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S U M M A RY

The work in experimentally measuring the interaction of a strongly fo-
cused Gaussian light beam with a quantum system is presented here.
The quantum system that is probed is a single 87Rb atom trapped in
the focus of a far off resonant 980 nm optical dipole trap. The atom
is optically pumped into a two-level cycling transition such that it
has a simple theoretical description in its interaction with the 780 nm
probe light. Two classes of experiment were performed, one with a
weak coherent continuous wave light and another with a strong coher-
ent pulsed light source. In the weak cw experiments, an extinction of
8.2±0.2 % with a corresponding reflection of 0.161±0.007 % [], and
a maximal phase shift of 0.93◦ [] by a single atom were measured.
For these cw experiments, a single quantity, the scattering ratio Rsc,
is sufficient to quantify the interaction strength of a Gaussian beam
focused on a single atom, stationary at the focus. This ratio is depen-
dent only on the focusing strength u, conveniently defined in terms
of the Gaussian beam waist. The scattering ratio cannot be measured
directly. Instead, experimentally measurable quantities such as ex-
tinction, reflection and induced phase shift, which are shown to be
directly related to the scattering ratio, are measured and its value ex-
tracted.

In the experiments with strong coherent pulses, we investigate the
effect of the shape of the pulses on its interaction with the single atom.
Ideally the pulses should be from a single photon in the Fock num-
ber state. However, since we do not have a single photon source at the
correct frequency and bandwidth yet, and also because the interaction
strength is still low, a coherent probe light that is quite intense is sent
to the atom instead. It is also much simpler to temporally shape co-
herent pulses by an EOM. The length of the pulses were on the order
of the lifetime of the atomic transition. Two different pulse shapes
are chosen as discussed by Wang et al. [], rectangular and a rising
exponential. The excitation probability of the atom per pulse sent
is measured for different pulse shapes, bandwidths and average pho-
ton number. It is shown that before saturation, and for a similar pulse
bandwidth, the rising exponential pulse will attain a higher excitation
probability compared to a rectangular pulse with the same average
photon number in the pulse.
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L I S T O F S Y M B O L S

h̄ Reduced Plank constant

ε0 Permittivity of free space

c Speed of light in vacuum

e Electron charge
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1
I N T R O D U C T I O N

The rise of Quantum Information Science in the past two and a half
decades has been driven by many discoveries and advancements. This
blend of quantum mechanics, information theory and computer science
occurred when pioneers in the field began to ask fundamental ques-
tions about the physical limits of computation, such as, what is the
minimal free energy dissipation that must accompany a computation
step [, ], is there a protocol to distribute secret keys with uncon-
ditional security [, ], are there algorithms that optimise factoring
and sorting [, ] and other such problems. An interesting possibil-
ity of QIS is quantum computation [], where the quantum property
of entanglement, not present in classical physics, is utilised. If the ele-
mentary information of a normal computer is encoded in bits of 0 or 1,
then information in a quantum computer is encoded in quantum bits
or qubits, where the qubit is in an arbitrary coherent superposition of
0 and/or 1. Quantum computers then use these qubits, entangled or
otherwise, to perform quantum computation algorithms that far out-
perform classical computation algorithms in certain classes of prob-
lem and simulations.

There are many different systems under study for the actual im-
plementation of quantum computers such as trapped ions [], neut-
ral atoms [], spins in NMR [], cavity QED [], superconducting
circuits [], quantum dots [] and several others [, ]. In any
physical realisation however, there will always be some factors that
limit their usability as a true quantum device. DiVincenzo [] lists
the “Five (plus two) requirements for the implementation of quantum
computation” as

. Scalable physical system with well characterised qubits

. Initialisation of the state of the qubits is possible

. Decoherence time of the qubit needs to be much longer than the
gate operation time

. A Universal set of quantum gates can be applied

. Qubit-selective measurement capability

. Ability to interconnect stationary and flying qubits

. Proper transmission of flying qubits between locations,
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where the last two are not actual requirements for a quantum com-
puter but requirements for quantum communication between two qua-
ntum computers. Photons are an inherently suitable choice for flying
qubits since they can propagate freely through air or fibre for a large
distance before being absorbed or scattered. This is the envisioned
quantum network of photons as the flying qubit of information car-
rier and atom-like systems at the nodes of the network as stationary
qubits of information storage and/or processor [, , , ]. To
achieve this vision and requirement number , it is necessary to have
a high fidelity of information transfer between the flying and station-
ary qubits. Because of the no cloning theorem, qubits cannot be read
and copied in an arbitrary basis without affecting the qubit itself. As
such, we require an interaction which not only preserves but faithfully
transfers all the quantum information between the stationary and fly-
ing qubits. A common method of achieving this interaction with high
fidelity is to place an atom (stationary qubit) in a high-finesse optical
cavity which enhances the electric field strength of the photons (flying
qubits) and thus its interaction with the atom [, ]. An alternative
method of achieving this enhanced interaction is to use an ensemble
of atoms where a collective enhancement effect is observed [].

Here we explore the interaction of light, focused by a lens, with a
single trapped atom. This study will determine how feasible it is to
have a quantum interface by simply focusing the light. This has prac-
tical relevance/interest because it has been shown that an optical lat-
tice can be used to trap many single atoms [] and hence offer simple
upward scalability compared to high-finesse cavity systems which are
technologically demanding to scale up. A whole range of different
atom-like systems have and are still being investigated as the ideal
element to be used as an interface [, , ]. Although not all sys-
tems are equally suitable as an interface for qubits, these studies do
allow seemingly related questions such as, whether they can be used
as a conditional phase gate [, ] or a triggered single photon source
[, ].

The system used here is a single Rubidium87 atom trapped in a far
off resonant optical dipole trap []. The atom is probed using on
resonant light focused tightly and then recollected using an aspheric
lens pair in a confocal arrangement. Two regimes of interactions are
explored, one using a weak coherent laser beam and the other us-
ing strong coherent pulses. The outline of this thesis is as follows.
Chapter  presents the theory of light-atom interaction. The simple
case of a plane wave is briefly summarised in section . and its exten-
sion to a strongly focused Gaussian beam, following the work of Tey
et al. [] is presented in section .. In section ., the work of Wang
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et al. [] on the theory of shaped excitation pulses interacting with a
single atom is presented.

In chapter  the experiments performed to measure the interaction
of light with a single Rubidium atom as a two-level system is presen-
ted. The basic setup that is similar for all experiments performed is
detailed in sections . and .. Finally the conclusion and future out-
look of possible experiments are discussed in chapter . The results
of the phase shift and reflection measurements are published in [, ],
while a manuscript is being prepared for the pulsed experiments.
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2
I N T E R AC T I O N O F L I G H T W I T H A T WO - L E V E L
AT O M

In this chapter, we will review the theoretical aspects of the interac-
tion of light with a two-level atom. The atom will be approximated by
an atomic dipole while the probe light beam will be treated initially
as a classical electric field. For a strongly focused continuous wave
Gaussian beam, a useful quantity to quantify the interaction strength,
is the scattering ratio, Rsc, will be described []. It will be shown that
experimentally observable quantities such as transmission, reflection
and phase shifts, can all be determined from Rsc.

The next section discusses some of the effects of temperature on
the observed interaction []. In subsection ., the case of pulsed
excitation will be described where the probe is no longer a continuous
wave. Thus, a new Hamiltonian which captures the relevant dynamics
is introduced []. In this pulsed regime, the interaction strength is
quantified through the excitation probability, Pe which is a measure of
the atomic population in the excited state.

. interaction in the weak coherent case

The interaction of light with a two-level system has been discussed in
great detail in many textbooks [, , ]. There are many regions
of interest ranging from a purely classical atom and electromagnetic
field, to that of a semi-classical model, where the atom is quantised
and the field remains classical, and finally a fully quantum one, where
both the atom and the field are quantised. In this section, a semi-
classical model of atom light interaction with spontaneous decay is
used. From this model, the expression for power scattered by a two
level atom will be obtained.

.. Semi-classical model

A semi-classical model of atom light interaction is one where quantum
mechanics is used to treat the atom while the light is treated as a clas-
sical electric field. In such a treatment, the Hamiltonian of the system
can be written as,

H = H0 +HI (t), ()





where H0 is the Hamiltonian of the unperturbed two-level atom with
energy eigenstates

∣∣∣φi〉 and eigenvalues Ei and HI (t) is the perturba-
tion by the oscillating electric field of the light, which has the form

HI (t) = −d̂ ·E(t), ()

where d̂ is the atomic dipole operator under the dipole approximation
that is purely non-diagonal in the basis

{∣∣∣φ1
〉

,
∣∣∣φ2

〉}
. For a circularly

polarised electric field with amplitude E0 and frequency ω and of
the form E(t) = E0 [cos(ωt) x̂+ sin(ωt) ŷ]/

√
2 and the dipole operator

written as d̂= −er̂, the interaction Hamiltonian can be simplified to,

HI (t) =
eE0√

2
r̂ ·

(
eiωt + e−iωt

2
x̂− i

eiωt − e−iωt

2
ŷ
)

=
eE0

2

(
r−e

iωt + r+e−iωt
)
,

where r± = (x±iy)/
√

2. The wavefunction of the unperturbed Hamilto-
nian can be expressed as

Ψ (r, t) = c1(t)
∣∣∣φ1

〉
e−iE1t/h̄+ c2(t)

∣∣∣φ2
〉

e−iE2t/h̄

Ψ1(r, t) = c1

∣∣∣φ1
〉
+ c2

∣∣∣φ2
〉

e−iω0t, ()

where c1 and c2 are time-dependent coefficients of the atomic popu-
lation and are normalised such that |c1|2 + |c2|2 = 1 and h̄ω0 = E2 −
E1, with a change in its global phase. The wavefunction satisfies the
Schrödinger equation,

ih̄
∂Ψ
∂t

= HΨ , ()

which gives differential equations for the coefficients,

iċ1 =
c2

2


〈
φ1

∣∣∣er−E0

∣∣∣φ2
〉

h̄
ei(ω−ω0)t +

〈
φ1

∣∣∣er+E0

∣∣∣φ2
〉

h̄
e−i(ω+ω0)t


iċ2 =

c1

2


〈
φ2

∣∣∣er−E0

∣∣∣φ1
〉

h̄
ei(ω+ω0)t +

〈
φ2

∣∣∣er+E0

∣∣∣φ1
〉

h̄
e−i(ω−ω0)t

 .

For the case where the radiation frequency is close to the atomic reson-
ance, the magnitude of the detuning, |ω −ω0| � ω0. The fast oscillat-

 A circularly polarised electric field is chosen as it is a simultaneous eigenstate of
the atom in the trap that will be used in the experiment. The eigenstates are good
eigenstates even under the Zeeman and AC Stark shifts and thus will be a good two-
level system.
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ing term of ω+ω0 averages out and can be neglected in the rotating-
wave approximation giving,

iċ1 =
c2

2
Ωei(ω−ω0)t (a)

iċ2 =
c1

2
Ω∗e−i(ω−ω0)t, (b)

with Rabi frequency

Ω=

〈
φ1

∣∣∣er−E0

∣∣∣φ2
〉

h̄
=

(〈
φ2

∣∣∣er+E0

∣∣∣φ1
〉)∗

h̄
. ()

The solution of equations  gives an oscillation of the expectation
value of the population in the

∣∣∣φ1
〉

and
∣∣∣φ2

〉
or ground and excited

states with effective Rabi frequency Ω′ =
√
Ω2 + δ2, (where δ is the de-

tuning δ = ω −ω0), which continues on indefinitely. This is obviously
not accurate as spontaneous emission will naturally reduce the pop-
ulation of the excited state and thus reducing the coherence between
the ground and excited state, such that the oscillations damps out.

