system has been theoretically investigated by van Enk and Kimble

[1] and they concluded that one can expect only low absorption (scattering)

probability for lenses with realistic focal lengths. However, our recent exper-

imental results [27] showed that the predictions given in their work greatly

underestimate the scattering probability of a tightly focused coherent light

beam by a single atom. In this chapter, we extend the model used in [1] so

that it is applicable to the strong focusing regime. We find that, by dropping

two of their approximations, the interaction of a coherent light field with

a single atom can be very strong even for realistic lenses. By presenting

this theoretical extension before the experiment, we hope not only to clarify

the key parameters in optimizing the interaction strength between strongly

focused light and an atom, but also to highlight the properties of strongly

focused fields used in our experiment. This should provide the readers with

greater clarity and insights when we discuss our experimental setup, its lim-

itations, and our experimental results in Chapter 4. The main results of this

theoretical work are published in [26].

3.1 Interaction strength

A good measure of interaction strength between an atom and light in terms

of quantum information transfer is the excitation probability of an atom by

a single photon. Single photons can be readily generated from spontaneous

emission of single quantum systems like atoms [86], molecules [82, 87], quan-

tum dots [88, 89], color centers [90], etc. They can also be created from single

quantum systems with the assistance of cavity [91, 92, 93]. In our experi-

ment, however, we do not create single photon wave packets and use these

1Such parabolic mirror should ideally extend to infinity so as to create a focusing field
covering a full solid angle 4π.
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packets to excite an atom. For simplicity, we use a weak narrow bandwidth

radiation to excite a single atom.

When a single atom isolated in free space is exposed to weak monochro-

matic radiation (probe), it releases the ‘absorbed’ energy by emitting radia-

tion that is phase-coherent with the incident radiation (coherent scattering)

[94, 95]. An excited semiconductor nanocrystal embedded in a transparent

matrix, on the other hand, can emit radiation with a lower frequency (in-

coherent scattering) and create phonons carrying the remaining energy into

the surrounding matrix (heat absorption). Studying the interaction strength

between radiation and the quantum system in the latter case is more com-

plicated. Here, we consider the previous scenario only. In this case, the

interaction strength between the light beam and a single atom (excitation

probability) is equivalent to the scattered probability, which is defined as

the ratio of the scattered light power Psc to the total incident power Pin.

However, it is experimentally challenging, if not impossible, to measure Psc

directly since the detection area must cover the whole solid angle, including

that subtended by the probe beam. Thus, a common method for quantify-

ing the scattered power is to infer it from a transmission measurement. For

the system under investigation, a simple transmission setup is illustrated in

Fig. 3.1. There, a second lens collects all the excitation power if no atom is

present at the focus. The measured transmission is defined as the ratio of

the outgoing power Pout to the incident power Pin

T ≡ Pout

Pin
=

Pin − Psc + αPsc

Pin
, (3.1)

where α represents the fraction of scattered light collected by the transmission

power detector. It can be estimated from the overlap of the emission profile of

the scattered light and the detection target mode. The scattering probability

is related to the measured transmission by

psc ≡
Psc

Pin
=

ǫ

1 − α
, (3.2)

where ǫ = 1 − T is the extinction of the probe beam. The scattering prob-
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Figure 3.1: A transmission measurement setup with an atom at the focus of a
lens. The transmitted power consists of light that is not scattered by the atom,
and part of the scattered light.

ability is always larger than the measured extinction and becomes almost

equal only for small α. Note that although Eqn. 3.2 is obtained by simple

consideration of optical power, it is fully consistent with a more complete

model that takes into account the interference between the scattered field

and the probe field [26].

3.2 Interaction of a focused radiation with a

two-level system

In this section we consider a scenerio where a circularly polarized Gaussian

beam is focused by an ideal lens onto a two-level atom located at the focus

of the lens. Our purpose is to derive an expression for the scattering proba-

bility assuming weak on-resonant excitation. The reasons why we consider a

circularly polarized Gaussian beam are:

1. We use circularly polarized light to optically pump a 87Rb atom into a

two-level cycling transition in our experiment (Chapter 4);

2. In the original proposal for a quantum network [18] and in most exper-

iments (including our experiment in Chapter 4), information carrying
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photons are transported using a single mode fiber. As the output field

from a single mode fiber has a Gaussian spatial mode, considering a

Gaussian beam is thus useful.

There are different approaches to obtain the scattering probability. To give

a more complete picture, we will discuss three approaches and point out

their possible limitations. The first approach considers absorption as the

reverse process of spontaneous emission to obtain the scattering (absorption)

probability. The second approach compares the scattering cross section of the

atom and the ‘size’ of the focused beam to obtain the scattering probability.

The third approach requires knowledge of the field at the focus, and uses

semi-classical approximation to obtain the scattering probability. We adopt

the third approach.

3.2.1 Reverse process of spontaneous emission

In free space, the spontaneous emission of a single photon is characterized by

an exponential decay of the upper state population of the emitter [96], which

is due to the interaction of the emitter with an infinite number of vacuum field

modes. As these modes can be considered as a heat bath [97], the process

of spontaneous emission in free space is often regarded as an irreversible

process. However, Sondermann et. al [85] argued that this irreversibility is

to be understood in a thermodynamical sense, but not as a violation of time

reversal symmetry. They argued that the reversibility of the spontaneous

emission process can be inferred from the fact the Schrödinger equation is

invariant under time reversal for a closed system with a Hamiltonian without

any explicit time dependence. The implication of such a conclusion is that:

if one is able to artificially create the time reversed version of the dipole

wave that is emitted by an atom, one would find that this wave would be

absorbed by the atom with a probability of one. To be more explicit, one

needs to create a wave (a single photon), moving towards the atom, whose

spatial and temporal profiles match the respective atomic dipole emission

[98]. To calculate the absorption probability, one typically evaluates the

overlap between the incoming field and that of the dipole emission. Although
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the above picture is intuitively simple, it cannot be easily applied to our

system to quantify the scattering probability. This is because our setup uses

monochromatic light instead of single photon pulses to excite the atom.

3.2.2 Scattering cross section

Another common approach to estimate the scattering probability is by com-

paring the ‘cross sectional area’ of the focused field to σmax – the scattering

cross section of a two-level system exposed to a weak resonant monochro-

matic plane wave, given by [95, 99, 100] (Appendix A.1)

σmax = 3λ2/2π. (3.3)

For an optical wavelength of say 780 nm, this scattering cross-section is

approximately 0.3 µm2, even though the diameter of an atom is only a few

angstroms. If σmax is interpreted as the cross-section of a classical object

such that all of the light that falls onto this object is scattered, one could

estimate the scattering probability psc by

psc =
σmax

A
, (3.4)

where A is the area of the beam. In particular, as the diffraction limited focal

spot area of a radiation with wavelength λ is on the order of ∼ λ2, Eqn. 3.4

points to the possibility of achieving substantial scattering by focusing light

onto a two-level system. Nevertheless, it should be emphasized that Eqn. 3.4

does not reflect the actual scattering probability. In fact, an atom interacts

only with the field within the size of the atom. It is the polarization and

the amplitude of the field within the size of the atom that determines the

power of the field scattered by the atom. In the case of strong focusing, the

polarization and intensity of the focused field can vary appreciably within

a distance smaller than a wavelength (Section 3.3.4). Over-focusing a field

pushes some field energy to side-lobes near the focus, and thus decreases

the field strength at the focus (Section 3.3.4). As a result, a beam with a

smaller focal area A does not necessarily create a field that interacts more
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strongly with an atom. Furthermore, as the definition of the focal area A is

quite arbitrary, Eqn. 3.4 is therefore not accurate in predicting the scattering

probability of a focused light field by a single atom.

3.2.3 Scattering probability from first principles

In order to predict the scattering probability of a light beam by an atom

accurately, it is necessary to know the properties of the field at the location of

the atom. Consider again the setup shown in Fig. 3.1 where a monochromatic

Gaussian beam is focused by a lens onto a two-level atom. We assume that

the incident light is circularly polarized and the waist of the Gaussian beam

coincides with the focusing lens. The electric field strength before the lens is

given by

~E(t) =
EL√

2
[cos(ωt)x̂ + sin(ωt)ŷ] e−ρ2/w2

L, (3.5)

where ρ is the radial distance from the lens axis, wL the waist of the beam,

x̂, ŷ are the unit vectors in X and Y directions respectively, and EL is the

field amplitude. The power carried by the incident beam is given by

Pin =
1

4
ǫ0πcE2

Lw2
L, (3.6)

where ǫ0 is electric permittivity in vacuum. Due to the symmetry of the

system, the field on the lens axis is always circularly polarized. So for an

atom that is stationary on the z-axis at the focus of the lens, the electric field

can be written as

~E(t) =
EA√

2
[cos(ωt)x̂ + sin(ωt)ŷ] , (3.7)

where EA denotes the amplitude of the field at the focus. A two-level system

exposed to such a classical field is a well studied system [95, 99, 100]. Ne-

glecting spontaneous decay of the excited state, a two-level system exposed

to a resonant classical field undergoes Rabi oscillation in which the state of

the atom oscillates between the ground state and the excited state with a

Rabi frequency Ω (Appendix A.1). With spontaneous emission, the popula-
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tion of the excited state ρ22 (the probability that the atom is in the excited

state) reaches a dynamic equilibrium. The average power scattered by the

two-level system can be shown to be

Psc = ρ22Γ~ω, (3.8)

where Γ is the spontaneous decay rate of the two-level system. To maxi-

mize the scattering probability, one needs to optimize ρ22 for a fixed incident

power. This is achieved only when the intensity of the external field is weak

(Ω ≪ Γ) and the field resonates with the two-level system. Under these

conditions, the power scattered by a two-level atom is given by (see Ap-

pendix A.1)

Psc =
3ǫ0cλ

2E2
A

4π
, (3.9)

leading to a scattering probability of

psc =
Psc

Pin
=

3λ2

π2w2
L

(

EA

EL

)2

. (3.10)

Eqn. 3.10 is exact under the conditions of weak and on-resonant excitation.

The remaining task now is to obtain the ratio, (EA/EL)2. For a weakly

focused field where the paraxial approximation holds one finds that

(EA/EL)2 = (wL/wf)
2, (3.11)

where wf is the Gaussian beam waist at the focus. This leads to the following

expression for the scattering probability:

psc =
3λ2

π2w2
f

=
2σmax

πw2
f

. (3.12)

Comparing Eqn. 3.4 and Eqn. 3.12, we see that Eqn. 3.4 gives the correct

scattering probability when we define the ‘area’ of the Gaussian focal spot A

as πw2
f/2. However, for strongly focused light, the paraxial approximation

breaks down, and we require other methods to find (EA/EL)2.
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3.3 Calculation of field after an ideal lens

In the last section, we found that the scattering probability of a light beam

by an atom is proportional to (EA/EL)2 (Eqn. 3.10). This means that, to

achieve optimal scattering probability, one would need to maximize EA for

a given EL by tightly focusing the incident field. As there is no analytical

expression for a tightly focused field, the scattering probability can only be

calculated numerically. Given the properties of the incident field and the

lens, the field at the focus can be fully determined by Maxwell equations.

In principle, we can compute the field at the focus, and thus the scattering

probability for any lens. However, our purpose here is not to design a perfect

lens that creates the tightest focus. Instead, we start by considering an ideal

lens and assuming a focusing field after the lens. We then propagate the

focusing field to the location of the atom and compute the properties of the

field around the focus exactly.

Our approach follows closely a paper by S. J. van Enk and H. J. Kimble

[1]. The main idea of their method is to expand the outgoing field after a lens

in a complete set of modes that satisfies the source-free Maxwell equations.

In principle, one can choose any complete set of modes as the basis for

the expansion, such as multipole waves [101, 102], plane waves, etc. Van

Enk and Kimble adopted a set of modes that takes on a simple form in

cylindrical coordinates, making use of the symmetry of the system. Once the

contribution of each mode is known, the properties of the field at any location

after the lens can be determined with certainty and the scattering probability

can be obtained. Here, we extend their model to the strong focusing regime.

The extension is done by modeling the lens action such that the focusing

field has a spherical wave front after the lens and is compatible with Maxwell

equations.

3.3.1 Cylindrical symmetry modes

We briefly outline the main properties of the cylindrical modes, directly fol-

lowing [1]. The complete orthogonal set of modes ~Fν is defined such that an

electric field that satisfies the source-free Maxwell equations can be expanded
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in these modes as

~E(t) = 2ℜ
[

∑

ν

aν
~Fνe

iωt

]

, (3.13)

where the summation over ν is a short-hand notation for

∑

ν

≡
∫

dk

∫

dkz

∑

s

∑

m

, (3.14)

and aν are arbitrary complex amplitudes. The modes are characterized by

four indices ν ≡ (k, kz, m, s), where k = 2π
λ

is the wave vector modulus,

kz = ~k · ẑ the wave vector component in z-direction, m an integer-valued

angular momentum index, and s = ±1 the helicity.

Since the electrical field has to satisfy Maxwell equations, the mode func-

tion should be transverse, i.e., ∇ · ~Fν = 0. The dimensionless mode functions
~Fν in cylindrical coordinates (ρ, z, φ) are defined in [103] as

~Fν(ρ, z, φ) =
1

4π

sk − kz

k
G(k, kz, m + 1)ǫ̂− +

1

4π

sk + kz

k

×G(k, kz, m − 1)ǫ̂+ − i

√
2

4π

kt

k
G(k, kz, m)ẑ, (3.15)

where kt =
√

k2 − k2
z is the transverse part of the wave vector, ǫ̂± = (x̂ ± i ŷ) /

√
2

are the two circular polarization vectors, and

G(k, kz, m) = Jm(ktρ) exp(ikzz) exp(imφ), (3.16)

with Jm the mth order Bessel function. The mode functions satisfy the

orthogonality relations

∫

dV ~F ∗
ν (~r) · ~Fν′(~r) = δ(k − k′)δ(kz − k′

z)δmm′δss′/k, (3.17)

where the integration extends over all space.

As we are interested in a monochromatic beam with a fixed value of

k = 2π/λ propagating in the positive z direction (kz > 0), the set of mode

indices is reduced to µ ≡ (kt, m, s) where, for convenience, kt is taken as a
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mode index instead of kz. Now, we introduce the notation

∑

µ

≡
∫

dkt

∑

s

∑

m

(3.18)

for a complete summation over all possible modes. For a fixed k the modes
~Fµ are orthogonal in planes perpendicular to the z axis:

∫

dS ~F ∗
µ(~r) · ~Fµ′(~r) = δ(kt − k′

t)δmm′δss′/(2πkt) , (3.19)

where dS is a surface element on such a plane.