.. Optical Bloch Equations

To consider the actual steady-state population of the excited state,
spontaneous emission needs to be included in the model. One simple
way to do it, without going to a quantised description of the light
field is to write down the optical Bloch equations and include decay
terms to account for the decay due to spontaneous emission. The op-
tical Bloch equations under the long-wavelength, electric dipole and
rotating-wave approximation are[]

d
dt
ρ̂22 = i

Ω

2
(ρ̂21 − ρ̂12)− Γ ρ̂22 (a)

d
dt
ρ̂11 = − i

Ω

2
(ρ̂21 − ρ̂12) + Γ ρ̂22 (b)

d
dt
ρ̂12 = − iδρ̂12 − i

Ω

2
(ρ̂22 − ρ̂11)−

Γ

2
ρ̂12 (c)

d
dt
ρ̂21 = iδρ̂12 + i

Ω

2
(ρ̂22 − ρ̂11)−

Γ

2
ρ̂21, (d)

where Γ is the spontaneous decay rate, and ρ̂ij are the elements of the
density matrix operator and Ω is now assumed real. The steady-state
solution (t→∞) for the excited state population is given by,

ρ22 =
|Ω|2

4δ2 + 2 |Ω|2 + Γ 2
, ()





where it can be seen for a strong on-resonant continuous wave beam
(Ω� Γ , δ = 0), the maximum excited state population achievable in
the steady state is ρ22(t→∞) = 1/2. The spontaneous decay rate in
free space can be derived from Fermi’s golden rule which gives

Γ =
ω3

0

∣∣∣〈φ1

∣∣∣er− ∣∣∣φ2
〉∣∣∣2

3πε0h̄c3 . ()

=
h̄ω3

0

3πε0c3

(
Ω

E0

)2

, ()

where the term in the bracket is actually a constant proportional to
the dipole matrix element between states φ1 and φ2 or ground and
excited state. The optical power scattered by the atom is given simply
by the excited state population, decay rate and energy per photon []:

Psc = ρ22Γ h̄ω0. ()

Combining equations  and  for an on-resonant beam (δ = 0),

Psc =
Ω2

2Ω2 + Γ 2 Γ h̄ω0

=
Ω
Γ

2

2
(
Ω
Γ

)2
+ 1

h̄ω0, ()

and for a weak beam such that Ω� Γ , and using equation , we see
that the scattered power,

Psc ≈
Ω2

Γ
h̄ω0

=
3πε0c

3E2
0

ω2
0

=
3ε0cλ

2E2
0

4π
, ()

is quadratic with respect to the amplitude square of the electric field
or linear in intensity. Thus, the power scattered of a weak beam by the
atom is only a function of its wavelength and the electric field at the
position of the atom.

A simple measure of interaction is the scattering cross section, σ ,
which for a two-level atom exposed to an on-resonant monochromatic
plane wave is defined as []

σ =
Psc

I
, ()





where I is the intensity of the incoming plane wave given by

I =
1
2
ε0c |E0|2 . ()

Combining equations ,  and , the scattering cross section can
be written as

σmax =
3λ2

2π
. ()

The cross section has units of area and thus depends on the propor-
tion of the electric field that is concentrated in that ‘area’. A possible
definition of scattering ratio is given by Zumofen et al. [] as,

K0 =
Psc

Pin
=
σmax

A
, ()

where A represents the effective focal area and is calculated for vari-
ous incoming geometries such as linearly polarised homogeneous plane
waves and directional dipolar input waves as a function of the en-
trance half angle, as in the supplementary material of []. However,
for a Gaussian beam, the entrance half angle is not a convenient quant-
ity to measure. As such we introduce a similar but more convenient
measure of scattering ratio which is a function of the waist of the in-
coming beam, defined as where the intensity drops to 1/e2 of the axial
value.

.. Gaussian beam

Since a collimated circularly polarised probe from a single mode fibre
with a TEM00 mode Gaussian profile is used in the experiment, choos-
ing z as the propagation direction, the electric field has the form

Ein(ρ, t) =
EL√

2
[cos(ωt) x̂+ sin(ωt) ŷ]exp

(
−ρ2/w2

L

)
, ()

where EL is the electric field amplitude on the beam axis, ω is the
oscillation frequency, ρ is the radial distance from the z-axis, wL is the
waist of the Gaussian beam. An ideal Gaussian beam has a transverse
profile that extends to infinity, but a real one is limited by the finite
aperture of the optics used. However the power at the wings of a
beam that is clipped from an aperture of ρ = 2w0 is less than .%
and thus can safely be ignored. The time-averaged power of the beam
is given by

Pin =
1
4
πε0cE

2
Lw

2
L. ()
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Using the definition of scattering ratio in equation , and substitut-
ing a Gaussian input (equation ) and scattered power (equation )
we obtain,

Rsc =
Psc

Pin
()

=
3λ2

π2w2
L

(
E0

EL

)2

. ()

For a collimated beam focused by an ideal lens of focal length, f , the
waist at the focus, within the paraxial approximation, is related to the
waist at the input lens by,

w0 =
wL√

1+
(
zR
f

)2
≈
f λ

πwL
, ()

where zR = πw2
L/λ is the Rayleigh range of the beam before the lens

and the approximation is valid for a focal length shorter than the
Rayleigh range, f � zR. If all of the input beam power flows through
the atom at the focus, the ratio of their powers is then

1 =
P0

Pin
=

(
E0w0

ELwL

)2

, ()

and thus equation  becomes

Rsc =
3λ2

π2w2
L

(
wL
w0

)2

=
3λ2

π2w2
0

≈ 3
(
wL
f

)2

= 3u2, ()

where the approximation in equation was used and in the final line,
a new parameter, the focusing strength was introduced, defined as

u ≡ wL
f

, ()

which is a measure of how strongly the beam is focused. For stronger
focusing however, the electric field is not entirely concentrated at the
focus and thus equation  is no longer applicable. This is because
a single Gaussian mode is no longer sufficient to describe the beam.
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The input beam polarisation is also converted to other polarisations
that do not couple to the atom in the strong focusing limit since the
polarised atom only couples to a particular electric field polarisation
[].

. strong focusing case

In the strong focusing case, the paraxial approximation breaks down
and a new expression for the electric field at the focus is needed. Fol-
lowing the work of Tey et al. [], the electric field after an ideal lens
is written down such that it still satisfies Maxwell’s equation. Once
the field behind the ideal lens is known, it can be propagated to the
focus either by decomposing the field into cylindrical modes and nu-
merically propagating them or by using the Green’s theorem.

To simplify the expressions in this section, the electric field is ex-
pressed in dimensionless units such that electric field strength of the
collimated Gaussian beam entering the focusing lens is given by

Fin(ρ,z) = ε̂+e−ρ
2/w2

L e−ikz, ()

where ε̂+ is one of the circular polarisation vectors ε̂± = (x̂ ± iŷ)/
√

2,
or in the cylindrical polarisation basis,

Fin(ρ,φ,z) =
1
√

2

(
eiφ ρ̂+ ieiφ φ̂

)
e−ρ

2/w2
L e−ikz, ()

where ρ̂ = cosφx̂+sinφŷ and φ̂ = −sinφ x̂+cosφ ŷ are the orthogonal
polarisation vectors in the radial and azimuthal direction respectively
and k = 2π/λ is the wavevector amplitude along the propagation dir-
ection.

.. Ideal lens transformation

An ideal lens with focal length, f , will focus a collimated beam to
the focus of the lens. In terms of wavefront, it converts a beam with a

plane wavefront
(
e−ikz

)
into one with a spherical wavefront

(
e−ik
√
ρ2+f 2

)
that converges towards the focal point F. This on its own however does
not take into account the vector nature of the electric field. To set up
a transformation that ideally converges the beam to the focal point
and also satisfies Maxwell’s equations, not only the wavefront, but the
local polarisation of the electric field needs to be changed with three
requirements in mind [],
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Figure : The electric field Ein of a collimated beam (planar wavefront) with
a Gaussian profile is transformed into a focusing field EF with a
spherical wavefront by a thin ideal lens with a focal length f result-
ing in a field amplitude EA at the focus of the lens.

. A rotationally symmetric lens does not alter the local azimuthal
field component, but only tilts the local radial polarisation com-
ponent of the incoming field towards the axis

. The electromagnetic field after the lens is still transverse and
hence its polarisation orthogonal to the propagation direction,
given by the normal of the wavefront

. The power flowing into and out of an arbitrarily small area on
the thin ideal lens is the same.

From condition , the radial polarisation vector after the lens is trans-
formed by ρ̂→ cosθ ρ̂+ sinθ ẑ, where

θ = arctan(ρ/f ) ()

as in figure . Condition  is automatically satisfied by the transform-
ation and can be checked by writing the electric field in the spherical
basis with centre at the focus and ensuring that the radial unit vector
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r̂ is always zero. The final condition is satisfied by multiplying the
electric field by 1/

√
cosθ.

Hence for an input field given by equation , the polarisation after
the lens can be written as,

Fal(ρ,φ,z = −f ) = 1
√

cosθ

(
1+ cosθ

2
ε̂+ +

sinθ
√

2
eiφ ẑ+

cosθ − 1
2

e2iφ ε̂−

)
×

e−ρ
2/w2

Le−ik
√
ρ2+f 2

, ()

where ε̂± and ẑ are the three orthogonal polarisation vectors and θ as
previously defined. As can be seen, for a real vector field, as the beam
is more tightly focused (larger θ), other polarisation vector compon-
ents start to appear. Once the electric field behind the lens is known,
it can be propagated to the focus. One technique uses a decomposi-
tion of the electric field into complete orthogonal cylindrical modes
to reconstruct the field at any point after the lens [] while another
is to use the Green’s theorem which gives an analytical expression for
the field at the focus.

.. Field at the focus compatible with Maxwell equations

From Green’s theorem, it can be shown that for a given electric and
magnetic fields E(r′) and B(r′) on an arbitrary closed surface S ′ that
encloses a point r, the electric field at the point is determined by []

E(r) =

∮
S ′

dA′
{
ikc [n̂′ ×B(r′)]G(r,r′) + [n̂′ ·E(r′)]∇′G(r,r′)

+ [n̂′ ×E(r′)]×∇′G(r,r′)
}

()

where n̂′ is the unit vector normal to the differential surface element
dA′ and points into the volume enclosed by S ′, and G(r,r′) is the
Green’s function representing an outgoing spherical wave given by,

G(r,r′) =
eik|r−r′ |

4π |r− r′ |
. ()

If the point r is the focus of an aplanatic focusing field, then in the
far field limit, i.e. when |r− r′ | � λ, the incoming field propagation
wave vector k′ at any point r′ always points towards the focus, r. In

 The angle θ in this formulation doesn’t correspond to the inclination angle used in
the standard spherical coordinates convention since it extends from the negative z
direction. In order to convert to spherical coordinates and retain the same convention,
either the transformation θ→ π −θ or ẑ→−ẑ must be made.
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this limit, the expressions for the magnetic field and the gradient of
Green’s function simplifies to,

B(r′)→ k̂′

c
×E(r′), (a)

∇′G(r,r′)→ sgn(z′)ik′G(r,r′),G (b)

where the sgn(z′) is the sign function and is −1 for an r′ before the
focus and +1 for a position after. In this limit, and at the focus, equa-
tion  reduces to

E(rfocus) =

∮
S ′

dA′
ik

[
n̂′ ×

(
k̂′ ×E(r′)

)]
G(r,r′) + i sgn(z′)G(r,r′) [n̂′ ·E(r′)]k′

+ i sgn(z′)G(r,r′) [n̂′ ×E(r′)]×k′


=

∮
S ′

dA′ iG(r,r′)
{
[(n̂′ ·E(r′))k′ − (n̂′ ·k′)E(r′)] + sgn(z′) [n̂′ ·E(r′)]k′

− sgn(z′) [(k′ ·E(r′)) n̂′ − (k′ · n̂′)E(r′)]
}

=

∮
S ′

dA′ iG(r,r′)
[
(n̂′ ·E(r′)) (1+ sgn(z′))k′

− (n̂′ ·k′) (1− sgn(z′))E(r′)− sgn(z′) (k′ ·E(r′)) n̂′
]
. ()

The last term in the equation is zero because the electric field is trans-
verse. The closed surface S ′ can be divided into two parts, after and
before the focus such that sgn(z′) is either plus or minus one, giving,

E(rfocus) = 2i
∫
Saf

dA′G(r,r′) (n̂′ ·E(r′))k′−2i
∫
Sbf

dA′G(r,r′) (n̂′ ·k′)E(r′).

()
A large hemisphere is chosen as the surface after the focus such that

the normal is orthogonal to the outgoing electric field (or parallel to
k′), i.e. n̂′ ·E(r′) = 0, and the first term vanishes. The other surface is
chosen to be an infinitely large plane just after the ideal lens where the
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dimensionless electric field is known as in equation . Performing
the integral in the cylindrical basis and dropping the primes, we have,

F(rfocus) = F(0,0,z = 0)

= −2i
∫ ∞

0

∫ 2π

0
ρdφdρ

 eik
√
f 2+ρ2

4π
√
f 2 + ρ2

(|n̂| ∣∣∣k̂∣∣∣k cosθ
)
×

1
√

cosθ

(
1+ cosθ

2
ε̂+ +

sinθeiφ
√

2
ẑ+

cosθ − 1
2

e2iφε̂−

)
×

e−ρ
2/w2

L e−ik
√
ρ2+f 2

=
−ik

√
f

2

∫ ∞
0

dρ
ρ
(
f +

√
f 2 + ρ2

)
(
f 2 + ρ2

)5/4
e−ρ

2/w2
L ε̂+, ()

where in the second step, the φ integral leaves only the right-hand
circular polarisation term and θ is as defined in equation . The
integral has an analytical solution and equation  becomes,

F(rfocus) = −
1
4

ikwL
u

e1/u2
[

1
√
u
Γ

(
−1

4
,

1
u2

)
+
√
uΓ

(1
4

,
1
u2

)]
ε̂+, ()

with the upper incomplete gamma function,

Γ (a,x) ≡
∫ ∞
x
ta−1e−tdt, ()

and the focusing strength is as defined in equation . The −i term
reflects Gouy phase of −π/2 that the field picks up when it reaches
the focus []. The electric field dimensions can now be restored by
multiplying by the amplitude at the centre of the collimated Gaussian
beam EL, which can be expressed in terms of the optical power as

EL =
1
wL

√
4Pin

ε0πc
, ()

resulting in an electric field at the focus of the form

E(rfocus) = −
i
u

e1/u2

√
πPin

ε0cλ2

[
1
√
u
Γ

(
−1

4
,

1
u2

)
+
√
uΓ

(1
4

,
1
u2

)]
ε̂+. ()

As can be seen, the electric field depends only on the input power Pin,
wavelength λ, and the focusing strength u.
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Figure : Scattering ratio, Rsc, as a function of the focusing parameter, u, us-
ing the paraxial approximation and the full model, for an atom
stationary at the focus of an ideal lens.

.. Scattering ratio

The scattering ratio in equation  can now be re-evaluated in terms
of the field amplitude at the focus from equations  and  to obtain,

Rsc =
3λ2

π2w2
L

(
1
4

2πwL
uλ

e1/u2
[

1
√
u
Γ

(
−1

4
,

1
u2

)
+
√
uΓ

(1
4

,
1
u2

)])2

=
3

4u3 e2/u2
[
Γ

(
−1

4
,

1
u2

)
+ uΓ

(1
4

,
1
u2

)]2
, ()

where it is now just a function of a single focusing parameter. The scat-
tering ratio is thus just a measure of how efficiently one can convert
a beam with a Gaussian profile into a directional dipole wave profile.
As seen in figure , the value of the scattering ratio exceeds one, which
from the definition of equation  might initially suggest that there’s
more light being scattered away from the atom than going in. How-
ever this is clearly unphysical and it should be noted that the field
that is scattered by the atom is still coherent with the field of the in-
put beam and will interfere destructively. Thus energy conversation is
still maintained as will be shown in section .. as was shown in sev-
eral literature [, ]. The physical bound for light coming in from
one direction is, Rsc ≤ 2, given by the Bassett limit []. For this focus-
ing model of the Gaussian beam using an ideal lens, a maximal value
of Rsc = 1.456 for a focusing strength u = 2.239 is obtained. For an
even larger focusing strength, the value of the scattering ratio starts to
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Figure : A transmission measurement setup with an atom at the focus of
two confocal lenses. The transmitted power, Pout, is the result of
interference between the scattered light and the input probe light
in the case of coherent scattering.

decrease slowly as the electric field amplitude in the ε̂+ polarisation
at the point of the atom reduces due to over focusing.

To obtain a larger value of the scattering ratio from a Gaussian beam,
a different transformation needs to be done, one where not only an
ideal lens is used, but also transformations that change the amplitude
profile of the beam to better match the directional dipole wave [].

. measure of scattering ratio

The scattering ratio can be used as a figure of merit for scattering ex-
periments. It is however not a quantity that can be measured directly,
unless there is a detector that can cover the whole 4π solid angle. In
this section, the form of the scattered field of the atom and the experi-
mentally accessible quantities of transmission, reflection and induced
phase shift will be discussed. It will be shown that all these quantities
can be expressed using the scattering ratio and detuning as paramet-
ers. The idea of the experiments that will be conducted is illustrated
in figure . A weak coherent probe is focused to the atom and recol-
lected again by the second lens. Also collected by the second lens is
the field scattered by the atom which interferes with the probe for co-
herent scattering.

.. Scattered field

The field scattered by the atom is that of the rotating electric dipole
[], with an amplitude that is proportional to the excitation probe
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field amplitude, E0, and the total power contained in the dipole radi-
ation is equal to the power scattered by the atom as in equation . In
the far field (r � λ), the field scattered by the atom is

Esc(r) =
3E0ei(kr+π/2)

2kr
[ε̂+ − (ε̂+ · r̂) r̂] , ()

where r̂ is the radial unit vector pointing away from the atom [] or
in the cylindrical convention used in this chapter,

Esc(ρ,φ,z) =
3E0ei

(
k
√
ρ2+z2+π/2

)
8k

√
ρ2 + z2

[
(3+ cos2θ) ε̂++

√
2sin2θ eiφẑ+ (cos2θ − 1)e2iφε̂−

]
, ()

where θ is as defined in equation  . The phase term of π/2 reflects
the fact that the field scattered by the atom lags the probe field by
π/2 on resonance. From equation , the probe field at the lenses at
z = ∓f are,

Els(ρ,φ,z = ∓f ) = EL√
cosθ

(
1+ cosθ

2
ε̂+ +

sinθ
√

2
eiφẑ+

cosθ − 1
2

e2iφε̂−

)
×

e∓i
(
k
√
ρ2+f 2−π/2

)
e−ρ

2/w2
L , ()

where the incoming phase (at z = −f ) is adjusted with the additional
π/2 term such that the electric field at the location of the atom is real
and positive and at the second lens after the focus the field picks up
an overall Gouy phase of −π. It can be seen from the above equations
that on the z-axis (ρ,φ = 0), the probe field and the forward scattered
field are out of phase and interfere destructively. This was shown by
Zumofen et al. [] for any arbitrary incident fields.

.. Energy flux

Since the scattered field is still coherent with the incident probe field,
the measure of the energy flux going in and out of the system needs
to be evaluated from the final superposition of both fields. The intens-
ity of the field can be determined from the time-averaged Poynting
vector,

〈S〉= 1
T
ε0c

2
∫ T

0
dt< (E(r, t)×B∗(r, t)) , ()

 The scattered electric field was derived for an incoming electric field that is real at the
location of the atom. Thus equation  is made real by adding an additional phase.
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where far away from the focus, the wavefront can be locally approxim-
ated by a plane wave such that B= k̂×E/c, and equation  becomes,

〈S〉= ε0c
2
<

∣∣∣E(r)∣∣∣2 k̂, ()

where E(r) = Els + Esc is the electric field due to the superposition of
the two fields. The power that flows through the system can ideally be
evaluated at any surface that bounds it. Although both the probe and
the scattered field have a spherical wavefront, the power that flows
through the system is evaluated at the infinite planes at z = ∓f , be-
cause the probe field is completely defined at those positions. The
propagation directions are opposite before the focus, k̂ls = −k̂sc and
the same after the focus, k̂ls = k̂sc, thus giving,

P (z = ∓f ) =
∫
S
〈S〉 ·dA

=
ε0c
2

∫
S
<

∣∣∣E(r)∣∣∣2 k̂ls · ẑdA

=
ε0c
2

∫ ∞
0

∫ 2π

0
ρdφdρ<

(
|Els|2 ∓ |Esc|2 +ElsE

∗
sc ∓EscE

∗
ls

)
cosθ,

()

where k̂ls · ẑ = cosθ is the projection of the spherical wavefront on
the plane at z = ∓f . The first two terms of the integral can be easily
shown to be equal to

|Els|2 = E2
L

e−2ρ2/w2
L

cosθ
, |Esc|2 =

9E2
0

8k2
1

ρ2 + f 2

(
1+

f 2

ρ2 + f 2

)
, ()

while the last two terms can be expanded to get

ElsE
∗
sc ∓EscE

∗
ls =

3E0ELe−ρ
2/w2

L

2k
√
ρ2 + f 2

√
cosθ

(1+ cosθ)

(−2isinα) for −f

(2cosα) for +f
,

()
where

α =

2k
√
ρ2 + f 2 for −f

π for +f
. ()
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The terms in equation  are the power of the input probe, scattered
power and the power due to the interference terms respectively. Eval-
uating the integral before the lens we have,

P (z = −f ) = 1
4
ε0cπE

2
Lw

2
L −

3
8π
ε0cE

2
0λ

2

= Pin −
1
2
Psc, ()

where the interference term is zero because it is completely imaginary,
and the relations from equations  and  are used. And after the
lens, the integral gives

P (z = +f ) = Pin +
1
2
Psc −

ε0c
2

3E0EL
2k

2πf
2

e1/u2
[

1
√
u
Γ

(
−1

4
,

1
u2

)
+
√
uΓ

(1
4

,
1
u2

)]
= Pin +

1
2
Psc −

3
4π
ε0cE

2
0λ

2 = Pin −
1
2
Psc, ()

where the integral of equation  is done in the same way as that of
equation  and the field at the lens, EL is related to the field at the
focus by equations  and . The power that flows through both
planes at z = ∓f are the same. Thus the total energy is conserved and
there is no apparent violation as discussed in section ...

.. Transmission/Extinction

A simple transmission measurement is given by the ratio of the power
transmitted through the lenses when the atom is in to when it is not,
Pout/Pin, where Pout is the total power measured by a detector placed
after the setup. For a symmetrical setup as in figure , the detector
typically covers the same mode as the probe beam. This mode, g,
then can be used to carry out projections of an electric field E to get
the following scalar product,

〈g,E〉 ≡ ε0c
2

∫
r∈S

{
g∗ (r) ·E(r)

}(
k̂g · n̂

)
dA, ()

where S is the integration plane, k̂g is the local propagation direction
of the mode function g, and n̂ is the normal vector on the plane S.
The integration can be carried out at any convenient plane such that
it covers the mode function, such as the plane z = +f , immediately
before the second lens, thus having a similar form as the earlier integ-
ral in equation . The target mode function gT is defined to be the

 The probe beam with a Gaussian profile is usually derived from a single-mode optical
fibre. If the whole setup is symmetric, the beam can then be ideally coupled back into
a similar single-mode optical with a very high efficiency.





same as that of the incoming probe mode of Els in equation . With a
normalisation condition of 〈gT ,gT 〉 = 1, the mode function can be set
as

gT =
Els√
Pin

. ()

With this normalisation, the square of the projection in equation 
has the dimension of power and thus the optical power of the probe
that is scattered by the atom and coupled into a single mode fibre is

Pout = |〈gT ,E〉|2

= |〈gT ,Els +Esc〉|2

=

∣∣∣∣∣∣√Pin −
Psc/2
√
Pin

∣∣∣∣∣∣2 . ()

The transmission is then given by,

T =
Pout

Pin

=

∣∣∣∣∣1− Psc

2Pin

∣∣∣∣∣2
=

∣∣∣∣∣1− Rsc

2

∣∣∣∣∣2 . ()

For a maximal Rsc = 1.456 corresponding to a u = 2.239, a min-
imum transmission of Tmin = 0.074. Experimentally, the transmission
is measured not just at the peak but by scanning the probe beam de-
tuning, ∆, across the resonance frequency of the transition, resulting
a Lorentzian profile. The transmission, as a function of detuning, is
now,

T (∆) = 1−
Γ 2Rsc

(
1− Rsc

4

)
4 (∆−∆0)

2 + Γ 2
, ()

where ∆0 is the perturbed detuning of the transition away from zero
and Γ is the spontaneous decay rate of the transition which determines
the natural line width of the transition without any power or Doppler
broadening. By fitting a transmission spectrum of a two-level atom,
the quantity Rsc can thus be extracted.

 The Lorentzian term of iΓ
2(∆−∆0)+iΓ

is multiplied to the scattered field only since that

is the term dependent on detuning.
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.. Reflection

The light that is missing from the transmission goes into spatial modes
not covered by the forward detector. A convenient mode to detect part
of this missing light would be that of the incoming probe, but in the
opposite direction, i.e. the part of the light that is reflected backwards.
This is because it has the same spatial mode profile as the probe. The
integration plane of equation  is now chosen to be at z = −f and
with a mode function gR that has the same form as gT in equation 
but with k→−k. The reflected power is then

Prft = |〈gR,E〉|2

= |〈gR,Els +Esc〉|2

=
P 2

sc
4Pin

, ()

where the projection of 〈gR,Els〉 is zero because they have opposite k
vectors. Reflection can thus be defined as

R=
Prft

Pin
=
R2

sc
4

. ()

And similarly as a function of detuning,

R(∆) =
Γ 2

(
R2

sc
4

)
4 (∆−∆0)

2 + Γ 2
. ()

For a maximal Rsc = 1.456, a maximum reflection of Rmax = 53%
can be expected. A perfect reflection can be expected for an incoming
directional dipole wave [] which requires an Rsc = 2 but that cannot
be achieved by coming with a probe with a Gaussian profile and a
simple lens transformation.

.. Phase shift

The third independent measure of the scattering ratio is the phase
shift that is induced on the probe by the atom. This phase shift is
due to the interference of the scattered field and the incoming probe.
The phase shift is a function of detuning as is given by the argument
of the complex ratio of the projected fields in the forward direction
which has the form,
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δφ(∆) = arg
(
〈gT ,Els +Esc〉
〈gT ,Els〉

)
= arg

(
1− Rsc

2
iΓ

2(∆−∆0) + iΓ

)
. ()

It should be noted that on resonance, the scattered field is completely
out of phase with the probe (at and after the second lens z ≥ +f ) and
thus interferes destructively. This will just result in a decrease of the
power of the probe (extinction) but no apparent phase shift of the
probe. The maximal phase shift occurs at a detuning that is half the
linewidth of the transition, |∆−∆0| = Γ /2 . And for an Rsc = 1.456,
the maximum achievable phase shift is δφ( Γ2 ) = 30◦. Although this
measurement is ideally independent of the other two techniques, in
practice, it is not possible to measure the phase of the probe beam
directly since the oscillation frequency is too fast. Thus the phase is
measured in an interferometric setup with a local oscillator as a phase
reference. Extracting the phase shift of the beam from the interferro-
gram then requires knowledge of the transmission/extinction of the
probe since it is derived from the output of the interferometer. This
will be discussed further in section ...