3.3.2 Focusing with an ideal lens

Similar to [1] we model an ideal lens by multiplying a local phase factor

ϕ(ρ) to the incoming field ~Fin. As in Section 3.2.3, we consider a collimated

circularly polarized Gaussian beam which is focused by an ideal lens in the

plane z = 0. In the new notation, the dimensionless incoming field is given

by

~Fin = exp(− ρ2

w2
L

)ǫ̂+ , (3.20)

and the output field right after the lens is modeled by

~Fout(ρ, φ, z = 0) = ϕ(ρ) exp(− ρ2

w2
L

)ǫ̂+ . (3.21)

The complete output field is then obtained by

~Fout(~r) =
∑

µ

κµ
~Fµ(~r) , (3.22)

with

κµ = 2πkt

∫

z=0

dS ~Fout(~r) · ~F ∗
µ(~r) . (3.23)

Now one has to choose an appropriate phase factor ϕ(ρ) to describe the

action of the lens on the incoming field. Our aim is to select a ϕ(ρ) that gives

rise to the strongest possible focusing, with the condition that the field after
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the lens should be physical, i.e. it satisfies the source-free Maxwell equations.

One would guess that a ϕ(ρ) that gives strongest focusing should create a

spherical wave front after the lens, because a light field emitted from a small

object has a spherical wave front.

P

F

S

O

ρ

Z

z=0
Ideal lens

θ

f

Figure 3.2: A spherical wave front (half of the sphere) formed after passing an
ideal thin lens. Here F is the focal point of the lens, f is the focal length, S is the
intercept point of line PF and the wave front.

In van Enk and Kimble’s paper [1] the local phase factor was chosen to

be

ϕpb(ρ) = e−ikρ2/2f , (3.24)

where f is the focal length of the lens. This phase factor gives rise to a

parabolic wave front after the lens 2. The choice of this phase factor allows

an analytical integration for obtaining the coefficients κµ. However, as a

parabolic wave front approaches a spherical wave front only for ρ ≪ f , this

phase factor is not expected to give the strongest focusing. As it turns out,

2The wave front of the field resembles an elliptical paraboloid for small ρ≪ f . However,
it is not parabolic for large ρ.
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ϕpb(ρ) greatly underestimates the field strength at the focus especially in the

case of strong focusing, and thus is not applicable for describing lenses with

high numerical aperture. Moreover, in our experiment (Chapter 4) much

higher values of scattering probabilities than that predicted with the help of

Eqn. 3.24 were directly measured [27]. In view of the large discrepancies, we

describe the lens with a different local phase factor

ϕsp(ρ) = e−ik(
√

ρ2+f2−f), (3.25)

which is expected to create a focusing field with a spherical wave front after

the lens 3. With phase factor ϕsp, the expansion coefficient κµ becomes

κµ = δm1πkt
sk + kz

k

∫ ∞

0

dρ ρJ0(ktρ) exp

[

−ik(
√

ρ2 + f 2 − f) − ρ2

w2
L

]

.

(3.28)

This integration has no analytical solution and is thus computed numeri-

cally. As one of the mode indices kt is a continuous variable, a sufficiently

large number of kµ must be first computed and then interpolated in order

to correctly construct the output field (see Appendix A.2 for more details).

The largest component of the output field (Eqn. 3.22) is the ǫ̂+ component,

which is given by

F+(ρ, φ, z) =
∑

s=±1

∫ k

0

dkt
1

4π

sk + kz

k
J0(ktρ) × eikzzκµ=(kt,1,s), (3.29)

3 Creating spherical wave front with ϕsp: The main function of the local phase
factor

ϕsp(ρ) = e−ik(
√

ρ2+f2−f) (3.26)

is to introduce a phase advancement of η(ρ) = k(
√

ρ2 + f2 − f) to the field at point
P(ρ, φ, z = 0). Referring to Fig. 3.2 where we show a spherical wave front formed after
passing an ideal thin lens, one can easily show that the distance between point P and
point S is given by

PS =
√

ρ2 + f2 − f. (3.27)

Therefore, when a wave that originates from point P arrives at point S, it would have a
phase equal to that at point O. As this conclusion is true for all point P (ρ, φ, z = 0) of
different ρ. The local phase factor ϕsp(ρ), therefore, creates a spherical wave front after
the lens.
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Figure 3.3: |F+|2 along the lens axis obtained with the spherical phase factor ϕsp

and the parabolic phase factor ϕpb for the parameters mentioned in the text.

where F+ ≡ ~Fout · ǫ̂∗+, and ǫ̂∗+ is the complex conjugate of ǫ̂+.

Figure 3.3 shows the near-focus dimensionless intensity |F+|2, obtained

for the parameters: f = 4.5 mm, λ = 780 nm and wL = 1.1 mm 4, using

the phase factors ϕsp and ϕpb. The horizontal axis shows the displacement

from the ideal focal position along the lens axis, ∆z = z − f . It is clear

from the figure that adopting a parabolic wave front significantly reduces

the maximum intensity after the lens. Unlike ϕsp(ρ) which concentrates the

energy of the field in a small region, ϕpb(ρ) spreads the energy of the focused

field over a region closer to the lens, and thus results in a reduced intensity

in the focus, similar to spherical aberration in classical optics. This problem

becomes more serious for a larger incident waist wL (or stronger focusing)

because a parabolic wave front deviates more from a spherical wave front for

larger ρ.

The numerical result for |F+|2 allows now the calculation of the scattering

4These parameters correspond to the values used in the experiment.
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probability (Eqn. 3.10). With

(

EA

EL

)2

= |F+|2 (3.30)

we obtain a scattering probability psc of 14.8% for a spherical phase factor ϕsp,

whereas the parabolic phase factor adopted in [1] only leads to a scattering

probability of 2.6%.

3.3.3 Focusing field compatible with Maxwell equa-

tions

In the last section, we showed that adoption of the spherical phase factor

ϕsp(ρ) predicts a higher intensity at the focus. However, an initial outgoing

field modeled with the help of Eqn. 3.21 is not compatible with Maxwell

equations since the reconstructed outgoing field ~Fout(~r) obtained through

Eqns. 3.22 and 3.23 has non-vanishing ẑ and ǫ̂− components at z = 0+ even

though the initial outgoing field we start with only has the ǫ̂+ component.

Such discrepancies are negligible for small wL, but become very large for large

incident beam waist wL.

To be more precise, the reconstructed field (Eqn. 3.22) must satisfy

Maxwell equations since it is a linear combination of ~Fν which themselves are

the solutions of source-free Maxwell equations. If the reconstructed field is

not identical to the initial field, then the initial field cannot satisfy Maxwell

equation, and vice versa. Therefore, Eqn. 3.21 cannot be physical.

In view of this, we model the field right after the lens by considering

changes in local polarization of the field on top of using the spherical phase

factor with three requirements in mind. The requirements are:

1. A rotationally symmetric lens does not alter the local azimuthal field

component, and only tilts the local radial polarization component of

the incoming field towards the axis;

2. The polarization at point P (see Fig. 3.2) after transformation by the

lens should be orthogonal to the line FP to form a spherical wave front;
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3. The power flowing into and out of an arbitrarily small area on the thin

ideal lens is the same.

These requirements are identical to the assumptions made by Richards and

Wolf on the transformation of polarization of optical rays by optical elements

[104]. With these requirements, we model the field right after the lens as 5

~Fout(ρ, φ, 0) =
1√
cos θ

(

1 + cos θ

2
ǫ̂+ +

sin θeiφ

√
2

ẑ +
cos θ − 1

2
e2iφ ǫ̂−

)

×

× exp
(

−ρ2/w2
L

)

exp
[

−ik(
√

ρ2 + f 2 − f)
]

, (3.34)

where the 1√
cos θ

term is due to the third criterion, and can be understood by

noting the difference in the Poynting vectors of local fields before (z = 0−)

and after (z = 0+) the lens. The expansion coefficient κµ becomes

κµ = δm1πkt

∫ ∞

0

dρ ρ
1√
cos θ
{sk + kz

k

(

1 + cos θ

2

)

J0(ktρ) + i

√
2kt

k

(

sin θ√
2

)

J1(ktρ)

+
sk − kz

k

(

cos θ − 1

2

)

J2(ktρ)} exp

[

−ik(
√

ρ2 + f 2 − f) − ρ2

w2
L

]

, (3.35)

5Transformation of local polarization: To obtain the local polarization of the
focusing field in Eqn. 3.34, we consider an arbitrary point P(ρ, φ, 0) before the lens and
an incident light field with polarization

ǫ̂in = ǫ̂+ =
x̂+ iŷ√

2
, (3.31)

or in the cylindrical basis,

ǫ̂in =
eiφ

√
2
ρ̂+

ieiφ

√
2
φ̂, (3.32)

where ρ̂ = cosφ x̂+sinφ ŷ and φ̂ = − sinφ x̂+cosφ ŷ are two unit vectors along the radial
and azimuthal directions respectively. The ideal lens leaves the azimuthal component
unchanged but tilts the radial component such that the local polarization of the field right
after the lens is perpendicular to the line FP in Fig. 3.2 (F is the focus point), that is:

ǫ̂out =

(

cos θ eiφ

√
2

ρ̂+
sin θ eiφ

√
2

ẑ

)

+
ieiφ

√
2
φ̂

=
1 + cos θ

2
ǫ̂+ +

sin θeiφ

√
2

ẑ +
cos θ − 1

2
e2iφ ǫ̂−. (3.33)
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where θ = tan−1(ρ/f). The Kronecker symbol δm1 indicates that the angular

momentum of the incident light beam is conserved under the new transfor-

mation we use [105, 106]. Finally, we determine the complete outgoing field

with three polarization components defined by F+ ≡ ~Fout · ǫ̂∗+, Fz ≡ ~Fout · ẑ,

and F− ≡ ~Fout · ǫ̂∗−, where

F+(ρ, φ, z) =
∑

s=±1

∫ k

0

dkt
1

4π

sk + kz

k
J0(ktρ)eikzzκµ=(kt,1,s), (3.36)

Fz(ρ, φ, z) =
∑

s=±1

∫ k

0

dkt (−i)

√
2

4π

kt

k
J1(ktρ)eikzzeiφκµ=(kt,1,s), (3.37)

F−(ρ, φ, z) =
∑

s=±1

∫ k

0

dkt
1

4π

sk − kz

k
J2(ktρ)eikzze2iφκµ=(kt,1,s). (3.38)

We now consider a set of parameters, say f = 4.5 mm, λ = 780 nm, and

wL = 7 mm, for which the incident beam is strongly focused by the lens. We

reconstruct the outgoing field at z = 0 using Eqns. 3.36, 3.37, and 3.38 and

compare it to the starting output field given by Eqn. 3.34. Figure 3.4a shows

(from top to bottom) the reconstructed |F+|, |Fz| and |F−| at z = 0. As

the reconstructed fields overlap visually with the polarization corrected field

behind the lens, the original field distributions are not shown. Quantitatively,

the relative difference between the original and reconstructed field 6 is less

than 10−3, a bound limited by our numerical accuracy. For comparison, the

reconstructed fields obtained using ϕsp without polarization correction are

shown in Fig. 3.4b. The reconstructed fields at z = 0 are not the same as the

original fields |F0| we start with. A successful reconstruction, therefore, shows

that our extended model (Eqn. 3.34) is physical (compatible with Maxwell

equations) even for very strong focusing.

3.3.4 Field at the focus

Having found a field compatible with Maxwell’s equations and with a focus-

ing spherical wave front, we can now examine the field at the focus in more

6Here, the relative difference between two field vectors ~v1 and ~v2 is defined as |~v2−~v1|
|~v1|

.
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Figure 3.4: Absolute field strengths after the ideal lens reconstructed from the
expansion into cylindrical components at at z = 0 obtained with parameters:
f = 4.5 mm, λ = 780 nm, and wL = 7 mm. (a) Polarization-corrected outgoing
field given by Eqn. 3.34. (b) Only with spherical wave front phase factor ϕsp, no
polarization correction. The traces in the figure (b) are: the amplitude of the
original ǫ̂+-polarized field |F0|, and the reconstructed field strengths |F+|, |Fz| and
|F−|.

detail. Figure 3.5 shows the field at the focal plane for different focusing

strengths obtained with this model. Every individual plot in the figure as-

sumes the same focal length (f = 4.5 mm) and wavelength (λ = 780 nm),

but different incident waists wL. In each plot, we show the absolute field

strengths |F+|, |Fz|, and |F−|, together with the field predicted using the

paraxial approximation given by

~F parax
focus =

wL

wf

exp(− ρ2

w2
f

)ǫ̂+, (3.39)

with a paraxial focal waist

wf = fλ/πwL. (3.40)
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For weak focusing, |F+| overlaps completely with the paraxial prediction

with negligible |Fz| and |F−| (Fig. 3.5a). When wf ≃ 3.7 µm (about 5λ),

discrepancies between paraxial approximation and the extended model start

to appear (Fig. 3.5b). The ẑ- and ǫ̂−- polarized fields become stronger as

wL increases. However, they never appear on the lens axis. Therefore, an

atom localized on the lens axis would only experience the ǫ̂+- polarized field.

Figure 3.5d shows the focusing that maximizes |F+| for these parameters in

our model. It is obtained with a incident waist wL = 10 mm. Increasing the

incident waist further does not make the focal spot smaller due to diffraction

limit. Instead, more energy is transfered to the |Fz| and |F−| side lobes, thus

decreasing the magnitude of the |F+| component again. It is clear that the

properties of the field around the focus vary significantly within a wavelength.

Nevertheless, a localized single atom would still experience a field with a

well defined polarization and amplitude because it is much smaller than the

characteristic length scale of such variations.

Bassett [107] has established an upper bound to the field energy density

which is attainable by passive concentration at any point G for a given input

power [107]. He assumes that the point G is many wavelengths from any

object and the light passes only once through the point (as opposed to the

case of a cavity). He found that the ratio of the electric energy density at G

to the total incident power has a maximum value given by [107, 108] 7

Fmax
e =

k2

6πc
, (3.41)

where k = 2π/λ. In our notations, this ratio becomes

Fe =
ǫ0E

2
A/4

Pin
=

1

πcw2
L

(

EA

EL

)2

, (3.42)

where we have made used of Eqn. 3.6 for the incident power Pin. For the

strongest focusing we have calculated with this model (Fig. 3.5d), Fe ≃ 0.727Fmax
e

7The maximum ratio of the total field energy density to the total incident power is
Fmax = k2/3πc. The total field energy density includes the magnetic field and electric
field energy densities, each contributing half to the total field energy density on the lens
axis due to symmetry of our system [108].
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Figure 3.5: Absolute field strengths at the focus for different focusing strengths.
Different plots are obtained with the same focal length of 4.5 mm and wavelength
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at the focus of the lens. This shows that the focusing field modeled by

Eqn. 3.34 is able to give rise to a field concentration comparable to the

strongest field concentration allowed in a free space operation.

It should also be noted that a strongly focused field does not have a planar

wave front at the focus. This can be understood from the fact that

Fz(ρ, φ, z) = Fz(ρ, z)eiφ, and F−(ρ, φ, z) = F−(ρ, z)e2iφ, (3.43)

which means that the phase of the field on the focal plane z = f is not

uniform (Eqns. 3.37 and 3.38).
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3.3.5 Obtaining the field at the focus using the Green

theorem

To verify the validity of the above calculations, we adopt a different method

to calculate the field at the focal point. For an aplanatic focusing field, one

can coveniently obtain the focal field strength using the Green theorem [109]:

~E(~r) =

∮

S′

da′ {ikc
[

~n ′ × ~B(~r ′)
]

G +
[

~n ′ × ~E(~r ′)
]

×∇′G

+
[

~n ′. ~E(~r ′)
]

∇′G}, (3.44)

which means that the electric field ~E(~r) at point ~r can be obtained given

the electric and magnetic fields ( ~E(~r ′) and ~B(~r ′)) on an arbitrary closed

surface S ′ that encloses the point ~r. Here, ~n ′ is the unit vector normal to

a differential surface element da′ and points into the volume enclosed by S ′,

and G is the Green function given by

G =
eik|~r−~r ′|

4π|~r − ~r ′| . (3.45)

If point ~r is the focus of an aplanatic focusing field, then the local field

propagation wavevector ~k ′ at any point ~r ′ always points towards (away from)

point ~r for the incoming (outgoing) field in the far field limit, i.e. when

|~r − ~r ′| ≫ λ. In this limit, one has

B(~r ′) → ~k ′

c|~k ′| × E(~r ′), (3.46)

∇′G → −i~k ′G before the focus ,∇′G → i~k ′G after the focus . (3.47)

Eqn. 3.44 reduces to

~E(~r focus
aplanatic) = −2i

∫

Sbf

da′
[

~n ′ ·~k ′
]

~E(~r ′)G

+2i

∫

Saf

da′
[

~n ′ · ~E(~r ′)
]

~k ′G . (3.48)

Here the surface S ′ is divided into two regions. Sbf is the region before the
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focal plane Sbf and Saf is the surface after the focal plane. The second term

in Eqn. 3.48 is zero if we choose Saf to be an infinitely large semisphere

centered at the focus, since in this case ~n ′ is perpendicular to ~E(~r ′) at all

points on Saf for an aplanatic field. If we choose Sbf as an infinitely large

plane that conincides with the ideal lens and adopt the incident field given

by Eqn. 3.34, Eqn. 3.48 becomes

~E(0, 0, z = f) =
−ik

√
f

2

∫ ∞

0

dρ
ρ(f +

√

f 2 + ρ2)

(f 2 + ρ2)5/4
exp(− ρ2

w2
L

) ǫ̂+ (3.49)

which has an analytical solution of

~E(0, 0, z = f) =
−ik

√
fwL

4
exp(

f 2

w2
L

)





fΓ(−1
4
, f2

w2

L
)

wL

+ Γ(
1

4
,
f 2

w2
L

)



 ǫ̂+ , (3.50)

where Γ(a, b) =
∫∞

b
ta−1e−t dt . The focal field strengths obtained by Eqn. 3.50

agree fully with the results obtained using the mode-decomposition method,

within computational errors of about 0.1%. The −i imaginary number re-

flects a Gouy phase of −π/2 [110].

3.4 Scattering Probability

With the knowledge of the field at the focus, we can now calculate the scat-

tering probability of a light beam by a two level system. Figure 3.6 displays

the scattering probability as a function of the incident waist wL, obtained for

focusing parameters f = 4.5 mm, λ = 780 nm. The curves in the figure are

obtained using (from top to bottom) the paraxial approximation (Eqn. 3.39),

spherical wave front with polarization correction (Eqn. 3.34), spherical wave

front without polarization correction (Eqns. 3.21 and 3.25), and parabolic

wave front without polarization correction (Eqns. 3.21 and 3.24). It is clear

that adopting a parabolic wave front after the lens greatly reduces the scat-

tering probability (ϕpb curve). With a spherical wave front, the scattering

probability increases significantly especially for stronger focusing (ϕsp curve).

However, as was pointed out in previous sections, modeling the output field
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Figure 3.6: Scattering probability as a function of wL obtained (from top to bot-
tom) by assuming paraxial approximation, spherical wave front with polarization
correction, spherical wave front without polarization correction, and parabolic
wave front without polarization correction (f = 4.5 mm, λ = 780 nm).

without considering the action of the lens on the polarization of the field

gives rise to an unphysical focusing field. Our attempt to construct a physi-

cal focusing field predicts even larger scattering probability compared to the

previous models with a maximal value of ≃ 145% (ϕcor
sp curve). It should be

noted that all of the three models converge to the paraxial model for small

wL, with the parabolic model diverging most quickly and the physical field

model diverging last.

Now, a scattering probability of more than 100% seems to suggest a

violation of energy conservation (i.e. power scattered by a two-level system

is more than that of the incident probe). A simpler explanation is that we

have made a mistake in our calculations. However, repeated checks have

confirmed our results. Indeed, the scattering probability can be more than

100% if we assume the scattered power is given by Eqn. 3.9. Such results

were obtained also in other works [111, 112]. In fact, a number of literatures

have shown that there is no violation of energy conservation in this case
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since the probe field and the forward scattered field interferes destructively,

as was shown in [113, 114, 115] for the case of an incident plane wave, and

by Zumofen et al. [111] for arbitrary incident fields with the help of vectorial

multipole expansions [116, 117].

To provide more insights, Eqn. 3.9 represents the total power that would

be emitted by a two-level atom that experiences an excitation field with an

amplitude of EA. This equation does not consider the origin (source) of the

excitation field (which is the incident probe field in our discussion), and the

possible interference between the emitted field and the excitation field 8. By

considering the interference between the scattered field and excitation field,

the false impression that the power scattered by the atom is more than that

of the incident field would not appear (see Appendix A.10). Admittedly, the

notion of ‘scattering probability’ is thus not an appropriate one since this

quantity can be more than one. One can think of using other notions, for

example ‘scattering ratio’, but it would not avoid the energy-conservation

paradox. Therefore, we purposely choose the notion of ‘scattering probabil-

ity’ to highlight this ‘unexpected’ paradox.

From the experimental perspective, the scattering probability is a well

defined physical quantity when the focusing strength of the probe is weak.

In this regime, the solid angle subtended by the probe is small (say less than

a few percents of the full solid angle). In principle, the power scattered by

the atom can then be measured quite accurately. As the focusing strength of

the probe increases, the scattering probability and the solid angle subtended

by the probe beam also increase. In this case, one cannot accurately measure

the total scattered power, since it is not possible to distinguish the forward

scattered field and the excitation field within the solid angle subtended by the

probe. Thus the ‘scattering probability’ becomes a less meaningful physical

quantity. In the regime where the scattering probability is more than 1, the

solid angle subtended by the probe would almost cover the full solid angle

and the ‘scattered power’ cannot be measured. Therefore, the ‘scattering

probability’ loses its original simple interpretation in this regime.

8Under a weak coherent excitation field, the field scattered by an atom is coherent with
the excitation field [94].
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Having discussed the shortcomings of physical interpretion of the scat-

tering probability defined in Eqn. 3.2, we think that this quantity is still

a useful quantity that reflects the interaction strength between a coherent

field and an atom although it cannot be interpreted physically in the strong

focusing regime. We note in passing that the largest scattering probability

is 200% [111]. This result is determined by the Bassett limit [107]. In this

limit, the probe field is completely reflected by the two-level system (see [111]

for more details).

Coming back to our results, we emphasize that the maximum scattering

probability of 145% is obtained with the focusing field defined by Eqn. 3.34.

However, it is not known if one can ever construct a high numerical-aperture

lens that gives rise to such focusing field. Therefore, we do not claim that such

a high scattering probability can be achieved readily in an experiment. The

more important message is that we have shown the possibility of achieving

high interaction strength between a light beam and a single atom by focusing.

3.5 Conclusion

In this chapter, we theoretically investigated the interaction strength between

a focused light field and a two-level atom. We began by defining the interac-

tion strength as the scattering probability of the light beam by the atom. We

then derived an general expression for the scattering probability by assuming

a circularly polarized- monochromatic Gaussian light beam and a two-level

atom localized on the lens axis. Finally, by constructing a physical focusing

field with a spherical wave front and by computing the field at the focus, we

show that a focusing light field can interact efficiently with a single atom in

free space.
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Chapter 4

Strong interaction of light with

a single trapped atom

In this chapter, we present an experiment which demonstrates substantial

extinction of a light beam by a single 87Rb atom in free space. The strong

extinction (up to 10%) allows us to measure the absorption spectra of the

atom directly without using modulation amplification techniques. The ab-

sorption spectra measured clearly reveal the energy shifts in the 87Rb atom

caused by the trapping light, and have spectra widths limited by the lifetime

of the atomic transition. The results of this work are published in [27].

Background

Since advent of lasers, the resolution and sensitivity of spectroscopic mea-

surements have improved to the extent that the spectrum of a single quantum

system can be measured. When it comes to spectroscopic measurements of

single quantum systems, most experiments rely on fluorescence spectroscopy

techniques [118]. However, direct absorption measurements would be desir-

able because they allow one to quantitatively access the optical polarizability.

Earlier absorption spectroscopy experiments on single ions [119], molecules

[120, 121], and quantum dots (nanocrystals) [122, 123] showed differential

extinctions on the order of 10−5 to 10−4, and made use of modulation ampli-



fication techniques. More recent experiments performed on single molecules

and semiconductor quantum dots [124, 125, 126, 127] already saw a signal

contrast from a few percent to 13%. The high signal contrast was made possi-

ble either by strongly confining the light field using small aperture [124, 125]

or by tightly focusing the light field using solid immersion lenses [126, 127].

However, the results of these experiments do not show the actual extinction 1

of the excitation beam by the quantum systems. In usual extinction measure-

ments, e.g. as implemented in a commercial spectrophotometer, the probe

beam is fully collected by the power measuring device. However, this is not

the case in previous extinction measurements performed on single quantum

systems. The reason is that substantial extinction of a probe beam by a

single quantum system generally requires strong focusing. It is, nevertheless,

difficult if not impossible in most experiments to collect the strongly diverg-

ing probe fully after the focus. As such, the ‘extinction’ measured in these

experiments is not the extinction in the usual sense and cannot be used in a

straightforward way to quantify the actual scattering probability of the probe

by the quantum system. In fact, the signals observed in these experiments

[124, 125, 126, 127] were optimized using the interference between the light

scattered by the quantum systems and part of the excitation light beam

(See Section 4.7). The signature of such interference is revealed, for exam-

ple, in [121, 123, 125, 126] as a ‘transmission’ of more than 100%, obviously

violating energy conservation.

As our main task is to quantify the scattering probability of a light beam

by a single atom, we design our setup to ensure that the extinction we mea-

sure is not enhanced by such interference effect. The main idea of our setup

is to focus a weak and narrow bandwidth Gaussian light beam (probe) onto

1There are different definitions of the extinction ǫ. In transmission spectroscopy, ex-
tinction is sometimes defined as ǫ = log(1/T ) or ǫ = 1 − T , where 0 < T ≤ 1 is the
transmission. In the scattering theory of light by small particles [78], extinction is equiva-
lent to the sum of optical powers scattered and absorbed by the particle. In such a context,
absorption refers to optical energy absorbed and transfered into heat by the particles. In
recent single particle experiments [125, 126, 127], extinction is defined as ǫ = 1 − T . We
adopt this definition in this dissertation but we emphasize that T should be measured by
fully collecting the probe. Only in this case, the measured extinction is a well defined
quantity and can be used to quantify the scattering probability.
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an optically-trapped single 87Rb atom using a lens. The atom scatters part

of the probe. The remaining part that is not scattered is fully collected by

a second lens in the downstream direction, and delivered to a single photon

detector. The fact that we measure the extinction by collecting all of the di-

verging probe after the focus allow us to set a lower bound to the scattering

probability of the probe by the atom (see Section 3.1).

4.1 Setup for extinction measurement

Figure 4.1 shows the schematic diagram of our experiment. The heart of the

setup consists of two identical aspheric lenses (full NA = 0.55, f = 4.5 mm),

mounted in a confocal arrangement inside an ultra high vacuum chamber.

The collimated Gaussian probe beam is first delivered from a single mode

fiber, focused by the first lens, fully collected by the second lens, and finally

coupled again into a single mode fiber connected to a Si-avalanche photodi-

ode. A 87Rb atom is trapped at the focus between the two lenses by means

of a far-off-resonant optical dipole trap (FORT) formed by a light beam

(λ = 980 nm) passing through the same lenses 2. Cold atoms are loaded into

the FORT from a magneto-optical trap (MOT) surrounding the FORT. The

Si-avalanche photodiode D2 detects the fluorescence of the trapped atom

exposed to the MOT beams (Fig. 4.1). It triggers the transmission measure-

ment when an atom is loaded into the FORT. The Si-avalanche photodiode

D1, on the other hand, measures the photon flux of the transmitted probe.

We obtain the extinction of the probe beam by the atom through comparing

the photocounts at D1 with and without the atom in the FORT.