. finite temperature

The theory presented so far works nicely for an atom that is stationary
at the focus of the ideal lens. However, for a real atom with a finite
temperature in a harmonic trap, the atom position fluctuates and its
velocity is non-zero. Since there is only a single atom, the temperature
here does not refer to the average kinetic energy of an ensemble, but
rather the average kinetic energy averaged over many different load-
ings of the atom into the dipole trap. This will contribute to three
effects namely, the atom not sitting at the maximum electric field at
the focus, Doppler shift of the incoming probe beam and finally pos-
ition dependent energy level shifts due to the harmonic potential of
the trap. The first two effects were considered by Teo and Scarani []
to come up with a final temperature of the atom in the trap. This will
be discussed briefly in the following sections.

.. Electric field around the focus

Since the atom is no longer stationary at the focus, the electric field of
the probe now needs to be evaluated at all positions where the atom
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can be. This was done in [] by solving for the Dyadic Green’s func-
tion defined as,

∇× (∇×G)− k2G= 1δ (r− r′) , ()

where G is the given by,

G=
(
1+
∇∇
k2

)
G(r,r′), ()

where G(r,r′) is defined as equation . The electric field is then

E (r) =
∫
S

dS ′ (ik)
eikR

2πR


− zR 0 0

0 − zR 0
x′−x
R

y′−y
R 0

E (r′) , ()

where S is the plane where the electric field is known completely, the
displacement R= |r− r′ | , and the focus is once again assumed to be in
the far field limit as was done in equation .

.. Non-stationary atom in a trap

In the experiment, the atom is trapped in an far off-resonant optical
dipole trap. The potential induced by the dipole trap is approxim-
ately harmonic close to the minima and can be approximated by equa-
tion . In this conservative harmonic potential, the kinetic and po-
tential energy sum to a constant value, which is the total energy of
the atom, EK + EP = ET . The total energy of the atom depends on
the loading technique. For an atom that is loaded from a cloud of
cold atoms at average temperature Tcloud, the loaded atom in the trap
will have a total energy that follows the Boltzmann distribution that is
truncated by the maximum depth of the trap. Thus, for each energy in
the distribution, the atom will experience a different average position
uncertainty and thus a position averaged electric field. Doppler broad-
ening is also present due to the finite velocity of the atom in the trap.
However, since the electric field is propagating in the z direction, the
main contribution of the Doppler shift will be in this direction. The
maximum velocity of the atom is when its potential energy is zero and
thus

vmax =

√
2ET
m

, ()

where m is the mass of the atom and the Doppler shift to the lowest
order is given by v/λ. For a maximum energy on the order of the trap
depth used (≈ kB · 1mK) the Doppler shift experienced is less than
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 % of the linewidth of the probed atomic transition. Thus the mo-
mentum distribution will only broaden the measured features slightly
and should not contribute much to Rsc. The position distribution of
the atom is that of a particle in a harmonic oscillator potential where
a simpler classical treatment is employed due to the high estimated
temperature (≈ 100mK) of the atom.

.. Position averaged Rsc

Once the electric field of the probe is known at all locations around
the atom and the atomic distribution is known, the average scattering
ratio can be evaluated by using a classical canonical ensemble to de-
scribe the system. Thus Rsc which depends on the electric field at the
position of the atom can be averaged using

〈
f (ratom,patom)

〉
≈ 1
Z

∫
e−

H
kBT f (ratom,patom)d3pd3r

≈ 1
Z

∫
e−

V (ratom)
kBT f (ratom)d3r, ()

where the momentum dependence is dropped and Z is the partition
function of the system described by the classical Hamiltonian H =
p2

2m +V (ratom).

. pulsed excitation of a single atom

The theory discussed so far is only applicable in the steady state solu-
tion where the probability that the atom is in the excited state never
exceeds .. For a pulsed probe, this is clearly not the case since for
a π-pulse, an atom in the ground state can be brought to the excited
state with probability close to unity. In this section, we follow the
work of Wang et al. [] on excitation of a two-level atom by a single
photon in a propagating mode. In this treatment, the electric field is
quantised.

.. Quantised electric field

Quantisation of the electric field is typically done in a cavity where
the mode function is well defined by the discrete modes of the cavity.
In free space however, the modes are no longer discrete but rather is a
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continuum, k. In the Coulomb gauge, the positive-frequency parts of
the electric-field operator can be written as [, ]

Ê(+)(r, t) = i
∑
λ

∫
d3k

√
h̄ωk

(2π)32ε0
âk,λεk,λuk,λ(r)e

−iωkt, ()

where ωk = c |k|, εk,λ(λ= 1,2) are the unit polarisation vectors of the
mode such that εk,λ · εk,λ′ = δλ,λ′ , εk,λ · k = 0 and the field operators
follow the usual commutation relation[

âk,λ, â†k′ ,λ′
]
= δ(k−k′)δλ,λ′ . ()

The spatial mode functions uk,λ(r) are normalised as∫
d3ru∗k,λ(r) ·uk′ ,λ′ (r) = δ(k−k′)δλ,λ′ , ()

to preserve energy conservation. In the interaction picture, and after
invoking the rotating-wave and dipole approximation, the interaction
Hamiltonian can be written as,

ĤI = −h̄
∑
λ

∫
d3k

[
gk,λ(ra)σ̂+âk,λe

−i(ωk−ωa)t −H.c.
]
, ()

where h̄ωa is the atomic transition energy, σ̂+ = |e〉〈g | is the atomic
operator that brings the atom from ground to excited state and the
spatial mode function of the field is now contained in the coupling
strength term,

gk,λ(ra) = d

√
ωk

(2π)32h̄ε0
uk,λ(ra)ed · εk,λ, ()

where d is the atomic dipole moment amplitude and ed is the dipole
unit vector.

.. Dynamics

From this Hamiltonian, the evolution of the atomic operators, σ̂± and
σ̂z = |e〉〈e|−|g〉〈g | is governed by a set of coupled Heisenberg equations.
A set of modified optical Bloch equations can then be written as,

˙̂σz = −Γ (σ̂z+ 1)−2
∑
λ

∫
d3k

[
gk,λ(ra)σ̂+âk,λ(t0)e

−i(ωk−ωa)t +H.c
]
+ζ̂z,

()
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˙̂σ− = −
Γ

2
σ̂−+ σ̂z

∑
λ

∫
d3k

[
gk,λ(ra)âk,λ(t0)e

−i(ωk−ωa)t
]
+ ζ̂−, ()

where ζ̂ are noise operators, introduced to account for the interaction
of the atom with the environment, and the spontaneous decay rate
in free space Γ = Γ ′ + Γp is made up of the sum of the decay into
the environment Γ ′ and the pulse mode Γp. The evolution of the σ̂+
operator is obtained by taking the Hermitian conjugate of equation 
for the σ̂− operator. Using the Wigner-Weisskopf theorem, the explicit
formula for Γp is given by,

Γp = 2π
∑
λ

∫
d3k

∣∣∣gk,λ(ra)
∣∣∣2 δ(ωk −ωa), ()

and substituting gk,λ from equation  and evaluating in spherical
coordinates, it becomes,

Γp = 2π
∑
λ

∫
d3k

d2ωk
(2π)32h̄ε0

∣∣∣uk,λ(ra)
∣∣∣2 ∣∣∣ed · εk,λ

∣∣∣2 δ(ωk −ωa)
=

d2

2(2π)2h̄ε0

(ωa
c

)3 ∑
λ

∫
dΩ

∣∣∣uka,λ(ra)∣∣∣2 ∣∣∣ed · εka,λ∣∣∣2
=

1
8π2

(ωa
c

)3 d2

h̄ε0
Λ

=
1

3π

(ωa
c

)3 d2

h̄ε0

3
8π

Λ, ()

where the Dirac-delta function picks out ka and the integration of dΩ
is done over the solid angle covered by the pulse mode. For the special
case where the pulse mode matches the dipole mode completely, the
integral term, Λ, reaches the maximum value of 8π

3 and the spontan-
eous emission into free space is made up entirely of the spontaneous
emission into the pulse mode, given by the well-known formula,

Γ = Γp =
1

3π

(ωa
c

)3 d2

h̄ε0
. ()

The parameter Λ ∈ [0,8π/3] weighs the solid angle covered by the
pulse with respect to the atom and is related to the scattering ratio, Rsc,
since it is only determined by the geometry of the system. However, Λ
alone is not a good measure of interaction strength of the light pulse
with the atom since in this short pulse regime, not only the spatial
overlap is important, but also the temporal profile/bandwidth of the
pulse and that is not reflected in the parameter Λ.
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Thus a value that we can use to quantify the interaction strength is
the excitation probability, Pe. This probability is given by the expecta-
tion value of the atomic operator σ̂z [, , ],

Pe(t) =
1
2
(〈Ψ0| σ̂z(t) |Ψ0〉+ 1) , ()

where |Ψ0〉 = |g〉
∣∣∣Φp〉 |vac〉 is the initial state of the system which is a

product state of the atom in the ground state, the state of the pulse
used and the environment in the vacuum state. Hence to calculate Pe
at any time, it is sufficient to evaluate the expectation value of σ̂z at
the interested time with the pulse used.

.. Fock state and coherent state

The single-photon wave-packet in the pulse mode can be written as
[] ∣∣∣1p〉=∑

λ

∫
d3kg∗k,λ(ra)f (ωk)â

†
k,λ |0〉 ≡ Â

† |0〉 , ()

where f (ωk) is the spectral distribution function in which the tem-
poral shape of the pulse enters into the dynamics of equation , and
with a normalisation that will give,∑

λ

∫
d3k

∣∣∣gk,λ(ra)
∣∣∣2 ∣∣∣f (ωk)∣∣∣2 = 1. ()

The shape of the pulse is related to f (ωk), up to a constant factor, by
a Fourier transformation,

E(t) =
√
Γp

2π

∫
dωk f (ωk)e

−i(ωk−ωa)t, ()

which then can be used to determine the coupling strength gk,λ(t).
Using the Wigner-Weisskopf approximation, it is assumed that the
coupling is constant at the frequencies of interest around the atomic
transition frequency ωa and reduces to an effective coupling strength
of

g(t) =
√
ΓpE(t), ()

which can then be used to calculate the excitation probability for dif-
ferent pulse shapes from the set of coupled differential equations 
and  with initial conditions |Ψ0〉 = |g〉

∣∣∣1p〉 |vac〉. However, in the ex-
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periment, a coherent source from a laser is used. The coherent state
wave-packet can be defined as∣∣∣αp〉= exp

(
αÂ† −α∗Â

)
|0〉 , ()

where the Â† is the wave-packet operator defined earlier in equation .
The mean photon number N in the state can be calculated by finding
the expectation value of the number operator,

N =
〈
αp

∣∣∣ Â†Â ∣∣∣αp〉= |α|2 . ()

The evolution of the atomic operator σ̂z, and hence its expectation
value and the excitation probability can then be calculated with the
initial condition |Ψ0〉= |g〉

∣∣∣αp〉 |vac〉 instead. This section assumes that
the pulse is Fourier limited and is a pure state in the photon mode.
And although the laser that will be used in the experiment is generally
written as a mixed coherent state, if the off-diagonal elements are zero
or very small, the expectation value of the atomic operator can still be
calculated by taking a trace of the density matrix operator. This mixed
state with minimal off-diagonal elements can be assumed if the initial
CW source has a very small (Fourier-limited) frequency(phase) and
amplitude noise. For the pulse parameters and the focusing strength
that correspond to the experimental conditions, the theoretical calcu-
lations were done by Wang Yimin on Matlab.
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3
E X P E R I M E N T S W I T H L I G H T W I T H A  - L E V E L
S Y S T E M

In this chapter we present the series of experiments that were done
to quantify the interaction strength of light with a single atom. In
chronological order, the following experiments were performed,

. Measurement of a 1◦ phase shift on a weak coherent beam [].

. Measurement of a .% reflection of a weak coherent beam [].

. Excitation with a single atom with temporally shaped pulses.

The common features of all experiments will be described first fol-
lowed by setups unique to each particular experiment.

. fundamentals

At the heart of all these experiments is the atom that we use as our 2-
level system and the light source that is used to ‘talk’ to the atom. The
atom needs to be isolated and localised in space at where the light is fo-
cused to the atom. In order to achieve this, the atom together with the
confocal focusing lens pair are held inside a Ultra High Vacuum(UHV)
chamber. The single-atom is localised using a far-off resonant optical
dipole trap loaded from a cloud of cold atomic molasses.