2Using a tight FORT to trap a single atom was first demonstrated by Philippe Grang-
ier’s group at the Institut d’Optique in France. The main difference between our setup
and theirs is the wavelength of the FORT. They adopted a 810 nm FORT [128]. The
advantage of such a choice is that a smaller FORT power is needed to trap the atom
since 810 nm is closer to the D2 transition of the 87Rb atom. We chose a 980 nm FORT
because it reduces the scattering of the FORT light by the atom, and thus reducing the
disturbance on the atomic state. Our setup resembles closely that of Harald Weinfurter’s
group at LMU Munich. They adopt a 856 nm FORT light, and use a microscope objective
(MO) located outside the vacuum chamber for fluorescence collection [129]. As there is a
thick window (2.5 mm) between the trapped atom and the MO, the fluorescence collection
efficiency of their setup is affected by abberations.
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Figure 4.1: Experimental setup for measuring the extinction of a light beam by
a single atom. AL: aspheric lens (f = 4.5mm, full NA = 0.55), P: polarizer, DM:
dichroic mirror, BS: beam splitter with 99% reflectivity, λ/4, λ/2: quarter and
half wave plates, F1: filters for blocking the 980 nm FORT light, F2: interference
filter centered at 780 nm, D1 and D2: Si-avalanche photodiodes. Four more laser
beams forming the MOT lie in an orthogonal plane and are not shown explicitly
(see Fig. 4.2).

As one would expect to observe maximum extinction for a clean two-level

system with no other decay channels, we use a circularly polarized probe

beam to optically pump the 87Rb atom to a closed-cycling transition either

between |g+〉 = |5S1/2, F = 2, mF = +2〉 and |e+〉 = |5P3/2, F
′ = 3, mF ′ = +3〉,

or between |g−〉 = |F = 2, mF = −2〉 and |e−〉 = |F ′ = 3, mF ′ = −3〉 (Fig. 4.6).

During the transmission measurement process, the atom may fall into the

(5S1/2, F = 1) metastable ground states, which are off resonant to the probe.

To bring it back to the pumping cycle, circularly polarized light resonant

with the D1 transition is mixed into the probe beam, and later removed with

an interference filter F2 (Fig. 4.1). We also use a circularly polarized FORT

beam coaxial with the probe because this minimizes population leakage out

of the two-level system (Section 4.4).

To facilitate further discussions on the extinction measurement, we will

focus on some important properties of our system in the next few sections.
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Section 4.2 provides more technical details of our setup. Section 4.3 presents

the evidences showing that there is no more than one atom trapped in our

FORT at any time. The effects of the FORT light and external magnetic field

on the atom and their influence on the extinction measurement are discussed

in Section 4.4. Section 4.5 explains how we measure the extinction of the

probe caused by the atom in the FORT. Finally, we present and discuss our

experimental results in Section 4.6, 4.7, and 4.8.

4.2 Technical details of the setup

This section provides a detailed technical description of our setup.

Aspheric lenses

An aspheric lens is a simple single element replacement for multi-element

microscope objectives. It is normally designed to focus a colimated beam

into a diffraction limited spot. Thus, a collimated light beam focused by

an aspheric lens should have a spherical wave front after the lens, thereby

creating a focusing field closer to that described by Eqn. 3.34. Besides, an

aspheric lens has a much lower reflection loss than a microscope objective.

It is also more suitable for an ultra-high vacuum system than a microscope

objective, since trapped air pockets and glue used in the commercial micro-

scope objectives might cause problems during pumping down of the vacuum

chamber.

The two identical aspheric lenses used to focus and recollect the probe

beam in our experiment are manufactured by LightPath Technologies, Inc.

(catalogue number 350230). They are designed to colimate a 780 nm diode

laser. The lenses have a back focal length (working distance) of 2.91 mm.

To arrange the lenses confocally, the distance between the two lenses is fixed

at 5.82 ± 0.02 mm (the uncertainty is due to the machining accuracy of the

lens holder). The lenses are near infrared anti-reflection coated and have a

clear aperture of 4.95 mm.
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Magneto-optical trap

We use a three-dimensional magneto-optical trap (MOT) [130, 131, 132] to

cool and gather a cloud of 87Rb atoms around the FORT. The MOT consists

of (i) three pairs of light beams (MOT beams) for cooling and exerting a

scattering force on the 87Rb atoms, (ii) two square anti-Helmholtz coils for

generating a magnetic quadrupole field at the center of the trap, and (iii)

three pairs of Helmholtz coils for adjusting the magnetic field in the trap

(Fig. 4.2). One pair of MOT beams lie horizontally along the X-axis. The

other two pairs lie in the YZ-plane, both at an angle of 20◦ from the vertical

Y-axis due to the space constraint imposed by the lenses. The anti-Helmholtz

coils are placed coaxially along the X axis. They provide magnetic field

gradients of ≃ 7 Gauss cm−1 along the X axis, and ≃ 3.5 Gauss cm−1 along

both the Y and Z axes at the center of the trap. The other three pairs of

Helmholtz coils are placed along the X, Y and Z axis respectively. They are

used to zero the magnetic field at the center of the MOT before an atom is

loaded into the FORT, and to apply a ≃ 2 Gauss magnetic bias field along

the Z-axis after an atom is loaded into the FORT during the extinction

measurement (Section 4.4).

The MOT beams

Each MOT beam consists of a 780 nm cooling light and a 795 nm repump

light, both circularly polarized. The cooling light is 24 MHz red detuned

(δ = −4Γ) from the (5S1/2, F = 2) - (5P3/2, F
′ = 3) transition of the 87Rb

atom (see Appendix A.4 for the energy levels of the 87Rb atom). Its pur-

pose is to Doppler cool and trap the 87Rb atoms [100, 133, 134, 135, 136,

137]. The repump light is resonant with the (5S1/2, F = 1) - (5P1/2, F
′ = 2)

transition. Its main purpose is to optically pump the atoms back to the

(5S1/2, F = 2) ground state in case the atoms fall into the inaccessible ground

state (5S1/2, F = 1) [132].

Both the cooling and repump light beams are obtained from grating-

stabilized extended-cavity diode lasers [138, 139, 140, 141]. The linewidth of

each laser is less than 600 kHz with a long term central-frequency stability
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Figure 4.2: The core of the setup including a magneto-optical trap, a cuvette
attached to a vacuum chamber, the aspheric lenses, and the relevant light beams
used for trapping the atom and performing the extinction experiment (the lens
holder in the cuvette is not shown for clarity). The inset is a zoom in near the
center of the lens system. The picture is drawn to scale.

of about 1 MHz. The cooling light is initially locked to the (5S1/2, F = 2)

- (5P3/2, F
′ = 1) transition using frequency-modulation (FM) spectroscopy

[142, 143], and then up shifted by 400 MHz using an acousto-optic modulator

(AOM) in a double pass configuration [144]. The repump light is locked to

the crossover [100] between the (5S1/2, F = 1) - (5P1/2, F
′ = 1) transition

and the (5S1/2, F = 1) - (5P1/2, F
′ = 2) transition, and then up shifted by

408 MHz again using an AOM in a double pass configuration.

In our setup, a circularly polarized MOT beam is first delivered from a

single mode fiber, sent through the vacuum chamber, reflected by a mirror

with a quarter waveplate in front, and finally coupled back into the single

mode fiber to form a pair counterpropagating MOT beams. Owing to reflec-
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tion losses caused by the uncoated vacuum chamber, each MOT beam is not

collimated but slightly focused in order to give rise to the same intensity at

the center of the MOT for both the forward and back-reflected beams. The

waists of the beams at the center of the MOT thus range from 0.5 mm to

0.8 mm. We typically use a cooling light power of ≃ 100 µW for each pair of

MOT beams. The powers of the repump light in different MOT beams are

not equal but this is not crucial. A total power of ≃ 65 µW of repump light

is typically used. With such a setup, we obtain a 87Rb-atom cloud with an

approximate diameter of 0.4 mm.

Probe beam

The probe for the extinction measurement is derived from the same diode

laser setup as the MOT cooling light, and thus has the same linewidth and

stability as that of the cooling light. It goes through another double-pass

AOM setup, allowing us to tune its frequency independently of the MOT

cooling light. The largest incident waist of the probe that we can reliably

use for the extinction measurement is about 1.4 mm before we start seeing a

large distortion of the probe after the second aspheric lens due to the limited

NA of the lenses (see Section 4.7). Such incident waist corresponds to a focal

waist of ≃ 0.80 µm 3.

Far-off-resonant optical dipole trap (FORT)

When choosing a FORT wavelength, one needs to estimate (i) the power of

the light source needed to create a reasonable trapping depth (typically of a

few mK), and (ii) the scattering rate of the FORT light by the atom. The

depth of the FORT is approximately proportional to I/δ (Eqn. A.19), where

δ is the detuning of the FORT light from the D2 transition of the 87Rb atom,

and I is the intensity at the focus. Therefore, using a further detuned FORT

light typically requires a FORT laser with a larger power. On the other hand,

adopting a far detuned FORT light reduces the scattering rate of the FORT

3All focal waists of the probe here are estimated using the paraxial approximation.
(See Section 3.3.4)
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2.5 cm

Figure 4.3: Photograph of the probe beam passing through the two aspheric
lenses. The bright white beam is due to fluorescence of Rubidium atoms.

light by the atom which is roughly proportional to I/δ2 (Eqns. A.11 and

A.13). This is useful if we want to reduce the influence of the FORT on the

atomic state. We have chosen a FORT wavelength of 980 nm because of the

low scattering rate it introduces and the availability of 980 nm single-mode

diode lasers that can supply a power up to 300 mW.

In our setup, the 980 nm diode laser is temperature stabilized without

an external cavity. The FORT light decreases the ground state energy of the
87Rb atom, forming a trap for the atoms at its focus. However, the FORT

cannot trap an atom by itself because it is a conservative potential well. An

atom that falls into a FORT experiences a decrease in potential energy but

an increase in kinetic energy. The atom is trapped if the surrounding MOT

cooling molasses 4 manages to remove the extra kinetic energy from the atom

before it escapes from the FORT [100, 136, 145, 146].

A very tight FORT is important for our experiment because we need to

localize the atom to a region much smaller than the wavelength of the probe

4The FORT has a size smaller than a few microns. The atom does not experience
noticeable variation in the Zeeman shift within such a small region. In this case, the MOT
essentially acts as molasses to the atoms.
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in order to achieve maximum scattering (Section 3.3.4). The largest FORT

focal waist we used in the experiment is ≃ 2 µm 5. For this waist, the power

of the FORT light is stabilized to ≃ 33 mW, creating a trapping potential

depth of approximately h · 27 MHz (equivalent to kB · 1.3 mK) at the center

of the FORT. With such an intensity, we expect the off-resonant scattering

rate of the FORT light by the atom to be about 10 photons s−1 [145]. When

adopting a smaller FORT focal waist of ≃ 1.4 µm, we reduced the power

of the FORT beam such that the intensity at the location of the atom is

approximately the same as in the previous case, thereby keeping the trap

depth and off-resonant scattering rate unchanged.

Using the paraxial approximation, we can describe the spatial distribution

of the FORT potential by

U(ρ, z) = − U0

(1 + z2/z2
R)

exp

[

− 2ρ2

w2
D(1 + z2/z2

R)

]

, (4.1)

where wD is the waist of the FORT, and zR = πw2
D/λ denotes the Rayleigh

length. If the mean kinetic energy kBT of an atom 6 is much smaller than

the potential depth U0, the atom oscillates near the bottom of the potential.

In this case, the FORT potential can be approximated by

U(ρ, z) = −U0

[

1 − 2

(

ρ

wD

)2

−
(

z

zR

)2
]

. (4.2)

The oscillation frequencies of a trapped atom are given by ωρ = (4U0/mw2
D)1/2

in the radial direction, and ωz = (2U0/mz2
R)1/2 in the axial direction, where

m is the mass of the 87Rb atom. For a trap depth U0 = kB · 1.3 mK and

a beam waist of wD = 1.4 µm, the oscillation frequencies are approximately

ωρ/2π = 80 kHz and ωz/2π = 13 kHz.

5The reported focal waists of the FORT are estimated using the paraxial approximation.
More accurate measurements of the trap size and depth, not performed here, are possible
[147].

6There is only one atom in our FORT. The temperature here reflects the statistical
average of the atomic kinetic energy in the FORT.
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Overlapping the foci of the probe and the FORT

The fact that the FORT light and the probe pass through the same set of

identical lenses allows convenient overlapping of the foci of the two light

fields. To overlap the foci longitudinally (along the lens axis), we first adjust

the divergence of the probe such that the probe waists, before and after the

vacuum chamber, are the same at an equal distance from the center of the

lenses. We then repeat the same procedure for the FORT beam. We estimate

the longitudinal overlap of the foci to be better than ≃ 1.3 µm 7. To overlap

the foci transversely, we make sure that the axis of the probe beam and that

of the FORT beam coincide transversely better than 15 µm at a point about

10 cm from the vacuum chamber, and better than 0.15 mm at 7.5 meters

away from the setup with the help of a CCD camera. Such requirements

translate into a focal transverse coincidence of better than 90 nm for the two

light fields. The fact that the longitudinal overlap is much worse than the

transverse overlap does not significantly affect our experiment because the

focal field varies less quickly along the longitudinal direction than along the

transverse direction (See Figs. 3.3 and 3.5c). More precise alignment would

be needed if one focuses the probe more strongly.

The vacuum system

An uncoated cuvette 8 that contains an aluminum lens holder is glued to

a vacuum chamber using low vapor-pressure epoxy (Torr Seal resin sealant,

Variance, Inc.). The vacuum chamber, which is pumped solely with an 24 l/s

ion getter pump, has a residue pressure of ≃ 2.5×10−9 Torr 9 after bake-out.

As the temperature of the residue gases in the chamber (higher than 300 K)

is much larger than the depth of the FORT (1.3 mK), any collision between

the trapped atom and a background atom kicks to the trapped atom out of

7The accuracy is limited by the sensitivity of our collimating lens-system in controlling
the divergence of the beams.

8The cuvette was obtained from the Hellma GmbH & Co. It has outer dimensions of
3 × 3 × 7 cm with a wall thickness of 2.5 mm.

9This pressure was measured with the Rb dispenser turned off.
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the FORT. This loss mechanism limits the 1/e trapping time of the atom to

about 2 seconds.

4.3 Trapping a single atom

Besides tightly confining the trapped atom, a small FORT ensures a sin-

gle atom occupancy of the FORT at any time due to the collisional block-

ade mechanism [128, 148]. Such a blockade mechanism comes from the fact

that two atoms in a very tiny trap can undergo light-assisted inelastic colli-

sions efficiently, leading to the immediate loss of both atoms from the trap

[146, 149]. Three main exoergic collisional processes in MOTs have been

identified [149]: the fine-structure-changing collision (FCC) is represented by

A + A + ~ω → A∗
2(P3/2) → A∗(P1/2) + A + ∆EFCC with the energy ∆EFCC

transferred to each atom. Here A and A∗ refer to an atom in the ground state

and in the excited state respectively. For Rb atoms, ∆EFCC/kB ≈ 350 K,

thus FCC collisions cause an escape of both atoms from the FORT normally

of a few mK deep. For radiative escape (RE), spontaneous emission of a

photon redshifted from the atomic resonance takes place during the colli-

sion. The process is described by A + A + ~ω → A∗
2 → A + A + ~ω′ with

an energy of ~(ω − ω′) transferred to the two atoms. The resulting kinetic

energy is continuously distributed and the corresponding loss rate is sensi-

tive to the trap depth. Exoergic hyperfine-changing collisions (HCCs) on

the molecular ground state can also lead to losses. For 87Rb, a change from

(5S1/2, F = 2) to (5S1/2, F = 1) in one of the colliding atoms transfers about

∆EHCC/2kB ≃ 0.16 K to each atom.

A typical way of determining the number of atoms in a trap is to observe

the amount of atomic fluorescence from the trap. When the number of atoms

N in the trap is small, the amount of detected fluorescence f shows clear

discrete behaviour represented by f = Nr + b, where r is the amount of

detected fluorescence from one atom, and b the background noise. Such

multiple-step fluorescence signal has been observed, for example, in a MOT

with very a high magnetic field gradient of 375 G/cm [150] and a FORT with

a focal waist of 5 µm [149, 151]. For a much tighter FORT, the fluorescence
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Figure 4.4: (a) Typical photocounts of fluorescence from the FORT observed with
the avalanche photodiode D2. The photocounts hop between two levels, signifying
an atom entering and leaving the FORT. (b) The histogram of the photocounts
over a data taking period of 5000 s. The absence of the two-atom peak provides
evidence that there is at most one atom in the FORT at all time.

signal jumps only between the background noise level and a higher level

(Fig. 4.4), hinting that there can only be one or no atom in the FORT at

any time [128, 129].

However, the observation of a binary on/off fluorescence signal does not

rule out the possibility that two atoms always enter and leave the trap simul-

taneously. A more conclusive method to show the single atom occupancy of

the trap is measure the second-order correlation in the fluorescence from the

trapped atoms. The second-order correlation function [99] defined classically

in terms of the fluorescence intensity I(t) is given by

g(2)(τ) =
〈I(t)I(t + τ)〉

〈I(t)〉2 , (4.3)

where the angle brackets denote averaging over time t. For any real light
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source correlations always vanish at very long delay τ → ∞ and hence we

have 〈I(t)(t + τ)〉 → 〈I(t)〉〈I(t)〉 and g(2) → 1. At time scales τ of charac-

teristic intensity fluctuations, g(2)(τ) shows deviations from unity. For any

classical light field, g(2)(τ) obeys the inequality [152]

g(2)(0) ≥ 1 (4.4)

and

g(2)(τ) ≤ g(2)(0). (4.5)

In terms of photon language g(2)(τ) describes the conditional probability

of detecting a second photon at a time τ after a first one was detected at

t = 0 [153, 154]. The resonance fluorescence of a single atom is not classical

because its g(2)(τ) violates both Eqns. 4.4 and 4.5. After the emission of

the first photon, the atom is in its ground state and cannot emit a second

photon immediately, i.e. g(2)(0) = 0. The fluorescence from more than one

atom does not show complete antibunching because the emission of the first

photon from an atom does not prevent the emission of a second photon from

a different atom. When the fluorescence is collected from a large solid angle,

the correlation function g
(2)
N from N atoms is related to the single-atom g(2)

by [99, 150]

g
(2)
N (τ) =

1

N

[

g(2)(τ) + (N − 1)
]

. (4.6)

If there are N > 1 atom in the trap, g
(2)
N (0) = N−1

N
≥ 0.5.

We extract the second order correlation function g(2)(τ) from the flu-

orescence of the trapped atom exposed to the MOT beams with the help

of detectors D1 and D2 that couple to the atom from opposite directions

through the same Gaussian mode (Fig. 4.1). Figure 4.5 shows the histogram

of the time delays between photodetection events at detectors D1 and D2.

It reveals a Rabi oscillation with ≈ 63MHz and a damping time compatible

with the spontaneous decay lifetime of the 5P state in 87Rb (27 ns). An al-

most vanishing g(2)(τ = 0) that is clearly smaller than 0.5 provides further

evidence that we only have a single atom in the trap [86, 129, 150].
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Figure 4.5: Normalized second-order correlation function versus time delay τ
between two photodetection events at detectors D1 and D2 (not corrected for
background counts) with clear anti-bunching at τ = 0. The smooth red line is a
fit to the data points using a sinusoidal term with a delay-dependent envelope.

4.4 Influence of external fields on the trapped

atom

Two major sources of external fields experienced by the trapped 87Rb atom

are the magnetic field and the FORT light. The magnetic field comes mostly

from the earth’s field and stray fields from the ion-getter pump. The magnetic

field at the center of the MOT is zeroed with three pairs of Helmholtz coils to

an uncertainty of ±10 mGauss in all directions. The FORT light has a larger

effect on the atom than the magnetic field. It causes AC Stark shifts to the

energy levels of the 87Rb atom, and breaks the degeneracy of the hyperfine

states.

In order to achieve maximum scattering, it is necessary to keep the 87Rb

atom in a two-level (|g±〉 and |e±〉) cycling transition. However, uncom-

pensated magnetic fields orthogonal to the quantization axis can cause the

atom to undergo Larmor precession, leading to population transfer from the
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|g±〉 and |e±〉 states to other |mF 〉, |mF ′〉 states. Similarly, if |g±〉 and |e±〉
(defined through optical pumping by the probe) are not quasi-energy eigen-

states of the atom in the FORT, the population also leaks out of the two-level

system. Such population leakage is detrimental especially when the optical

pumping rate by the probe is low.

To minimize the depopulation effect caused by the external field, we care-

fully zero the magnetic field at the location of the trapped atom, and then

apply a magnetic bias field along the quantization axis during the measure-

ment. We also adopt a right-hand circularly polarized FORT beam along

the quantization axis 10. In this case, the Zeeman and AC Stark shifts (see

Fig. 4.6) have the same sign on individual (5S1/2, F = 2) hyperfine substates,

breaking the degeneracy of the (5S1/2, F = 2) hyperfine states. This in turn

reduces the depopulation effect caused by any uncompensated external fields

perpendicular to the quantization axis.

AC Stark shift

Figure 4.6 shows the calculated AC Stark shift of the (5S1/2, F = 2) and

(5P3/2, F
′ = 3) hyperfine states of the 87Rb atom under the influence of a cir-

cularly polarized FORT light of 980 nm wavelength with a trapping potential

depth of h · 27 MHz (see Appendix A.5 for the calculation of AC Stark shift).

The quantization axis of our system is chosen parallel to the main propaga-

tion axes of the probe/FORT beams such that the polarization of the FORT

field is right-hand circular. A σ+ probe refers to a circular polarization that

drives the atom from |g+〉 to |e+〉, and a σ− probe to one driving a |g−〉 to

|e−〉 transition. At the center of the FORT, the energies of 5S1/2 states are

lowered by an average of h · 27 MHz (defining the trapping potential) with a

small sublevel energy splitting of ≈ 1MHz. The 5P3/2 levels shift upwards

and are strongly split, forming a repulsive potential. The resulting shifts of

the resonance frequency for different transitions can be observed directly in

10We observed that the extinction of the probe drops by a factor of two when using a
linearly polarized FORT field rather than a circularly polarized FORT field.
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Figure 4.6: Predicted AC Stark shift of a 87Rb atom in a circularly polarized
FORT for the parameters mentioned in the text.

a transmission spectrum of a single 87Rb atom in which the frequency of the

probe is scanned over the resonance frequency of the trapped atom.

4.5 Measuring the transmission

Once an atom is loaded into the FORT, its fluorescence due to the MOT

beams is detected by detector D2. This triggers the transmission measure-

ment sequence, in which the main steps include:

1. Switching off the MOT beams and the MOT quadrupole coil current 11.

2. Application of a magnetic bias field of ≈ 2G along the quantization

axis.

3. Waiting for 20 ms so that current in the coils stabilizes and optically

pumping the atom into either |g+〉 or |g−〉 at the same time.

11The quadrupole magnetic field is switched off to prevent the formation of an atom
cloud in the MOT during the checking process in step 5, thereby avoiding the loading of
a second atom that would result in an immediate loss of both atoms.
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4. Recording the photo counts nm of the transmitted probe beam for τm

ranging from 130 to 140ms with detector D1.

5. Switching on the MOT beams to check whether the atom is still in the

FORT by monitoring fluorescence with detector D2. This process takes

about 20 ms; if “yes”, turn off the MOT beams and repeat step 3 and

4.

6. Otherwise, recording the photo counts, nr, of the transmitted probe

beam with detector D1 for τr = 2 s without an atom in the trap for

reference.

7. Turning on the MOT beams and quadrupole coil current, and wait for

another atom to be trapped by the FORT.

To avoid the atom being heated up and even kicked out of the FORT by

the probe during the extinction measurement, the intensity of the probe is

reduced to a level where the actual photon scattering rate was estimated to

be around 2500 s−1.

Figure 4.7 shows an excerpt of typical photocounts of detector D2 (green

dashed line) and the gated photocounts of detector D1 (red solid line) for

an atom trapping event during the transmission measurement. The probe

is never switched off to avoid thermal artefacts in the measurement 12. In-

stead, electronic pulses from detector D1 are gated to only transmit the

photo-detection events during step 4 and step 6 in the transmission measure-

ment sequence. The gated photocounts of D1 and photocounts of D2 peak

alternately because D1 is gated off when the MOT beams are turned on to

check the presence of the trapped atom, and vice versa. When the atom is ex-

posed to the MOT beams, detector D2 fires at a rate of 2000-3000 counts s−1

with a background contribution of 200-400 counts s−1 13. With such signal

12The power of the probe fluctuates greatly (up to a few ten percent) within the first
few seconds after it is switched on using an acousto-optic modulator.

13A small part of the probe beam is reflected by the fiber before detector D1 into detector
D2. Detector D2 has a dark count of about 100 s−1.
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Figure 4.7: An excerpt of real time photocounts of detector D2 (dashed green
line) and gated photocounts of detector D1 (solid red line) for an atom trapping
event. Difference in the probe photocounts with (T1) and without (T2) a 87Rb
atom in the FORT is clearly observed.

and noise levels, it takes about 10 to 30 ms to reliably determine the pres-

ence of a trapped atom. The count rates of D2 thus appear to be smaller

in Fig. 4.7 than 2000-3000 counts s−1 because the time bin in the figure is

100 ms whereas the atom checking time is only about 20 ms. The average

probe transmission T1 when the atom is in the FORT is clearly lower than

the transmission T2 when the atom is not in the FORT.

For every atom trapping event, we obtain a transmission value T by

T =

∑

nm
∑

τm

τr

nr

, (4.7)

where the summation is carried over all contiguous measurement intervals m

for which an atom was found in the trap. The accuracy of each transmission

value T is shot noise limited. We typically obtain an mean transmission value

T̄ by averaging over about 100 of such transmission values, each weighted
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by 14

w =
τr

∑

τm

τr +
∑

τm

. (4.8)

4.6 Results

We obtain the transmission spectrum of a trapped 87Rb atom by scanning

the frequency of the probe over its resonant frequency. Figure 4.8 shows

the transmission T̄ of the probe as a function of detuning from the natural

resonant frequency ω0/2π of the |g〉 to |e〉 transition. The two spectra of a

single 87Rb atom were obtained for the σ+ and σ− probes, while keeping the

handedness of the FORT beam fixed. In this experiment, we use a probe

with incident waist wL of 1.3 mm and a FORT focal waist of ≃ 1.4 µm. As

expected, the atomic resonance frequency is different for the two probe polar-

izations. The shifted frequencies agree quite well with the predictions shown

in Fig. 4.6. The Lorentzian fit to the transmission spectrum for the σ− probe

shows a maximum extinction of 9.8 ± 0.2% with a full-width-half-maximum

(FWHM) of 7.5 ± 0.2 MHz. The σ+ probe gives a maximum extinction of

7.4± 0.1% with a FWHM of 9.1± 0.3 MHz. From the fact that the D2 tran-

sition of 87Rb has a natural linewidth of 6.0MHz and that the linewidth of

the probe laser is about 1MHz, we conclude that an atom exposed to the

σ− probe has been successfully kept in a two-level cycling transition, and it

experiences very small spectral broadening caused by position dependent AC

Stark shift in the FORT. However, the same conclusion cannot be made for

an atom exposed to a σ+ probe. A possible explanation is that optical pump-

ing by the σ+ probe is less effective because the probe frequency resonant to

the |g+〉 to |e+〉 transition is further detuned from the resonant frequencies

of other |F = 2, mF 〉 to |F ′ = 3, mF ′〉 transitions, whereas the resonance

frequency of |g−〉 to |e−〉 is less detuned from other transitions (Fig. 4.6).

Furthermore, a FORT wavelength of 980 nm forms a repulsive potential for

the 5P3/2 levels of the 87Rb atom. As the energy of |e+〉 is higher than that

14The amount of time an atom stays in the FORT varies. Thus the transmission value
T obtained for every trapping event has a different uncertainty. We choose a weighting
factor that minimizes the error of T̄ for a fixed number of trapping events.
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of the |e−〉, an atom in |e+〉 experiences a stronger repulsive force from the

FORT on average. As a result, a trapped 87Rb atom might be more suscep-

tible to increase of kinetic energy under the σ+ probe, and thus oscillates

more strongly around the focus.