Once a single-atom is identified to be present in the dipole trap,
the atom is further prepared such that it resembles a -level system.
Only then does the science experiments begin proper. In the following
subsections, the technical details of the core setup will be explained.

.. Rubidium Atom as a -level system

The atom chosen as the workhorse for these experiments is the Rubid-
ium 87 atom. 87Rb is a naturally occurring isotope of Rubidium with
atomic number 37. It has a natural abundance of 28% and a mass of
86.9 amu []. With a nuclear spin, I , of 3/2, a natural choice for the
quantum numbers for its electronic eigenstates are

|n, l, F,mF〉 ,

where n, is the principal quantum number, l, is the orbital angular
momentum quantum number, F, is the total angular momentum mag-
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nitude from the coupling of the total electron angular momentum,
J= L+ S, with the total nuclear angular momentum, I, and finally,
mF , is the magnetic quantum number. L and S are the electronic or-
bital and spin angular momentum respectively. A more often used
notation would be the spectroscopic notation such as,

5P3/2 |F = 3,mF = 2〉 ,

which refers to a state with n= 5, l = 1, j = 3/2 and F,mF as stated.
A strictly 2-level system is one where the atomic population can

only cycle between these two levels and sum up to unity. For a dipole
allowed transition, and states |g±〉= 5S1/2 |F = 2,mF = ±2〉 and |e±〉=
5P3/2 |F = 3,mF = ±3〉 of 87Rb, |g±〉↔ |e±〉 is a good approximation of
a closed cycling 2-level system.

relevant level structure Besides the 5S1/2→ 5P3/2 transition,
also known as the D line (780 nm), there’s the D line (795 nm) where
the outer electron goes from 5S1/2 → 5P1/2. Rubidium has another
naturally occurring isotope with nucleon number 85. This 85Rb iso-
tope can provide us with a close-by suitable energy reference for lock-
ing our lasers. The full level structure of the relevant Rubidium levels
can be found in Appendix A.

vacuum system In order to localize a single-atom nicely, the back-
ground pressure needs to be kept very low such that the probability
that a highly energetic background gas will hit the atom is very small.
The chamber is made from an anti-reflection coated (outer-side) glass
Cuvette, 3×3×7 cm outer dimensions, with a wall thickness of 2.5 mm,
(Hellma OG glass) bonded to a vacuum chamber using an Indium wire
and sealed with a low vapor-pressure epoxy (Torr Seal resin sealant,
Variance, Inc.). The vacuum chamber is continuously pumped with an
24 l/s ion getter pump. A titanium sublimation pump is also attached
to the chamber and after the initial titanium sputtering, a pressure of
' 1×10−12 Torr was measured on a hot-cathode ionization gauge tube
with the Rubidium dispenser turned off. Rubidium gas is evaporated
into the chamber from an SAES Getters’ Alkali Metal Dispenser when
heated above 200◦C by passing a current through it.

.. On-resonant coherent light sources

In order to manipulate the internal electronic states of the atom, a tun-
able source of coherent narrow-band, compared to the atomic trans-
ition, is desirable. This is easily attainable with increasing improve-
ments in the engineering of solid-state diode lasers almost spanning
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Figure : A photo of the top view of a typical External Cavity Diode Laser
used in the experiment. The first order diffraction from the reflect-
ive diffraction grating is fed back into the diode laser.

the whole optical spectrum. The two lowest energy optical transitions
in Rubidium are the D and D lines which have wavelengths very
close to the lasers used in compact discs readers and thus are extens-
ively engineered and have become very reliable and cheap for use in
optics experiments [, ].

In our experiments, we use wavelength selected 780 nm diode lasers
with a rated output power of 80 mW from Sanyo (DL7140-201SW) for
beams at the D transitions and normal wavelength-unselected ones
for beams at the D transition. The lasers are temperature tuned to get
to the desired wavelength. A 980 nm diode with a maximum power of
300 mW was chosen as the source for the dipole trap for reasons that
will be discussed in section ...

frequency stability and external cavity diode lasers The
beams used in the experiments are obtained from temperature stabil-
ised solid-state laser diodes. And depending on the tunability and
linewidth required, they are further grating-stabilised in an extended-
cavity Littrow configuration [, ] (see fig. ). A short-term laser
linewidth of ' 600 kHz with a long-term stability of MHz was meas-
ured when the frequency of the grating-stabilised lasers is locked to
a frequency reference. A frequency modulation technique, which will
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Figure : Schematic of the laser setup used in the experiment. Polarisation of
the beams are controlled by wave-plates (not shown). The beams
are all coupled to optical fibres that go to vacuum chamber. The
auxiliary beam is used for alignment and frequency reference. De-
tails are mentioned in text.

be discussed later, is used. Since the relevant transition in Rubidium
that we are interested in (D) has an atomic linewidth of 6 MHz, the
linewidth of the laser is narrow enough to probe the transition coher-
ently in continuous wave (CW) experiments. The ellipticity of the
beam is compensated by anamorphic prisms and an optical isolator
with 30–60 dB isolation is used to prevent optical feedback into the
laser diode.

frequency locking and tuning The frequency of the lasers are
locked using Doppler-free saturated-absorption frequency-modulation
(FM) spectroscopy [, ] to either real or cross-over transitions of
Rubidium in an atomic vapour cell. Frequency modulation of the
beam is done via an EOM in a tank circuit with a 20MHz resonance.
Tuning of the final laser frequency is done via Acousto-Optic Modu-
lators (AOM) in a double-pass configuration using a polarising beam-
splitter (PBS) and quarter-wave plate (λ/4). The AOM also acts as
switches for turning off the beams with an extinction of about 40 dB
(see fig. ).

The cooling beams for the Magneto-Optical Trap (MOT) are derived
from a laser locked to F = 2→ F′ = 1 on the D line and frequency
shifted upward by 396 MHz through a double pass 200 MHz band-
width AOM such that they are 24 MHz red-detuned from the closed
cycling transition. The repumper for the MOT is derived from a laser
on the D line, locked to F = 1 → F′ = CO12, where CO12 is the
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cross-over transition between F = 1 and F′ = 2, and also frequency
shifted upward by 408 MHz through another double pass 200 MHz
bandwidth AOM such that the repumper is on resonance to the F =

1 → F′ = 2 transition on the D line (see figures.  and  in ap-
pendix A).

Other than the repumper and the cooling beams for the MOT, other
beams include optical pumping beam (F = 2→ F′ = 2 on the D line),
probe (F = 2 → F′ = 3 on the D line) and repumper in the probe
(F = 1→ F′ = 2 on the D line) with the atomic transitions frequency
shifted due to the AC stark shifts of the dipole trap and bias magnetic
field.

gaussian beams from a single mode optical fibre All beams
are coupled into single mode optical fibres which not only serve as an
easy way to guide the beams to the atom in the vacuum chamber, but
also cleans up the spatial mode of the beam to that of the fundamental
Gaussian mode supported by the fibre. Polarisation-maintaining fibres
are also used if the polarisation of the beam needs to be kept constant.

.. Laser Cooling and Trapping of Rubidium

Loading and trapping of a single atom is a probabilistic process. To
load a single atom into our dipole trap, we need a large enough density
of pre-cooled atoms, formed by the MOT, around the trap such that
the probability of loading per unit time or loading rate is reasonable.
Once loaded, the lifetime of the atom in the trap is determined by the
loss rate due to either the loading of another atom into the trap or
collisions with highly energetic background atoms.

It should be noted that the dipole trap is a conservative potential
and can only trap atoms which have a lower kinetic energy than the
trap depth of the potential. Thus to trap the atom, there needs to be
a process that takes away kinetic energy while the atom is in the trap,
which is done by the cooling beams of the MOT.

mot The Magneto-Optical Trap is formed at the intersection of 
cooling beams and a magnetic quadrupole field gradient with zero
field at the point of intersection. The red-detuned cooling beams are
used to Doppler cool the Rubidium atoms, by preferentially scatter-
ing the faster moving atoms []. Without a quadrupole field, the
cooling beams will set up an optical molasses of slow moving but
not really trapped atoms. In order to trap, a trapping potential is

 The cross-over transition of F = 1 and F = 2 is not a real transition but an artefact of
the saturated absorption technique using counter-propagating beams [].
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Figure : The core of the setup including a magneto-optical trap, a cuvette at-
tached to a vacuum chamber, the aspheric lenses, and the relevant
light beams used for trapping the atom and performing the exper-
iment (the lens holder in the cuvette is not shown for clarity). The
inset is a zoom-in near the centre of the lens system.

formed by exploiting the Zeeman shifts caused by a magnetic field
minima [, , ]. The quadrupole field is set up by a pair of coils
in an anti-Helmholtz configuration which generates a field gradient
of ' 7 Gauss cm−1 along the X-axis and ' 3.5 Gauss cm−1 along the Y-
and Z-axes at the centre of the trap.

The MOT cooling beam is split into 3 and goes through single mode
fibres before being rotated to circular polarisation by a quarter wave
plate. One beam goes through the cuvette along the X-axis while the
other two pass through at an angle of 20◦ from the vertical Y-axis in
the Y-Z plane (see figure ). All beams are then retro-reflected on mir-
rors to create the other  beams. Due to reflection losses from the glass
cuvette, the power from the reflected beams is slightly lower. The cool-
ing beams from the single mode fibres thus are slightly focused such
that the retro-reflected beams have a smaller waist and thus the same
intensity as the forward beam at the centre of the trap. The beams
have a waist of 0.7 mm to 0.6 mm at the centre of the trap. The in-
tensity of each beam is ' 20 mW cm−2 which is about 5.5× Isat, where
Isat = 3.6 mW cm−2 is the saturation intensity for the D transition of
87Rb for isotropic light [].

The repumper, on the D line, is delivered to the vacuum chamber
using the same single mode fibres as the cooling beams. The purpose
of the repumper is to keep the 5S1/2 |F = 1〉 ground state unpopulated,
such that the atoms are continuously cooled in the cycling transition.
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2.5 cm

Figure : A photo of the probe beam fluorescence from the atoms when a
high dispenser current is set. There are much less atoms in the
chamber during the normal operational condition of the experi-
ment.

The total intensity of the repumper at the MOT is ' 40 mW cm−2.
With such a setup, we obtain a 87Rb-atom cloud with an approxim-
ate diameter of 0.4 mm.

confocal lens pair An important component of the experiment
is the confocal aspheric lens pair inside the cuvette in the vacuum
chamber. An aspheric lens is designed to give a diffraction limited fo-
cus, without spherical aberration, from a collimated beam thus repla-
cing the need for multi-element microscope objectives. The aspheric
lenses used in the setup were manufactured by LightPath Technolo-
gies, Inc. (350230-B). These moulded glass aspheric lenses have a ef-
fective focal length (at 780 nm) of 4.5 mm and working distance (back
focal length) of 2.91 mm both with an uncertainty of ±1% of the effect-
ive focal length. The lenses have a clear aperture of 4.95 mm, are anti-
reflection coated for near-infrared wavelengths and are UHV compat-
ible.

To arrange them confocally, a lens holder was machined such that
the lenses are both concentric and the distance between them is 5.82 mm
with a machining uncertainty of 0.02 mm. Any slight non-confocality
can be compensated by sending a beam that is slightly focusing or di-
verging instead of a collimated beam. The lens holder is machined
from aluminium and the lenses held in place with titanium screws.
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optical dipole trap An optical dipole trap is created by focusing
a light beam tightly such that an a large intensity gradient is created.
This intensity gradient will set up a potential due to the optical di-
pole force depending on the intensity and wavelength of the beam and
also the atomic transitions of the atom []. For the experiment, we
have chosen 980 nm as the trap wavelength as it is very far detuned
(~200 nm) from any ground state atomic transition of 87Rb and also
because relatively high powered single mode diode lasers (300 mW)
at this wavelength are readily available.

The depth of the potential is proportional to I/δ, where I is the
intensity of the dipole beam at the trap and δ is its detuning from the
D line of 87Rb. The scattering rate of the beam by the atom on the
other hand is proportional to I/δ2. For the experiment, the dipole trap
beam was obtained from a temperature stabilised diode laser without
an external cavity. It passes through an AOM which is used as an
amplitude modulator to stabilise the power of the beam at the trap.
The polarisation of the dipole beam is chosen to be right-hand circular.
A dipole trap beam power of ' 20 mW and a focal waist, wD , of '
1.8mm gives a trap potential depth, U0, of h · 23 MHz or kB · 1.1 mK.
With such an intensity, we estimate the off-resonant scattering rate of
the dipole trap beam to be on the order of 10 s−1.