Table 4.1 summarizes the main properties of the measured transmission

spectra for different probe incident waists wL. Our experiment started ini-

tially with a FORT focal waist wD of ≃ 2 µm. When we focused the probe

tighter, we also reduced the FORT focal waist to ≃ 1.4 µm to confine the

atom more tightly. At the same time, the power of the FORT light was

reduced accordingly to keep the depth of the FORT constant. For the same

wL, the maximum extinction ǫ of the σ− probe is always larger than that

of the σ+ probe. Concurrently, the spectral width measured with of the σ−

probe is always smaller than that measured with the σ+ probe. When we fo-

cus the probe more strongly, the maximum extinction of the probe increases.

However, the FWHM of the transmission spectrum also becomes larger for

80



some unknown reasons. We observe a maximum extinction of 10.4% for a

probe incident waist wL of 1.4 mm. Although a higher extinction is to be

expected for a larger wL, we did not attempt such a measurement for reasons

that would be stated in the next section.

Table 4.1: Summary of transmission spectra of the probe for different focusing
strengths. wL: incident waist of the probe; wF and wD: estimated focal waists of
the probe and of the FORT respectively using the paraxial approximation (Sec-
tion 3.3.4.); ǫ and W: maximum extinction value and FWHM of the transmission
spectrum respectively.

σ− probe σ+ probe

wL(mm) wF (µm) wD(µm) ǫ (%) W (MHz) ǫ (%) W (MHz)

0.5 2.23 2.0 2.38 ± 0.03 7.1 ± 0.2 N.A. N.A.
1.1 1.01 2.0 7.2 ± 0.1 7.4 ± 0.2 5.8 ± 0.1 8.8 ± 0.2
1.3 0.86 1.4 9.8 ± 0.2 7.5 ± 0.2 7.4 ± 0.1 9.1 ± 0.3
1.4 0.80 1.4 10.4 ± 0.1 7.7 ± 0.2 7.6 ± 0.1 9.8 ± 0.3

4.7 Losses and interference artefacts

In this section, we discuss the reliability and the limitation of the results we

have obtained. We have previously emphasized the importance of collecting

all of the probe in an extinction experiment performed on a single quantum

system because this allows us to directly quantify the scattering probabil-

ity with the measured extinction value. However, collecting all of the probe

does not necessarily imply that there is no loss in the transmission path.

For example, introducing a grey filter in front of the power detector does

not change the measured extinction. However, placing a pin hole or a po-

larizer before the power detector to select a certain component of the probe

can change the outcome of the measurement completely. For example, if an

atom scatters 1/1000 of a vertically polarized probe, a correctly performed

transmission measurement would reveal a drop of 0.1% in the transmitted

power when there is an atom in the path of the probe (with or without a grey

81



filter in front of the power detector). However, if a polarizer is placed before

the power detector such that only a very small potion of the probe is trans-

mitted, then what the power detector measures is the result of interference

between the filtered scattered light and the filtered probe. Furthermore, if

the field strengths of the filtered scattered light and probe are comparable,

one would expect to observe a large ‘extinction’ (not 0.1% as it should be)

when the two fields interfere destructively, and observe a ‘transmission’ more

than 100% when the fields interfere constructively 15. Consequently, it is

important to ensure that the design of the transmission measurement setup

does not preferentially filter more probe than scattered light if one wants to

measure the extinction of a single quantum system without such interference

effects.

We carefully quantified the losses of the probe in its optical path to ensure

that our results are free from such interference artefacts. Table 4.2 shows the

losses of the probe in the transmission channel for different incident waists

wL we used in the experiment. TAB is the total transmission from point A

(before the vacuum chamber) to point B (after the single-mode fiber and just

before the detector D1) in Fig. 4.1. It ranges from 53% to 62%. For more

detailed characterization, we group the transmission losses into three parts:

1. the loss across the vacuum chamber which includes four uncoated cu-

vette surfaces and the two AR-coated aspheric lenses, Lvac;

2. the loss from after the vacuum chamber to before the receiving optical

fiber which contains two dichroic mirrors, an interference filter (peak

transmission T=96% at 780 nm) and a mirror, Loptics;

3. the coupling loss into the uncoated single mode fiber before detector

D1, Lfiber
16.

The losses Lvac and Loptics are due to reflection except the extra 0.5%

loss of Lvac for larger incident waists, which is due to cutting of the larger

15Such phenomena have been observed in a number of absorption spectroscopy experi-
ments performed on single molecules and quantum dots [121, 123, 125, 126].

16Note: TAB = (1 − Lvac) × (1 − Loptics) × (1 − Lfiber). All reported losses have a
uncertainty of ±0.1%.
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probe beam by the aspheric lenses. For the fiber coupling loss, about 8%

is caused by reflection, and the remaining 10-20% loss is due to imperfect

mode matching. Therefore, a major part of the transmission losses in our

system are due to reflection. Since the scattered field and the probe field

should experience the same reflection loss at each surface, we are reasonably

confident that our results are free from interference artefacts.

Table 4.2: Transmission losses of the probes of different incident waists.

wL (mm) Lvac (%) Loptics (%) Lfiber (%) TAB (%)
0.5 21.0 5.4 17.3 62
1.1 21.0 5.3 18.2 61
1.3 21.5 5.4 27.0 54
1.4 21.6 5.3 28.4 53

On the other hand, since we collimate the incident probe with an as-

pheric lens after the output fiber, the diameter of the probe is limited by the

clear aperture size of the lens (4.95 mm). The incident probe thus resembles

a Gaussian beam whose outer portion has been cut off. As our theoreti-

cal model assumes a Gaussian probe, one would expect a certain degree of

discrepancy between experimental results and theoretical predictions. Fur-

thermore, when the coupling loss into the fiber becomes larger due to such

mode mismatch, our results would become more susceptible to interference

artefacts.

4.8 Comparison with theoretical models

We emphasize that the highest extinction of 10.4% observed for a probe

with an ≈ 800 nm waist at the focus is large when compared to results

reported from experiments performed on single molecules and quantum dots

[124, 125, 126, 127]. There, the excitation light field was either confined by

a small aperture of ≈ 100 nm [124, 125], or focused using solid immersion

lenses [126, 127] that provide much tighter focusing than our case. In all
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Figure 4.9: Comparison of measured extinctions to scattering probabilities pre-
dicted by paraxial approximation (Eqn. 3.39), spherical wave front with polariza-
tion correction (Eqn. 3.34), and parabolic wave front (Eqn. 3.24).

these experiments the quantum systems were embedded into complex solid

state host environments which complicates the theoretical treatment of light

scattering. In contrast, the conceptual simplicity of our system and the fact

that we directly measure the extinction of the probe beam allows a clean

comparison with existing photon-atom coupling models [1, 85, 112].

One of the models that closely describes our experiment was presented

by van Enk and Kimble [1]. It considers a monochromatic and circularly

polarized Gaussian beam focused by a thin ideal lens onto a two-level atomic

system. Estimations based on that model gave a very dim outlook on the

effectiveness of coupling light to an atom using a lens. Our experimental

results clearly falsify their predictions. As it turns out, two approximations

used in their model (parabolic wave front after the lens, and no change to

the polarization of a light beam passing through the lens) has greatly un-

derestimated scattering probability for stronger focusing. Dropping these

approximations, we find (with otherwise the same methods) that a much

higher scattering probability can be achieved using this coupling scheme.
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Figure 4.9 shows the maximum extinctions of the σ− probe for various

incident waists together with the scattering probabilities predicted by various

models discussed in Chapter 3. Note that the measured extinction is not

identical to the scattering probability. For our experimental parameters,

the extinction is typically a few percent smaller than the actual scattering

probability (See Section 3.1). Except for the data point at wL = 0.5 mm

which can be well explained by both models, the other data points lie well

above the prediction using van Enk’s model, but below the prediction of our

extended model (Section 3.3.3). It is reasonable that the measured extinction

is lower than the predicted values using our extended model (ϕcor
sp ) since the

aspheric lens is not ideal, and the atom is not completely stationary at the

focus. The deviation of the experimental results from theoretical predictions

gets larger as the incident waist increases. We conjecture a few possible

explanations for this phenomenon:

1. Our model assumes a Gaussian probe that is focused by an ideal lens

such that the field after the lens has a spherical wave front. However,

as the incident waist of the probe increases, two deviations from our

theoretical model occur: (i) A larger portion of the probe is cut by

the aperture of the collimating lens (Section 4.7), causing the probe to

further deviate from the Gaussian; (ii) A real lens typically introduces a

larger abberation to a focusing field at positions further away from the

lens axis. This effect translates into a larger deviation from a spherical

wave front for a larger incident waist, and therefore a smaller field

amplitude at the focus compared to that when using an ideal lens.

2. Increasing the incident waist makes the probe focus tighter, thereby

stronger confinement of the atom is required. Inadequate confinement

of the atom is one reason why extinction values smaller than predicted

are obtained. However, the motion of the atom alone cannot explain the

50% reduction in the observed scattering probability. For the tightest

probe focusing we used (wL = 1.4 mm), we estimated that the mo-

tion of the atom reduces the scattering probability by less than 20%

(Appendix A.7).
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3. Another possible reason is that the model we used is incomplete. One

assumption in our model is that the presence of the atom does not

alter the properties of the field at the focus 17. This assumption should

work well when the photon flux of the incident probe is large [101].

However, when the photon flux (or field intensity 18) of the probe is

very low 19 and when the focal waist is small, the presence of the atom

might have a significant influence on the focal field. To make the points

clearer, let us consider a small spherical glass bead with a refractive

index n, and a diameter of 1 µm. If we place the glass bead in a 780 nm

light beam with a focal waist of 100 µm, the propagation of the light

beam can be described well without considering the effects of the glass

bead. Now, if the light beam is focused down to a focal waist of 1 µm,

and the glass bead is placed at the focus of the light, the propagation

of the light beam through the focus can no longer be described using

source-free Maxwell equations. Under this situation, the glass bead

would act as a lens, and it would reflect or scatter part of the incident

beam. The overall effect is that the field seen by the glass bead must

be different from that at the focus when there is no glass bead. Coming

back to the atom, it is true that a single atom does not have a refractive

index and its size is much smaller than 1 µm. Nevertheless, when the

atom is exposed to a resonance light field that is weak compared to

its transition saturation intensity, it has a scattering cross section on

the order λ2. The fact that a single atom can scatter 10% of the

incident light suggests that a single atom acts like a 1 µm glass bead

when the field frequency is close to the resonance. As such, there is a

strong reason to believe that the field experienced by the atom under a

17We calculate the field at the location of the focus using a set of field modes that
satisfies the source-free Maxwell equations.

18We do not know for sure which quantity matters most for the following problem.
19In our experiments, the photon flux of the probe ranges from 20k to 80k photons s−1,

much smaller than the spontaneous decay rate Γ of the Rb atom. The intensity of the
probe at the FORT is on the order of 0.1% of the saturation intensity.
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strongly focused but weak field 20 cannot be described using source-free

Maxwell equations. Instead, mutual influence between the field and the

atom must be considered to correctly quantify the scattering of the light

field by the atom. Having said that, we note in passing that solving

the field and atomic evolution without neglecting the mutual effects on

both the atom and the field is a mathematically intractable problem

for an atom in free space [101]. In any case, it would be interesting to

see how our predictions is changed by considering the mutual influence

between the atom and the field.

4.9 Conclusion

In conclusion, we experimentally observed a substantial extinction (up to

10.4%) of a weak coherent light field by a single 87Rb atom through focusing

the light beam using a lens. As our measurements is free from interference

artefacts, the measured extinction values set a lower bound to the scattering

probability of the probe by an atom in free space. We therefore conclusively

show that substantial interaction between a light beam and a single atom is

possible without a cavity. The strong interaction of the atom with a ‘flying’

qubit suggests using the atom as a mediator for photon-photon interactions,

thus pointing in a new direction for implementing photonic quantum gates.

20‘Strongly focused’ and ‘weak’ are not contradicting each other. ’Strongly focused’
refers to a tight focal spot. A strongly focused weak field can be created by reducing the
incident power of the probe.
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Chapter 5

Outlook and open questions

We have shown experimentally and theoretically that strong interaction be-

tween light and a single quantum system can be achieved by focusing light

with a lens. In particular, we have observed a 10.4% extinction of light

by a single 87Rb atom by focusing the light beam using an aspheric lens of

0.55 NA. We believe that a much higher extinction/scattering probability

will be observed by focusing the probe more tightly using a lens with a larger

NA.

We now consider the implications of our results for quantum informa-

tion transfer. Is the 10.4% scattering probability we measured equivalent to

10.4% of the photons transferring quantum information to the atom in our

experiment?

Unfortunately, the answer is no. First, to complete meaningful informa-

tion transfer, the information receiver should be able to store the quantum

information for a period of time, whilst allowing during this time for the

information to be measured or retrieved. Since we are pumping the 87Rb

atom using continuous-wave coherent light, there is no way to know when

the atom is in the excited state due to the randomness introduced by spon-

taneous emission. In this case, one cannot know when to the information is

accessible even if quantum information in a photon is transfered to the atom

before every scattering event. Second, meaningful information should consist

at least of two different results. Information that has only one outcome has
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Figure 5.1: (a) Energy structure of the 87Rb atom used in our light extinction
experiment, not suitable for encoding the polarization state of the probe photons.
(b) Ideal level scheme for encoding polarization state of photons.

no information value. In our experiment, the polarization of the probe is

either right-hand or left-hand circular, and not an arbitrary superposition of

both handedness. As a result, the 87Rb atom is always excited to the same

state in any set of the experiment. As such, no meaningful information has

been transfered to the atom in the experiment.

To make our system more applicable to quantum information transfer,

we can choose a quantum system that has a more suitable energy structure

for quantum information transfer. For example, if we want to encode the

polarization state of a photon, we require a quantum system with a level

scheme shown in Fig. 5.1(b). In this level scheme, the ground state |g〉 is

non-degenerate, and there are no other relaxation channels for the excited

states (|e1〉 and |e2〉) except dipole transitions to |g〉. In this case, the atom

can be excited to a superposition of |e1〉 and |e2〉 states depending on the

polarization of the incoming photon. This quantum system can thus be used

to store quantum information from a photon.

Another obvious improvement is to replace the weak coherent probe with

real single photon pulses, ideally single photons that can be created on-

demand [91, 92, 93]. By adopting such light sources, one can measure deter-

ministically the atomic state after the pulse excitation. Ideally, one should

create a single photon pulse whose spatial and temporal profiles match the

respective atomic dipole emission in order to achieve a high absorption proba-
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bility. This idea is motivated by considering photon absorption as the reverse

process of spontaneous emission [85] (Section 3.2.1).