Using paraxial approximation, the spatial distribution of the dipole
potential can be described, in cylindrical coordinates by,

U (ρ,z) =
−U0

(1+ (z/zR)2)
exp

[
−

2ρ2

w2
D(1+ (z/zR)2)

]
, ()

where,
zR = πw2

D/λ ()

is the Rayleigh range of the Gaussian beam. For a sufficiently cold
atom in the trap, |ETotal| � U0, the potential can be Taylor expanded
about the minima giving rise to a harmonic potential in the form of,

U (ρ,z) ≈ −U0

1− 2
(
ρ

wD

)2

−
(
z
zR

)2 . ()

The oscillation frequencies of a trapped atom in the harmonic po-
tential, in the radial and longitudinal directions respectively, are given
by

ωρ =

√
4U0

mw2
D

, ωz =

√
2U0

mz2
R

, ()

 The focal waist was estimated using paraxial approximation.
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Figure : Setup to determine the trap frequency of the dipole trap. The
power of the dipole trap beam is modulated at ωm by modulating
the amplitude of the 200 MHz RF that is sent to the AOM. The mod-
ulation is switched on for a variable duration only when the atom
is in the trap and its lifetime measured.

where m is the mass of the 87Rb atom. Within the paraxial approxim-
ation and from equations () and (), the two trap frequencies have
a fixed ratio, which depends on wD and the trap wavelength, λ,

ωρ
ωz

=

√
2πwD
λ

. ()

The trap depth can similarly be written as parameters of the trap
frequencies, trap wavelength and atomic mass as,

U0 =
mλ2

8π2

ω4
ρ

ω2
z

. ()

The trap frequencies are measured by modulating the dipole trap
power. The setup for this measurement is shown in figure . The
amplitude of the 200 MHz RF that is sent to the AOM is modulated
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at ωm, with a modulation depth 20–60% and ωm scanned. After the
atom loads into the trap, the modulation is switched on for a variable
amount of time and the probability that the atom remains in the trap
is measured. Lifetime of the atom in the trap for each modulation
frequency is extracted by fitting the probability versus time measure-
ment to an exponential decay with the time constant as the parameter.
Parametric resonance occurs when the modulation frequency is []

ωm =
2ω
n

, n= 1,2,3 . . . , ()

where ω can either be the longitudinal or transverse trap frequency.
On resonance, the trap lifetime is dramatically reduced and this can
be as can be seen from figure . The measured frequencies are ωz ≈
2π · 7 kHz and ωρ ≈ 2π · 57 kHz. These numbers are compatible with
the estimated trap parameters of the dipole trap.

overlapping of the foci of the dipole trap and probe beams

and the collection optics The probe beam (780 nm) (together
with the optical pumping and repumper in the probe beam) passes
through the same set of aspheric lenses as the dipole trap beam (980 nm).
Due to chromatic aberration of the lens, for a collimated beam, differ-
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980 nm
(dipole trap)

Figure : A basic setup to load and trap a single atom. Inside the ultra-high
vacuum (UHV) chamber, the atom is loaded into the dipole trap,
formed at the focus of the 2 aspheric lenses (AL), from the cloud
of cold atoms at the Magneto-Optical trap (MOT). Interference fil-
ters (IF) at 780 nm filter out all dipole trap beam at 980 nm. The
forward and backward detection detector, Dc and Df are single
photon silicon avalanche photodiodes which counts the fluores-
cence of the atom under the MOT beams. A probe beam at 780 nm
is sent to the atom through the aspheric lenses as well. Its polarisa-
tion is controlled via polariser (P) and a quarter waveplate. 60%
of the probe beam that passes through the cuvette is collected into
the forward detection fibre.

ent wavelengths will have a different focal spot. To ensure that at
least the probe and dipole trap beam have the same foci, their diver-
gences are adjusted such that each individual beam have the same
waist equidistant from the focus. This means that the beams are sym-
metric from the centre of the lenses and hence have foci that overlap
longitudinally to an estimated uncertainty of ≈ 1.3mm limited by our
collimating and beam waist measurement device. For the transverse
overlap, the axis of the two beams are aligned to an uncertainty better
than 15mm at a plane about 10 cm away from the cuvette and better
than 0.15 mm at a plane about 7 m away on the other side of the cu-
vette using a CCD. Doing this, we estimate that the transverse overlap
of the foci to be better than 90 nm.

Collection optics are placed on both sides of the chamber to collect
780 nm light scattered through the aspheric lens pair (figure ). All
other wavelengths are filtered out using dichroic and interference fil-
ters centred at 780 nm (Semrock LL01-780-12.5). Additionally, the
collection optics in the forward direction also collects about 60% of

 The power of the beam is measured on a detector as a knife-edge on a motorised stage
is moved across it. The recorded power as a function of the blade translation follows
the error function (for a Gaussian beam) with the beam waist as a parameter.
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the probe that passes through the chamber. The losses in the probe
are due to reflection losses off the cuvette and the aspheric lenses
(87%), transmission losses through dichroic and interference filters
(91%) and finally mode-matching and reflection losses when coupling
into another uncoated single mode fibre (75%).

The single mode fibres are connected directly to Silicon avalanche
photodiodes (Si-APD) operating in Geiger counting mode. Two kinds
of Si-APD are used, one passively quenched and the other actively
quenched. The passively quenched APD is home-made and saturates
at about 300 kHz counts while the actively quenched APD is a module
from Perkin Elmer (SPCM-AQR 15) with a peak count rate of 25 MHz.
Dead time of the detectors are approximately the inverse of the max-
imum count rates. Both APDs have a quantum efficiency of about
50–60% at 780 nm.

.. Trapping of a single atom

In order to trap a single atom, we exploit the collisional blockade
mechanism [, ] present in a tightly focused optical dipole trap.
This blockade mechanism comes about from light-assisted inelastic
collisions of two atoms in a very small dipole trap leading to a loss of
both atoms [, ]. In other words, this ensures that we will never
have more than one atom in the trap at any time.

A typical way of determining the number of atoms in a trap is to ob-
serve the amount of atomic fluorescence from the trap. If the number
of atoms in the trap, N , is small, the amount of detected fluorescence
shows a discrete behaviour proportional to N . Such discrete-step sig-
nals have been observed for example in a MOT [, ], and also in
moderately focused dipole trap []. For a dipole trap with a tighter
focus, the fluorescence signal has only two discrete levels correspond-
ing to either one or no atom in the trap [, ]. Such a signal is
measured and shown in figure .

A binary on/off signal however is not a sufficient proof that there’s
only a single atom in the trap. A more definitive method is to measure
the normalised second-order correlation function of the light scattered
from the trap [, ], defined classically as,

g(2)(τ) =

〈
I1(t)I2(t+ τ)

〉〈
I1(t)

〉〈
I2(t)

〉 , ()

where the angle brackets denotes a time average over t and In(t) is the
fluorescence intensity at positions 1 and 2. At long time delays, τ→∞,

 The numbers quoted are the transmission through those elements
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Figure : (Left) Typical fluorescence signals from the atom in dipole trap,
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all correlations should vanish and g(2) → 1. At shorter time scales of
τ , the g(2)(τ) is dependent on the source and hence properties of the
fluorescence intensity. For any classical light field, g(2)(τ) obeys the
inequalities [],

g(2)(0) ≥ 1, g(2)(τ) ≤ g(2)(0). ()

This definition is convenient when we are measuring current on a
photodetector that is proportional to intensity of the light. In terms
of photon counting, g(2) (τ) describes the conditional probability of
detecting a second photon at time τ after a first one was detected at
t = 0 [, ]. For single-mode light in a quantised field however, it
can be shown (equation .. of []) that the range of values for the
second-order correlation function becomes,

1− 1
〈n〉
≤ g(2)(τ) ≤∞ for 〈n〉 ≥ 1and for all τ , ()

where 〈n〉 is the mean photon number. The fluorescence light from
a single atom is not classical because its g(2)(0) violates equation .
This is because after the emission of the first photon, the atom is in
the ground state and cannot emit another photon at zero delay, i.e.

g
(2)
N=1(0) = 0. ForN atoms in the trap, the correlation function, g(2)N (τ)

can be written as [, ],

g
(2)
N (τ) =

1
N

[
g
(2)
1 (τ) + (N − 1)

(
1+

∣∣∣∣g(1)(τ)∣∣∣∣2)] , ()

where g(1)(τ) is the field correlation function describing interference
between light fields from different atoms. For a fluorescence collected
from a large solid angle, the interference term disappears and we have

g
(2)
N>1(0) =

N−1
N ≥ 0.5.

The detected fluorescence signal from the atom is recorded using a
timestamp unit (maximum resolution of 450 ps and 120 ns dead time)
and post processed to extract the second-order correlation function
between two different detectors, Dc and Df. A delay cable of 480 ns
is inserted between Dc and the timestamp unit to compensate for the
dead time of the timestamp unit. Figure  shows the normalised
g(2)(τ) of the recorded events (uncorrected for detector dark-counts).
It shows a Rabi oscillation with frequency of ≈ 76 MHz and a clear
anti-bunching dip (below 0.5) at zero delay, confirming that we have
a single atom in the trap.
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Figure : Normalised second-order correlation function versus time delay
τ between two photodetection events at detector Dc and Df with
clear anti-bunching at τ = 0. The smooth red curve is a fit using a
simple sinusoidal term with a delay dependent envelope. (Inset)
At long delays, g(2)(τ) goes to 1.

. from a single atom to a single -level system

The 87Rb atom has a multi-level structure and is perturbed by any ex-
ternal fields. Two major sources of perturbation experienced by the
trapped atom are from stray magnetic fields and the dipole trap beam.
The stray magnetic fields are mostly due to the Earth’s magnetic field
and the permanent magnet inside the ion-getter pump. Although the
magnetic field at the centre of the dipole trap can be zeroed to within
an uncertainty of ±10 mGauss in the  directions using three pairs of
Helmholtz coils (with the quadrupole coils switched off), it is very dif-
ficult to remove any magnetic field gradient. The other perturbation
is caused by the light fields, mainly from the dipole trap. The dipole
trap beam sets up the dipole potential which is due to the AC Stark
shifts to the ground state energy levels of the atom.

.. Quantisation axis

Without any external fields, there is no preferred direction for the
atom and itsmF levels are degenerate with the population equally dis-
tributed. The dipole trap beam breaks this symmetry by selecting a
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Figure : Calculated AC Stark shifts of a 87Rb atom in a circularly polarised
dipole trap for the parameters mentioned in the text.

preferred direction (z-axis) in the direction of the beam. Choosing this
direction as the quantisation axis, we can calculate the AC Stark shift
of the ground, 5S1/2 and excited 5P3/2 states of 87Rb. The shifts were
calculated using a second-order time dependent perturbation theory
(see appendix of [] using the known radiative lifetimes of trans-
itions to the relevant states []. The 5S1/2 |F = 2〉 and 5P3/2 |F = 3〉
shifts are shown in figure . Under a right-hand circularly polar-
ised dipole beam the ground states of the atom shift downwards by
≈ 23 MHz and become non-degenerate with a separation of ≈ 330 kHz
between each Zeeman sub-level or mF states. The excited states shift
upwards and are strongly split. To make the ground state further non-
degenerate, a bias magnetic field of ≈ 2 Gauss is introduced along the
z-axis such that the levels are further split by an additional 1.4 MHz
between each mF states.

If some stray magnetic field orthogonal to the quantisation axis is
present, the atom will undergo Larmor precession leading to a mix-
ing of the population into other mF states. As a result no two-level
system will exist after a characteristic time given by the inverse Lar-
mor frequency.

 Along the resultant magnetic field direction.
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.. Optical pumping

In order to prepare the atom in a 2-level system, the atomic popula-
tion is optically pumped to |g±〉. This can be done via the a circularly
polarised beam that is tuned on resonance to the F = 2→ F′ = 3 trans-
ition on the D line (probe beam) and another to the F = 1→ F′ = 2
transition on the D line (repumper in the probe beam), both of which
are AC Stark shifted by ≈ 30 MHz apart from their unperturbed states.
Under a circularly polarised beam along the quantisation axis, the al-
lowed transitions has to have a ∆mF =m′F−mF = ±1. Thus for an atom
with F and mF ground states initially equally populated, a left-hand
circularly polarised optical pumping beam will keep on exciting the
atom from 5S1/2 |F = 2,mF =mF〉 to 5P3/2

∣∣∣F′ = 3,m′F =mF − 1
〉

and

5S1/2 |F = 1,mF =mF〉 to 5P1/2

∣∣∣F′ = 2,m′F =mF − 1
〉
. Spontaneous

emission is random and can occur with ∆mF = 0,±1 and with prob-
abilities dependent on their Clebsh-Gordon coefficients. However on
average, the atom will decay to |g−〉 after repeated excitation.

To achieve this efficiently, a minimum number of excitation cycles
is needed. As such, we allocated 20 ms for optical pumping, by the
end of which, the atom should be left cycling in the |g−〉 ↔ |e−〉 trans-
ition with a probability of more than %, which is the final 2-level
system that we are interested in. When a right-circularly polarised
beam is used instead, the atom will end up in the |g+〉 ↔ |e+〉 cycling
transition. This bright state optical pumping technique, so called be-
cause the final cycling state is constantly scattering light, is used in
the transmission, reflection and phase shift experiment of section ..

... Dark state Optical pumping

In the previous optical pumping scheme, the atom will end up in
the |g±〉 ↔ |e±〉 cycling transition at the end of the optical pumping
step. Since pumping into this 2-level system is a probabilistic process,
there will be instances where the atom will end up in the final cycling
transition earlier and just continue to scatter more photons, thereby
increasing it’s average kinetic energy due to recoil. To ensure a min-
imal number of excitations, the atom should end up in an optically
dark state where it does not have any allowed resonant transitions to
excite to. This can be achieved by sending a beam that is tuned on
resonance to the F = 2 → F′ = 2 transition on the D line (optical
pumping beam) instead of F = 2→ F′ = 3 as used previously.

This works because there are no 5P3/2

∣∣∣F′ = 2,m′F = ±3
〉

states, and
when the atom reaches the state |g±〉 no further excitations are pos-
sible. The atom thus ends up in the optically dark state of |g±〉. Be-
cause the |g±〉 state is optically dark, there won’t be any excess excita-
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tion which heats up the atom. Figure  shows the level scheme and
polarisation used for optical pumping into the |g−〉 state. As such, the
beam intensity can be increased and was set to be about 64 mW m−2,
such that optical pumping is done within 10 ms. At this point, the
atom is then in a good approximation of the final two level system
which is between |g±〉 and |e±〉. This dark state optical pumping is
used for the pulsed experiments described in section ..

. transmission, reflection and phase shift experiments

The first set of experiments were done with a weak coherent probe
beam where the Rabi frequency is Ω � Γ . In this limit, the meas-
ure of scattering ratio, Rsc, is still adequate to quantify the interaction
strength. As discussed in section ., there are several complement-
ary experiments that can be done to determine Rsc. The probe beam
is derived from a diode laser similar to the one used for the cooling
beams in the MOT. The laser frequency is locked to the transition
from 5S1/2 |F = 2〉 to the cross-over transition 5P3/2 |F′ = CO23〉. The
frequency is then shifted up by about ≈ 170 MHz using a double pass
80 MHz AOM and swept across the |g−〉 → |e−〉 transition. The laser
can also be locked to the 5S1/2 |F = 2〉 to 5P3/2 |F′ = 1〉 transition and
shifted upwards by ≈ 440 MHz by a 200 MHz AOM. See figure  in
appendix A for the transition lines. In all of these experiments, when
the probe frequency is scanned across the resonance, its intensity is
adjusted such that the scattering rate for all frequencies are approx-
imately the same at about 2500 s−1. Also, the probe beam is always
kept switched on during the experiment to avoid power fluctuations
due to thermal heating of the AOM. Since the probe is always on, we
cannot optically pump to a dark state. Hence optical pumping is done
with the probe itself for 20 ms.

.. Transmission and reflection

The transmission and reflection experiment can be done simultan-
eously. The setup for these experiments is that shown in figure .
The probe beam has a Gaussian profile with a waist parameter of
1.25 mm just before the aspheric lens corresponding to a focusing
parameter, u, of 0.278 from equation . Its polarisation is trans-
formed to left-hand circular to drive the |g−〉 ↔ |e−〉 transition. The
probe beam, after passing through the atom, is recollected into an-
other single-mode fibre and that goes to detector Dc. The collection
optics for the reflected probe is aligned by first sending another beam
in place of detector Df and overlapping it with the probe and coupling
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Figure : Schematic of the temporal sequence for the cw experiments. In
this example, the probing cycle (steps 2–5) is repeated  times
before the final background measurement. Only data from the
first 5 cycles are used for calculating the transmission/reflection
and phase shift. The blanking step separates atom probing and
the background measurement.

them both into the same single-mode fibre (detector Dc) with similar
high efficiencies of about 75%. Once that is done the two collection
optics single-mode fibres have the same mode, which is the mode
defined by the probe beam. Detector Df is then replaced back.

The experiment begins by choosing a particular detuning for the
probe beam. A cloud of cold Rubidium atoms is then gathered at the
MOT. Once an atom is loaded into the dipole trap, its fluorescence due
to the MOT beams is collected by detector Df. This increase in count
rate in the detector triggers the transmission/reflection measurement
sequence. The main steps in the sequence are (see fig. ):

. Switching off the MOT quadrupole coils and the MOT beams.

. Applying of a bias magnetic field of ≈ 2 Gauss along the quant-
isation axis which gives a Zeeman splitting of approximately
1.4 MHz.

. 20 ms of optical pumping into the |g−〉 state which is done via
the probe beam. In this time, the current supplying the bias
magnetic field also should have stabilised.

. After preparation, the counts rates, tA, rA, (normalised per 100 ms)
on detectors Dc and Df are recorded for τA which ranges from
130–150 ms (See Appendix C for a more detailed description).

. Next, the MOT beams are turned on to check if the atom had re-
mained in the trap, again by monitoring fluorescence at detector

 See appendix B.
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Figure : A typical measure of normalised count rates at detectors Dc(red,
solid) and Df(blue, dashed) during an atom loading event for the
transmission/reflection experiment. The dotted horizontal lines
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This trace was taken for a probe that is close to resonance and
hence an obvious difference in the photocount rates.

Df. In this step, the MOT quadrupole coils are not switched on
and the bias magnetic field is switched off. This whole process
takes about 20 ms. At the end of this step, the MOT beams are
switched off and if the atom is still in the trap, steps number 
through  repeated again.

. Otherwise, the background count rates, tB, rB, (also normalised
per 100 ms) on the same detectors are recorded for τB which lasts
about 2 s as reference without the atom.

. After measuring the background count rates, the MOT beams
and MOT quadrupole coils are switched on again to load another
atom into the dipole trap.

Figure  shows a typical trace of the photocounts recorded during
a measurement sequence. The transmission, Ti , and reflection, Ri , for
each loading event is calculated from the normalised count rates, tA,B
and rA,B by,

Ti =
tA
tB

, Ri =
rA − rB
tB

()
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Figure : Results for the transmission and reflection experiment. For this
focusing strength, a maximal reflection of about .% of the in-
coming power (filled circles), coinciding with the minimal trans-
mission of % (open circles) was observed. The solid lines are
weighted fits to a Lorentzian profile obtained by minimising the
χ2 quantity.

and a weighing factor

wi =
τB

∑
τA

τN (τB+
∑
τA)

, ()

where τN is a normalisation time to keep the weight unit-less and the
summation is carried out over the time where the atom remained in
the trap. The uncertainties in the measured quantities are derived
from Poissonian counting statistics. For each frequency detuning of
the probe beam, we typically average over a  loading cycles and
calculate the final transmission and reflection for that detuning as,

T̄ =

∑
wiTi∑
wi

, R̄=

∑
wiRi∑
wi

. ()

Results

The transmission and reflection measurements, as the detuning is swept
across the resonance, is shown in figure . Both the measurements
seem to follow the expected Lorentzian line profile from equation 
and . A best fit to such a profile with centre detuning ∆0, full width
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half maximum Γ , and scattering ratio Rsc, as free parameters was done
for both dataset. For the transmission measurement, the best fit para-
meters were, ∆0/2π = 37.1±0.1 MHz, Γ /2π = 8.1±0.3 MHz andRsc =

0.083±0.002. Similarly for the reflection data, ∆0/2π = 36.8±0.2 MHz,
Γ /2π = 8.0±0.6 MHz and Rsc = 0.080±0.002 were obtained. Both val-
ues are in agreement within their uncertainties, however, these values
for Rsc do not match the expected Rsc = 0.201 for the experimental
focusing parameter used which theoretically gives the upper bound.
From section ., it was shown that the transmission and reflection
can be derived from Rsc. Using equations  and , a value of max-
imal extinction value of 1 − T = 8.2 ± 0.2 % and a peak reflectivity of
0.161± 0.007 % were obtained from fitted Rsc values respectively.

Both measurements show complementary dependence on the de-
tuning, within the fit uncertainty. The centre frequency of the reson-
ance line is blue shifted mostly due to the AC Stark shift induced by
the optical dipole trap and partly due the bias magnetic field. The
observed widths are slightly larger than the natural linewidth of the
probed D line. (6.06 MHz). Although not fully understood, the cause
of this broadening is most probably due to position dependent differ-
ential AC Stark shift present in the trap. Since the atom has some
finite temperature, it moves around in the trap experiencing not only
variations in the probe field intensity, but also varying AC Stark shifts.

... Temperature of the atom

The temperature of the atom here refers not that of an ensemble of
atoms since there is only one atom, but that of the atom after many
different loading events. There are a number of possible ways to de-
termine the temperature of the atom such as the release and recapture
method [], time-of-flight measurement [] and Raman sideband
thermometry []. In the first two techniques, the temperature is de-
termined by simulating the dynamics of the atom with a certain tem-
perature, T , after it has been released from the trap and comparing it
with the experiment. In the first method, the recapture probability is
simulated based on the trap parameters and the initial atom energy,
while in the second method the rms spread of the atom is simulated
based on the initial atom energy and the imaging light. The sideband
thermometry technique measures the ratio of the red to blue sideband
strength in a Raman absorption spectrum. For a thermal distribution,
the ratio is directly related to the average occupational number of the
atom in its harmonic potential, which can then be related to the tem-
perature of the atom in the trap. Raman sideband thermometry is
a nice temperature measurement technique since it is a more direct


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Figure : Probability of recapturing the atom after releasing the atom from
the dipole trap. Although the trap is not switched off at ∆t = 0,
the probability is not unity. This is due to the loss of the atom dur-
ing the finite measurement time of probing and checking for the
atom. The solid line is a Monte Carlo simulation of the probabil-
ity of recapture based on the energy of the atom. This simulation
was done with an atom temperature of ∼ 34 μK and using 500, 000
trajectories for each release time.

measure and also because of the ease to go a step further and cool the
atom via Raman sideband cooling.

The release and recapture experiment was done to estimate the tem-
perature of the atom []. The atom was released by switching off
the dipole trap for a variable amount of time up to 80 ms and then
recaptured by switching it on again. The probability of recapturing
is shown in figure  together with a Monte Carlo simulation of the
experiment with an atom temperature of 34 mK. This temperature is
much lower than the Doppler temperature of TD = 146mK, and is
caused by sub-Doppler cooling of the atom in the MOT.

The position averaged value for Rsc is ' 0.15 for 34 mK and ' 0.11
for the Doppler temperature, both of which are still larger than what
was measured. However since the atom is continuously being optic-
ally pumped and probed by the probe beam, the recoil from these
processes will also increase the average energy of the atom. With a
scattering rate of 2500s−1 the energy picked up in the z direction after
140 ms of probing is about kB · 63mK without considering the recoil.
A preliminary Raman cooling experiment is being done on the atom


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Figure : Transmission of the probe on-resonant as a function of optical
pumping time and probing time.

(see section ). The average occupational number of the atom in the
harmonic trap can also be estimated from the measurement and was
estimated to be ' 6 in the radial direction. If the motional axes in the
other axes are assumed to have the same average energy, the average
temperature is then ' 24 mK. The discrepancy between the theoretical
model and the experimentally measured results in not yet understood,
however a possible source of error is that the model assumed classical
motion for the atom. The effects of temperature of the atom on the
experiments should be further examined.

... Varying of pumping and probing time

A simple experiment to determine the effect of heating by the probe
beam is done for the extinction experiment. For this particular exper-
iment, instead of integrating the detector clicks into bins of 100 ms,
all of the clicks and their time of arrival is recorded on a timestamp
unit. The count rates for different time and durations can then be
calculated by binning the clicks into the appropriate bins. Since the
optical pumping and probing is done with the same 5S1/2 |F = 2〉 to
5P3/2 |F′ = 3〉 beam that is on resonant, there is no clear transition
when optical pumping is finished and when does probing begins. If
detector clicks due to the probe beam immediately after the MOT is
switched off are recorded, the data can be post-processed to allow
for a variable amount of time set aside for optical pumping and an-
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Figure : Setup for the phase shift experiment with a single atom trap in
one arm of a Mach-Zender Interferometer.

other variable amount of time used to calculate the actual transmis-
sion. This transmission as a function of two variable for a probe beam
that is on-resonant is shown in figure . It can be seen that there is
an optimal optical pumping time for when the transmission goes to
a minimum. This corresponds to the time that is needed to bring the
atom into a two-level system, i.e. states |g−〉 and |e−〉.

Also visible is the drop in transmission when the optical pumping
and probing times are increased. When the probing time is increased,
the atom will scatter more light and gain more recoil energy. The
cause of the decreased transmission is most probably due the heating
up of the atom by scattering light from the beam.