However, there is no concensus on whether spontaneous emission is a

reversible process. Sondermann et al. [85] argued that the reversibility of

the spontaneous emission process can be inferred from the fact that the

Schrödinger equation is invariant under time reversal for a closed system with

a Hamiltonian without any explicit time dependence. However, it is not clear

if the ‘closed system’ can include the infinitely many vacuum modes which

causes spontaneous emission of an atom in free space. Recently, Robert

Alicki [155] claimed that by using an exactly solvable model of the Wigner-

Weisskopf atom, an unstable quantum state cannot be completely recovered

by the creation of the time reversed decay product state.

Let us consider a Gedanken experiment in which one creates a time re-

versed replica of a spontaneously emitted photon, and focuses this single

photon wave packet onto an atom in the ground state. If spontaneous emis-

sion is reversible, the atom is in its excited state with absolute certainty after

the wave packet fully ‘passes’ the atom. In this sense, the wave packet is a

single photon π-pulse. As a rule, if a π-pulse transfers an atom from the

ground state to an excited state with a spontaneous decay lifetime of τ , it

should have a pulse length much shorter than τ . This requirement is to avoid

spontaneous emissions during the application of the pulse on the atom since

spontaneous decay events reduce the fidelity of the π-pulse. On the other

hand, the spontaneously emitted photon wave packet has a pulse length on

the order of τ [98]. Therefore, if spontaneous emission is reversible, one has

a π-pulse with a pulse length of τ and a fidelity of unity. Is this possible?

What prevents spontaneous emission from occurring during the application

of the single photon π-pulse?

Is spontaneous emission really reversible? If it is not, what is the max-

imum absorption probability of a single photon pulse by a single atom in

free space? By achieving stronger atom-light interaction using a lens with

a larger NA, we may be able to quantitatively disprove certain atom-light

interaction models with our current setup.
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Appendix A

A.1 A two-level system in monochromatic ra-

diation

A two level system under the influence of monochromatic radiation has been

discussed in great detail in many textbooks [95, 99, 100]. Here, we consider

circularly polarized radiation which corresponds to our experimental setup.

We start with a single-electron spherically symmetric two-level atom with

an unperturbed Hamiltonian H0 and energy eigenstates |φ1〉 and |φ2〉 that

satisfy

H0|φi〉 = ~ωi|φi〉. (A.1)

Neglecting spontaneous decay, the interaction between the atom and incident

monochromatic radiation can be modeled by an interaction Hamiltonian (un-

der the dipole approximation)

HI = e~r · ~E(t), (A.2)

where ~r is the position operator, ~E(t) is the time-dependent electric field

strength at the location of the atom, and e = 1.6× 10−19 C. In particular, if

the external radiation is of the form

~E(t) =
E0√

2
[cos(ωt)x̂ + sin(ωt)ŷ] , (A.3)



the interaction Hamiltonian becomes

HI =
eE0

2
r−e+iωt − eE0

2
r+e−iωt (A.4)

where r± = ∓(x± iy)/
√

2. Note that by writing the interaction Hamiltonian

as a product of the dipole operator and the external field, we implicitly

neglect any modification of the incident radiation due to its interaction with

the atom [95].

The atomic state |Ψ〉 satisfies the Schrödinger equation:

i~
∂|Ψ〉
∂t

= (H0 + HI)|Ψ〉. (A.5)

Expanding the atomic state as

|Ψ〉 = c1(t)|φ1〉e−iω1t + c2(t)|φ2〉e−iω2t, (A.6)

we obtain 1

iċ1 =
c2

~

{

ei(ω−ω0)t 〈1|eE0r−|2〉
2

+ e−i(ω+ω0)t 〈1| − eE0r+|2〉
2

}

, (A.7)

iċ2 =
c1

~

{

ei(ω+ω0)t 〈2|eE0r−|1〉
2

+ e−i(ω−ω0)t 〈2| − eE0r+|1〉
2

}

, (A.8)

where ω0 = ω2 − ω1, and |φj〉 is written as |j〉 for simplicity. In the case

where the radiation has frequency close to the resonance at ω0 such that

|ω0 − ω| ≪ ω0, the terms with (ω + ω0)t oscillate very fast compared to the

terms (ω−ω0)t and therefore average to zero over any reasonable interaction

time (rotating wave approximation), leading to

iċ1 = c2e
i(ω−ω0)t Ω

2
,

iċ2 = c1e
−i(ω−ω0)t Ω∗

2
, (A.9)

1〈φj |r±|φj〉 = 0 because of symmetry.
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where the Rabi frequency Ω is defined by

Ω =
E0〈1|er−|2〉

~
. (A.10)

The solution of Eqn. A.9 basically shows that the atomic state oscillates be-

tween the ground state and the excited state with the effective Rabi frequency

Ω′ =
√

Ω2 + (ω − ω0)2.

By incorporating spontaneous decay into the system [95, 99, 100], it can

be shown that the upper state has a steady-state population (the probability

that the atom is in the excited state)

ρ22 =
|Ω|2/4

δ2 + |Ω|2/2 + Γ2/4
, (A.11)

where δ = ω − ω0 is the detuning of the radiation from the resonance. Γ is

the spontaneous decay rate of the upper state such that ρ̇22 = −Γρ22 in the

absence of external radiation. The rate of spontaneous decay from the excited

state |2〉 to the ground state |1〉 is determined by the electronic wavefunctions

of the two relevant states by 2

Γ =
ω3|〈1|er−|2〉|2

3πǫ0~c3
, (A.12)

where ǫ0 is the permittivity of vacuum. The average optical power scattered

by the atom is given by

Psc = ρ22Γ~ω. (A.13)

If the frequency of the external radiation is resonant with the transition

frequency, and is weak compared to the saturation intensity (i.e. Ω ≪ Γ),

the power scattered by the atom becomes (using Eqns. A.13, A.10, A.11 and

A.12)

Psc =
3ǫ0cλ

2E2
0

4π
. (A.14)

2Eqn. A.12 can predict the decay rates of the hydrogen atom’s transitions accurately.
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Scattering Cross Section

The scattering cross section, σ of a two-level system exposed to a monochro-

matic plane wave is defined by [100]

σ =
Psc

I
, (A.15)

where I is the intensity of the plane wave. For a circularly polarized plane

wave described by Eqn. A.3,

I =
1

2
ǫ0cE

2
0 . (A.16)

As the maximum scattering cross-section is achieved when δ ≪ Γ and |Ω| ≪ Γ,

we can use Eqns. A.14, A.15, and A.16 to obtain

σmax =
3λ2

2π
. (A.17)

Although we adopt the semi-classical approach here, Eqns. A.14 and A.17

are identical to that obtained with the quantized-field version [95]. This is

because one needs to ignore the influence of the atom on the light field in

order to arrive at an analytical description of the atom in free space [95].

This assumption is identical to that adopted intrinsically in the semi-classical

approach.
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A.2 Numerical Integration of κµ

To obtain the expansion coefficient κµ in Eqn. 3.35, we need to perform the

following integrations numerically:

I0 =

∫ ∞

0

dρ
ρ√
cos θ

(

1 + cos θ

2

)

J0(ktρ) exp

[

−ik(
√

ρ2 + f 2 − f) − ρ2

w2
L

]

,

I1 =

∫ ∞

0

dρ
ρ√
cos θ

(

sin θ√
2

)

J1(ktρ) exp

[

−ik(
√

ρ2 + f 2 − f) − ρ2

w2
L

]

,

I2 =

∫ ∞

0

dρ
ρ√
cos θ

(

cos θ − 1

2

)

J2(ktρ) exp

[

−ik(
√

ρ2 + f 2 − f) − ρ2

w2
L

]

,

where cos θ = f/
√

f 2 + ρ2 and sin θ = ρ/
√

f 2 + ρ2.

The integration consists of two oscillating parts: the Bessel term and the

exponential term. Integrating such a fast oscillating function is non-trivial.

For example, Mathematica 5 was not able to handle the above integration effi-

ciently and reliably for our experimental parameters. We eventually adopted

a fortran subroutine package ‘quadpack.f90’ (subroutine name: qage) [156]

to perform such integrations.

Owing to the damping term exp(−ρ2/w2
L) in the integrand, we only in-

tegrate from ρ = 0 to 5wL to achieve a small residual error. The results are

required to have a relative error of less than 10−6 in the program.

Figures A.1, A.2 and A.3 show the real part of I0, I1, and I2 respectively

as a function of kt/k. The values shown were computed with f = 4.5 mm,

wL = 2 mm, and λ = 780 nm. I0, I1, and I2 exhibit oscillating behaviour (see

insets). The oscillation frequencies become larger for larger kt. One has to

make sure that sufficient number of points are computed in each oscillation

in order to interpolate κµ correctly. To do this, we typically performed 2 ×
80k numerical integrations for each In (real and imaginary parts computed

separately). The computations were done in parallel on a computer farm

with 32 CPUs (Intel(R) Xeon(TM) CPU 2.80 GHz). Each data point in

Fig. 3.6 takes a few ten minutes to half a day to compute, with a longer
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Figure A.1: The real part of I0 as a function of kt/k for the parameters stated.
There are 80000 points in this graph. The inset is a zoom-in of the graph near
kt/k = 0.75, showing the fast oscillating nature of I0. The scales of the x- and y-
axis of the inset are identical to those of the main graph.

computation time for larger wL
3.

3The author gratefully acknowledges the assistance from Florian Huber for optimizing
the integrating algorithm and writing the codes for multi-processor computing. Without
his help, such beautiful results would not be possible.
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Figure A.2: The real part of I1 as a function of kt/k for the parameters stated.
The inset is a zoom-in of the graph near kt/k = 0.2. The scales of the x- and y-
axis of the inset are identical to those of the main graph.
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Figure A.3: The real part of I2 as a function of kt/k for the parameters stated.
The inset is a zoom-in of the graph near kt/k = 0.6. The scales of the x- and y-
axis of the inset are identical to those of the main graph.
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A.3 Energy levels of the 87Rb atom
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Figure A.4: Partial Grotrian diagram for Rb atom with dipole-allowed transitions
to the 5S1/2 and 5P3/2 states. The wavelengths of the transitions are shown in
nanometers.
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A.4 The D1 and D2 transition hyperfine struc-

ture of the 87Rb atom

mF
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Figure A.5: Hyperfine structure of the D1 and D2 transition for the 87Rb atom,
with frequency splittings between the hyperfine levels. The transitions we used for
the MOT are shown.
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A.5 AC Stark shift

General discussion on time-dependent perturbation theory and AC Stark

shift can be found in [157, 158]. Here we consolidate the formula and as-

sumptions we used to predict the AC stark shift of a 87Rb atom exposed a

circularly polarized light. Starting from Eqn. A.2, the interaction Hamilto-

nian describing the interaction between a monochromatic light and an alka-

line atom can be written as

HI(t) = V+(~r)e−iωt + V−(~r)eiωt, (A.18)

where the actual form of V±(~r) depends on the polarization of the field.

Using second-order time dependent perturbation theory, the AC-Stark shift

of a hyperfine sublevel |F, mF 〉 is related to other hyperfine sublevels |F ′, mF ′〉
by

∆E(F, mF ) ≈
∑

F ′,mF ′

{

|〈F, mF |V−(~r)|F ′, mF ′〉|2
~(ωF − ωF ′ + ω)

+
|〈F, mF |V+(~r)|F ′, mF ′〉|2

~(ωF − ωF ′ − ω)

}

,

(A.19)

where ~ωF,F ′ refer to the energies of the unperturbed states.

For a FORT that is circularly polarized along the quantization axis as

adopted in our experiment (Chapter 4), we have

V±(~r) = ∓eE0

2
r±1, (A.20)

according to Eqn. A.4, where r±1 = ∓(x±iy)/
√

2 and r0 = z. As the energies

of various atomic states ~ωF ′ are typically well-known, the task of calculating

the AC-Stark shift reduces to determining the dipole matrix elements

〈F, mF |erq|F ′, mF ′〉. (A.21)

To calculate these matrix elements, it is useful to factor out the angular

dependence and write the matrix element as a product of a Wigner-3j symbol,
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a Wigner-6j symbol, and a reduced matrix element

〈F,mF |erq|F ′,mF ′〉 = 〈J ||e~r||J ′〉(−1)J+I+mF
√

(2F + 1)(2F ′ + 1)

×
(

F ′ 1 F

mF ′ q −mF

)

3j

(

J J ′ 1

F ′ F I

)

6j

, (A.22)

where J, J ′ are the fine-structure total angular momentum (spin+orbital)

quantum numbers for the |F ′, mF ′〉, |F ′, mF ′〉 states respectively, and I is

the nuclear angular momentum quantum number [99, 158]. The reduced

dipole matrix element between J and J ′ states can be obtained from the

spontaneous radiative lifetime τ via the expression [99]

1

τ
=

ω3
0

3πǫ0~c3

1

2J ′ + 1
|〈J ||e~r||J ′〉|2, (A.23)

with ω0 = |ωJ ′ − ωJ |. Note that, |〈J ||e~r||J ′〉|2 = |〈J ′||e~r||J〉|2 in the above

equations but J ′ in Eqn. A.23 should be that of the higher energy state.

According to Eqn. A.23, evaluation of the AC-Stark shift requires the

knowledge of the radiative lifetimes (or the oscillator strengths) of all allowed

dipole transitions to the |F 〉 state. Since the relevant oscillator strengths are

fully available for the 5S1/2 ground state, and not for the 5P3/2 state of Rb

atom [159, 160], the AC Stark shift for the ground states can be determined

more accurately than that of the excited states. To obtain the AC-Stark shift

of the 5P3/2 states as shown in Fig. 4.6, we have made used of the known

radiative lifetime of the 5P3/2 to the 5S1/2 state (26 ns), and assumed that

the radiative lifetimes from other higher energy states to the 5P3/2 state are

10 to 100 times longer than that of the 5P3/2 to the 5S1/2 transition. Varying

the radiative lifetimes does not change the overall energy structure presented

in Fig. 4.6 significantly but it does affect the accuracy of the prediction.

Note, we later found a more complete database that provides most of the

significant oscillator strengths for the 5P3/2 state [161]. However, the results

obtained using the oscillator strengths provided therein and Eqn. A.19 were

not able to explain our measured resonance frequencies. More explicitly, the

ratio of the resonance shifts for the σ+ to σ− probe was measured to be 1.56±
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0.05 (see Fig. 4.6), whereas the oscillator strengths given in database [161]

predict a ratio of 1.82 4.

Of course, the discrepancy between the measured resonance shifts and

the predictions can possibly be caused by the inaccuracy of the second order

perturbation theory since the calculated perturbation can be as large as half

of the 5P3/2 hyperfine splittings for our experimental parameters. In any case,

our current setup could provide an alternative for measuring the oscillator

strengths of the 87Rb atom (see Appendix A.6).

4We have chosen to compare the ratio of the resonance shifts here because we did not
measure the dipole trap depth in our setup. Based on the estimation obtained using the
waist and optical power of the dipole beam measured outside the vacuum chamber, we
expect the dipole trap depth to be around 1 mK to 1.3 mK. The ratio of the resonance
shifts is independent of the trap depth according to Eqn. A.19.
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A.6 Measuring the oscillator strengths of the

Rubidium atom

Our setup has the potential to allow measurement of the unknown oscillator

strengths of the atom. First, we note that the AC Stark shift of a particular

energy state is mostly determined by the oscillator strengths of a few dipole-

allowed transitions. These transitions either have larger oscillator strengths

or transition wavelengths close to that of the external field (Eqn. A.19). In

principle, if we want to measure N unknown oscillator strengths connected

to the 5P3/2 state, we can repeat our absorption measurements N times us-

ing FORT light of different wavelengths. However, practically speaking, one

needs to be able to determine the intensity of the light field at the location

of the atom accurately. This is only possible if one has full knowledge of

the field distribution in the FORT and a very well calibrated power meter.

For a tightly focused FORT as in our experiment, determining the field dis-

tribution in the FORT can be challenging. Fortunately, this problem can

be circumvented by measuring the resonant frequency shifts of two or more

different transitions in the atom, since the ratio of the resonant-frequency

shifts is independent of the intensity.

A detailed proposal for measuring the oscillator strengths of the 87Rb

atom using our current setup is as follows:

1. Measure the resonant-frequency shifts of the |g+〉 to |e+〉 transition

(∆f+), and of the |g−〉 to |e−〉 transition (∆f−) for a FORT wave-

length. The ratio r = ∆f+/∆f− depends only on the known oscillator

strengths related to the 5S state, and some unknown oscillator strengths

related the 5P3/2 states (Eqn. A.19).

2. Repeat the previous step N times using FORT of various wavelengths

to get N ratios. Solving the N ratio equations gives the N unknown

oscillator strengths. Ideally, the more ratios r are measured, the more

accurately one can determine the oscillator strengths.

This proposal assumes that the AC-Stark shift of the atom can be pre-

dicted by time-dependent perturbation theory to the second order (Eqn. A.19).
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If the AC-Stark shifts are comparable to the hyperfine splittings of the atom,

Eqn. A.19 may break down and more sophisticated calculations would be

required to correctly predict the energy shifts. In any case, the principal

idea on how to measure oscillation strengths with our current setup should

still work.
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A.7 Effects of atomic motion on the scatter-

ing probability

The theoretical scattering probabilities shown in Fig. 3.6 and Fig. 4.9 were

obtained by assuming that the atom is stationary at the location where the

probe field is strongest. In the experiment, however, the atom has a finite

temperature and oscillates in the FORT. As the atom wobbles around in

the FORT, it experiences a varying probe intensity. Since the scattering

probability is proportional to the intensity of the probe seen by the atom,

the effective scattering probability should be averaged over the motion of the

trapped atom. Nevertheless, tracking the motion of the atom in the FORT is

non-trivial for an asymmetrical FORT. Figure A.6 shows the potential of the

FORT, and the ‘inverted’ normalized probe intensity in the focal plane (left)

and along the lens axis (right). The probe intensity distributions shown in

this figure are computed using Eqn. 3.34 for the tightest probe focus used in

our experiment (wL = 1.4 mm), whereas the FORT potential is calculated

using the paraxial approximation for a focal waist of 1.4 µm.

To estimate the effective scattering probability, we need to know the

temperature of the atom in the FORT. However, we have not yet measured

the temperature of the trapped atom. We would assume that the temperature

of the atom is about 100 µK, guided by the measurements of similar setups

in other groups [129, 147]. For such temperatures, the atom oscillates near

the bottom of the FORT potential, a region where the FORT and probe

intensity distributions can be well described by parabolic functions, both

along the lens axis and along the radial direction (Fig. A.6).

For simplicity, we now consider the atom as a one-dimensional harmonic

oscillator. We would start by considering a scenerio where an atom of mass

m is oscillating in a harmonic potential described by U(x) = kx2/2, with an

oscillation amplitude A and an oscillation frequency ωF =
√

k/m. We fur-

ther express the normalized probe intensity as Ip(x) = 1 − bx2. The average

normalized probe intensity IA experienced by the atom, weighted by the time
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Figure A.6: Potential of the FORT, and the ‘inverted’ normalized probe intensity
in the focal plane (left) and along the lens axis (right), computed for the probe
parameters stated. The depth of the FORT potential is about kB · 1.3 mK. The
temperature of the atom in the FORT is assumed to be around 0.1 mK.

the atom spends in different positions, is given by

IA =
ωF

π

∫ A

−A

dx
Ip(x)

v
=

∫ A

−A

dx
1 − bx2

Aπ
√

1 − (x/A)2
= 1 − bA2/2, (A.24)

where v = dx/dt is the velocity. The amplitude A is related to the maximum

speed of the atom v′ in the harmonic potential by v′ = ωFA. This leads to

IA(v′) = 1 − bv′2/2ω2
F . (A.25)

Equation A.25 shows the average (normalized) probe intensity experi-

enced by the atom with a total energy of mv′2/2. On the other hand, atoms

with a temperature T have a speed distribution governed by the Maxwell-
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Boltzmann law 5. Therefore, the effective scattering probability is given by 6

peff
sc = psc

[

(

2

π

)1/2(
m

kBT

)3/2 ∫ ∞

0

dv′IAv′2 exp

(

− mv′2

2kBT

)

]

= psc(1 − 3bkBT

2k
). (A.27)

For a FORT depth of kB · 1.3 mK and a FORT beam waist of wD = 1.4 µm,

the ‘spring’ constants k are kz = 9 × 10−16 N/m along the longitudinal di-

rection and kρ = 3.65 × 10−14 N/m along the radial direction (Section 4.2

(FORT)). The coefficients for the parabolic functions describing the probe

intensity distribution are bz = 0.078 µm−2 and bρ = 2.44 µm−2, obtained

by fitting the probe intensity distribution shown in Fig. A.6. By assuming a

temperature of 100 µK for the atom in the FORT, we obtain effective scatter-

ing probabilities p
eff(z)
sc = 0.82psc and p

eff(ρ)
sc = 0.86psc for an atom oscillating

along the longitudinal and the radial direction respectively.

As a result, we conclude that the reduction of the scattering probability

caused by the motion of the atom in the FORT is estimated to be less than

20% for the strongest focusing of the probe beam in our experiment.

5The motion of the atom in the FORT is governed by classical mechanics because the
average kinetic energy of the atom is much higher than ~ωF in our case.

6Although we consider a 1D-oscillator when deriving Eqn. A.25, we now use a speed
distribution for a free atom moving in a three-dimensional space. Should we insist that
the atom is only moving in a one-dimensional space, Eqn. A.27 becomes

peff
sc = psc(1 − bkBT/2k). (A.26)
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A.8 Setup photos

Figure A.7: Photos of the single atom trap setup.
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A.9 Band gaps of various semiconductors

Table A.1: List of band gaps of some semiconductors [48, 162]. The symbols D
and I refer to direct or indirect band gap respectively. Quantum dots fabricated
using semiconductor with the symbol † have lowest energy transitions falling con-
veniently within the visible optical regime.

Material Symbol Band gap (eV)@300 K D/I
Silicon Si 1.11 I

Germanium Ge 0.67 I
Silicon carbide SiC 2.86 I

Aluminum phosphide AlP 2.45 I
Aluminium arsenide AlAs 2.16 I

Aluminium antimonide AlSb 1.6 I
Aluminium nitride AlN 6.3 D

Diamond C 5.5 I
Gallium(III) phosphide GaP 2.26 I
Gallium(III) arsenide GaAs 1.43† D
Gallium(III) nitride GaN 3.4 D
Gallium(II) sulfide GaS 2.5 D
Gallium antimonide GaSb 0.7 D

Indium(III) phosphide InP 1.35† D
Indium(III) arsenide InAs 0.36 D
Indium antimonide InSb 0.17 D

Zinc sulfide ZnS 3.6 D
Zinc selenide ZnSe 2.7 D
Zinc telluride ZnTe 2.25 D

Cadmium sulfide CdS 2.42 D
Cadmium selenide CdSe 1.73† D
Cadmium telluride CdTe 1.49† D

Lead(II) sulfide PbS 0.37 D
Lead(II) selenide PbSe 0.27 D
Lead(II) telluride PbTe 0.29 D
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A.10 Conservation of energy

The total field can be expressed as the superposition of two fields:

~Et(~r) = ~Ein(~r) + ~Esc(~r) . (A.28)

For a weak on-resonant excitation field, the scattered field ~Esc is given by [95]

~Esc(~r) =
3EAei(kr+π/2)

2kr

[

d̂21 − (d̂21 · r̂) r̂
]

, (A.29)

where r̂ is the unit vector along ~r = r(sin θ cos φ, sin θ sin φ, cos θ), and d̂21 =
x̂+iŷ√

2
for a circular-polarized field. The π/2 phase reflects the fact that the

dipole moment of the atom lags the field experienced by the atom EA by a

phase of π/2 at resonance. For clarity of the expressions, we now assume

that the atom is at the origin O as opposed to that adopted in Chapter 3.

We now adopt an incident field ~Ein given by

~Ein(ρ, φ, z = ±f) =
EL

√

| cos θ|

(

1 ± cos θ

2
ǫ̂+ ∓ sin θeiφ

√
2

ẑ +
± cos θ − 1

2
e2iφǫ̂−

)

× exp
(

−ρ2/w2
L

)

exp
[

±i(k
√

ρ2 + f 2 − π/2)
]

, (A.30)

which is basically identical to Eqn. 3.34 except that EL (defined in Eqn. 3.5)

is included, and the Gouy phase of π/2 is shifted from the focus (Eqn. 3.50)

to the field at |z| = f so that the electric field amplitude at the focus EA =

Ein(O) is a real number. Note that, in Eqn. 3.34, 0 < θ < π/2, whereas here

θ is the polar angle from the +ẑ-direction.

In order to verify that Eqn. A.28 conserves energy despite the fact that

no direct ‘depletion’ of the input field Ein has been introduced [113, 114, 115,

111], we consider the energy flux crossing the z = −f plane and compare it

to the flux crossing the z = +f plane. The time averaged energy flux across

a surface S is given by

US =
ǫ0c

2

2

∫

S

ℜ
{

~E × ~B∗
}

· d ~A (A.31)
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where d ~A is a differential area element of the surface S and ℜ(x) denotes the

real part of x. Inserting Eqn. A.28 into the above equation yields

US =
ǫ0c

2

2

∫

S

ℜ
{

~Ein × ~B∗
in + ~Esc × ~B∗

sc + ~Ein × ~B∗
sc + ~Esc × ~B∗

in

}

· d ~A

Note that in the far field limit, ~Bin(sc) = k̂in(sc) × ~Ein(sc)/c, where k̂in(sc) is

a dimensionless unit vector parallel to the local field propagation direction,

and c the speed of light. Furthermore, before the focus we have k̂sc = −k̂in,

whilst after the focus we have k̂sc = k̂in. With these field properties, we arrive

at

Uz=±f =
ǫ0c

2

∫

z=±f

k̂in · ẑ

× ℜ
{

~Ein · ~E∗
in ± ~Esc · ~E∗

sc + ~Esc · ~E∗
in ± ~Ein · ~E∗

sc

}

dA , (A.32)

where we have also used the condition that the light fields are transverse, i.e.

k̂in · ~Ein = 0 and k̂in · ~Esc = 0.

Using Eqn. A.30, the first term in Eqn. A.32 gives

Uz=±f, in ≡ ǫ0c
2

∫

z=±f
ℜ
{

~Ein · ~E∗
in

}

k̂in · ẑdA (A.33)

= 1
4
ǫ0πcE2

Lw2
L = Pin , (A.34)

which agrees with Eqn. 3.6. Using Eqn. A.29, the second term in Eqn. A.32

gives

Uz=±f, sc ≡ ǫ0c
2

∫

z=±f
ℜ
{

~Esc · ~E∗
sc

}

k̂in · ẑdA (A.35)

=
3ǫ0cλ2E2

A

8π
= Psc

2
, (A.36)

where Psc is defined previously in Eqn. 3.9. On the plane z = −f , the

last two terms in Eqn. A.32 has no contribution to the integration since
(

~Esc · ~E∗
in − ~Ein · ~E∗

sc

)

is an imaginary number. On the plane z = +f , the
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last two terms in Eqn. A.32 give

Uz=+f, int ≡ ǫ0c
2

∫

z=±f
ℜ
{

~Esc · ~E∗
in + ~Ein · ~E∗

sc

}

k̂in · ẑdA (A.37)

= −3πǫ0cEAEL
√

f
2k

∫∞
0

ρ(f+
√

f2+ρ2)

(f2+ρ2)5/4
exp(− ρ2

w2

L
)dρ . (A.38)

The negative sign, which comes from both the Gouy phase in the incident

field (Eqn. A.30) and the phase difference between the dipole and local field

(Eqn. A.29), reveals that the scattered light and the incident light interfere

destructively after the focus [111]. This integral is of the same form as that

of Eqn. 3.49 and can be evaluated in the same way as Eqn. 3.50, leading to

Uz=+f, int = −3ǫ0cλ
2E2

A

4π
= −Psc . (A.39)

As a result of Equations (A.34), (A.36), and (A.39), the total energy flux

flowing across the z = −f and z = +f surfaces are both

Uz=±f = Pin −
Psc

2
. (A.40)

This confirms that no extra energy is generated by directly adding the the

scattered field to the unattenuated incident field (Eqn. A.28), even when the

scattering probability is great than 1. Note that at the limit, Psc = 2Pin,

Uz=±f = 0. This means that all incident power is reflected back by the

two-level system [111].
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