.. Phase shift

The setup for the phase shift experiment is an extension of that for
the transmission/reflection experiment as shown in figure . The
probe beam is now sent through a stabilised Mach-Zender Interfero-
meter (MZI), in which one arm sits the single 87Rb atom trapped at
the focus of the confocal aspheric lens pair and the other arm serves
as a phase reference. Also, its waist parameter is slightly reduced to
.mm corresponding to a focusing parameter, u, of .. It is split
and the ratio of optical power in both arms of the interferometer is





controlled with a half-wave plate and a polarizing beam splitter (PBS)
such that the power at the input ports of the non-polarising beam
splitter (BS), without an atom in the trap, is the same. The probe
beam is again made circularly polarised with a quarter-wave plate be-
fore being focused on to the atom. After passing through the lenses,
the probe beam polarisation is converted back to linear to match that
of the reference arm. A pair of correction lenses was inserted into
the reference arm to compensate for any difference in divergence of
the two wavefronts at the output beamsplitter. The interference con-
trast (after coupling into the single mode fibres) had a visibility, V, of
98.0 ± 0.2%. The output modes of the interferometer are then collec-
ted into single mode fibres with an efficiency of 84% without an atom
in the trap, and guided to detectors Dc and Dd.

The phase stability of the interferometer over the measurement time
is ensured by locking it to an off-resonant laser (λ= 830 nm) co-propa-
gating with the probe, and keeping the MZI close to zero optical path
difference. This auxiliary light is separated from the probe with di-
chroic mirrors (D) to provide a feedback signal to a piezo-electric actu-
ator (PZT). Due to technical reasons, the dipole trap beam now comes
from a direction opposite to the probe.

The measurement sequence is exactly the same as that for reflec-
tion/transmission measurement except that the count rates, tc and
td(t′c and t′d) on detectors Dc and Dd are recorded instead, where the
primed variables indicate the changed count rates due to the atom
present in the trap.

The optical power after the beam splitter, Pc,d , — without the atom
and up to a constant — is given by

Pc,d =
1
2

[
|Ea|2 + |Eb|2 ± 2 |Ea| |Eb|cosφab

]
, ()

where Ea and Eb are the field amplitudes in the atom and reference
arms before the beam splitter respectively and φab is the phase differ-
ence between the two MZI arms. Before the start of the measurement
sequence, the MZI is locked to a position where it has maximal phase
sensitivity which occurs for φab = ±90◦ where |Ea| = |Eb| . This how-
ever does not imply that tc and td are the same because of different
coupling efficiencies in each channel and different detector dark count

 Although the laser has a coherence length of several meters, the optical path length
difference was kept to < 2 mm. This is because the wavelength of the 830 nm laser is
not locked to a stable narrow frequency reference, only temperature stabilised. We
estimate that for a change of frequency of 1 GHz, the interferometer path difference
changes by ∼ 5 nm corresponding to a change in phase of the probe by ∼ 2◦. Al-
though this seems a lot, in practise the actual frequency drifts are much smaller for
the duration of the experiment, and the interferometer is frequently relocked before
each measurement sequence.
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rates. In general, tc,d = Pc,d + Bc,d . It can be shown that at φab = 90◦,
the count rates in the detectors are,

tlock
c,d =

tmax
c,d − t

min
c,d

2
+Bc,d , ()

where tmin,max
c,d are the minimal/maximal observed count rates for phases

φab = 0◦,180◦ and Bc,d are the detector background rates. The actual
phase difference of the MZI arms, without the atom, can be inferred
from the measured count rates as,

φab = arccos
[
Pc − Pd
Pc+ Pd

]
. ()

With the atom in the trap, the probe beam is scattered causing a
power drop in the arm. Using the same convention as before, we have

P ′c,d =
1
2

[∣∣∣E′a∣∣∣2 + |Eb|2 ± 2
∣∣∣E′a∣∣∣ |Eb|cosφ′ab

]
, ()

where |Eb| remains unchanged. The new phase difference is given by,

φ′ab = arccos
[

P ′c − P ′d
(Pc+ Pd)

√
T

]
, ()

where T is the transmission of the probe beam in the atom arm,

T =

∣∣∣∣∣E′aEa
∣∣∣∣∣2 = 2

(
P ′c + P

′
d

)
Pc+ Pd

− 1. ()

Note that for the relations in equations  and  to hold, |Ea|= |Eb| ,
which is satisfied by the high visibility of the empty interferometer.
The optical powers Pc,d and P ′c,d can be calculated from the count rates
via

Pc,d =
tc,d − tmin

c,d

tmax
c,d − t

min
c,d

, P ′c,d =
t′c,d − t

min
c,d

tmax
c,d − t

min
c,d

. ()

Finally, the phase shift induced by the atom can be calculated simply
as,

δφ = φ′ab −φab. ()

In the same experimental run (i.e. for the same detuning of the probe
frequency), a complementary independent measurement of the trans-
mission T of the probe with the reference arm blocked was performed
using the same measurement sequence, which has a better signal to
noise ratio.


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Figure : Phase shift δφ observed on a weak coherent probe beam tuned
across the resonance of a single atom (red, filled circles), show-
ing the dispersive character from phase retardation below reson-
ance to phase advancement above resonance with respect to the
freely propagating beam without the atom. The transmission, T ,
for the same probe (eqn. ) is shown for reference (blue, filled
triangles). The solid curves are theoretical plots with the same
parameters. The parameters are extracted from the fit to the trans-
mission data. Error bars in the data are from propagated Poisso-
nian counting statistics.

Results

The results of the phase shift measurement is shown in figure . Be-
cause of the small signal to noise ratio and the large uncertainty of
the the phase shift data, the transmission data was used to extract
the best fit parameters using equation . The best fit parameters are,
Γ /2π = 8.2±0.5 MHz, ∆0/2π = 35.1±0.2 MHz andRsc = 0.064±0.004.
Using the values of the fit, equation  is plotted and is in reasonable
agreement with the data points. Similar to the transmission/reflection
experiment, the linewidth is also slightly broader than the natural
linewidth of the atomic transition (6.06 MHz). The maximal phase
shift occurs at ∆ = Γ /2 and according to equation , has a value of
0.93◦.
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Figure : Setup for preparation of optical pulses with exponential or square
waveforms. DDS: direct digital synthesizer, BPF: bandpass filter,
AMP: RF amplifier, AOM: acousto-optic modulator, EOM: electro-
optic modulator. See details in the text.

. pulsed excitation experiments

The second set of experiments were done with strong pulses of the
probe beam where the Rabi frequency is now Ω � Γ and the length
of the pulses is on the order of the lifetime of the excited state. In this
limit, scattering ratio, Rsc, is no longer a good quantity as the assump-
tions that was made in section .. are no longer valid. Since we do
not have a source of single photon number states, the experiments are
only done with coherent states from a cw laser from which the pulses
are generated using an optical modulator. The atom is now optically
pumped to a dark state. In this set of experiments, the probe detun-
ing is fixed to be on resonance while the pulse bandwidth and average
number of photons in a pulse are varied.

.. Pulse generation

The setup for generating optical pulses with a variable temporal over-
lap is shown in figure . The basic idea of optical pulse generation
is to exploit the fast bandwidth of the EOM as a phase modulator.
A radio-frequency (RF) signal with the desired temporal envelope is
fed into a fast fibre coupled EOM (EO-Space 20 Gb/s phase modu-
lator). The sidebands that are created at the optical carrier frequency
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plus/minus the RF frequency will have an electric field that is modu-
lated temporally by the envelope that was used.

A 1.5 GHz sine wave was chosen as the modulation frequency for
ease of frequency stabilisation and filtering of the carrier later on.
This RF frequency was derived from a home built circuit with com-
ponents from Mini-Circuits. A digital direct synthesizer (DDS) gen-
erates a 375 MHz sine wave which passes through a band pass filter

before being amplified. The amplified sine wave is then multiplied
by 4 through two second harmonic frequency multipliers to get the
required 1.5 GHz RF frequency. The RF is used as a local oscillator
input of a double-balanced mixer . The intermediate frequency input
is fed with an electric signal with the desired temporal envelope. For
a square pulse, the signal was generated from a NIM signal generator.

The rising exponential electrical signal was obtained from a home
built circuit which uses the relation between the base voltage and col-
lector current of a fast RF transistor. This relation is [],

IC = IS

[
exp

(
VBE
VT

)
− 1

]
, ()

where, IC is the collector current, IS is the reverse saturation current,
VBE is the base-emitter voltage andVT = kBT /e ≈ 26 mV at room tem-
perature, is the thermal voltage. Thus if VBE is a linearly increasing
in time, and for IC � IS , the collector current will, in good approxim-
ation, grow exponentially before it saturates. The linearly increasing
VBE is obtained by charging a capacitor with a constant current. The
time constant of the exponential pulse can be controlled by choosing
a suitable charging current and capacitance of the capacitor.

After the mixer, the RF input to the EOM has a trace that looks like
figure . The residual modulation after t = 0 is taken care of by ap-
propriately switching off the optical light to the EOM using the AOM.
The beam is sent to the EOM with its polarisation aligned to the mod-
ulation axis defined by the key of the input fibre to the EOM. The RF
pulse is mixed with the beam in the EOM to give a modulated optical
pulse at the sidebands, 1.5 GHz away from the carrier frequency. At
a very low modulation depth, Vmod� Vπ, the response of the EOM is
approximately linear and the sidebands will have the temporal profile
of the RF pulse. Finally, one of the sidebands is filtered with optical
cavities which transmits 60% of the sideband and suppresses the other

 The band pass filter is made from a simple narrowband stripline that only allows
MHz to pass and suppresses the spurious frequencies by at least dBc.

 The amplitude of the sidebands created by the EOM follows the Bessel function. For a
weak enough modulation, the amplitude of the first order sidebands respond linearly
with the modulation amplitude.
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Figure : (Top) A 1.5 GHz RF frequency enveloped by a ≈ 30 ns rising ex-
ponential and a fast cut-off at t = 0 measured with a 2 GHz oscil-
loscope. The black solid line is exponential with a time constant
31 ns . (Bottom) A histogram of the APD clicks after sending the
   attenuated pulses. The magenta solid line is a fit to an
rising exponential and gives a time constant of 15.7± 0.1 ns.

unwanted frequencies by at least ≈ 60 dB. The filtered pulse is atten-
uated to the required optical power via neutral density filters (ND1)
and then coupled into a single-mode fibre to be sent to the atom. Fig-
ure  shows the histogram of the number of clicks per 1 ns time bin
when many identical copies of the attenuated optical pulse is sent to
an APD. As can be seen, the optical histogram follows a rising expo-
nential with a risetime half of that of the envelope of the RF. A more
detailed description of the circuit is found in Appendix C .

To get the final optical frequency of the pulse to be on resonant
with the Stark shifted |g−〉 ↔ |e−〉 transition the initial probe laser
is locked to the 85Rb transition of 5S1/2 |F = 3〉 to 5P3/2 |F = 4〉 with a
frequency, ν, of 384.229240 THz. The first order of the double pass
AOM increases the frequency by 2 × 210 MHz. The red-sideband of
the output of the EOM has an absolute frequency of 384.228160 THz
which is ≈ 40 MHz blue detuned from the unperturbed |g−〉 ↔ |e−〉
transition.

.. Experimental procedures

For this experiment, it is essential to have timing information of each
detector click. To achieve this, a 4 channel timestamp unit with a

 Three cavities are used, each with a transmission of 85% and suppression of ≈ 20 dB
 See page  for relevant transition. νred = ν+ 2× 210MHz − 1.5GHz
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Figure : Setup of the pulsed experiment is almost exactly the same as that
for the transmission and reflection experiment except for the ad-
ditional neutral density filters (ND2) to prevent saturation of de-
tector Dc and the timing events of each detector clicks are recor-
ded on the timestamp unit.

temporal resolution of ≈ 450 ps is used. Two channels are used as trig-
gers and two other channels receive the clicks from the APDs. After
each registered event, the timestamp has a deadtime of 120 ns before
the next event can be registered. To compensate for this deadtime, a
cable delay of 300 ns was added to one channel of the unit from one
of the APDs. Before each optical pulse is generated, a trigger is sent
to the timestamp, one channel for a pulse with the atom in the trap,
and another for without an atom, for background measurement. The
histogram is obtained by arranging the detection time into bins with
temporal widths ∆tb and plotting the probability to find a click in each
bin per trigger pulse.

The experimental setup itself is very similar to the one used for the
transmission and reflection experiment. The main difference is the
inclusion of neutral density filter filter ND2 and a dark-state optical
pumping stage is now used instead (See figure ). The probe and the
collection optics now have a smaller waist before the confocal aspheric
lens pair. Also, the sequence is slightly modified to:

. Switching off the MOT quadrupole coils.

. The MOT beams are slightly further detuned to about 30 MHz
and left on for 5 ms for molasses cooling.

. Applying of a bias magnetic field of ≈ 2 Gauss along the quant-
isation axis.





. 10 ms of optical pumping into the |g−〉 state which is done via
the optical pumping beam on the F = 2→ F′ = 2 transition on
the D line. In this time, the current supplying the bias magnetic
field also should have stabilised.

. After preparation, 100 identical optical pulses are sent to the
atom. The repetition rate is mostly limited by the dead time of
the detector and the length of each pulse and in this case is set
to be 83.1 kHz. A trigger is sent to one channel of the timestamp
unit 550 ns before the optical pulse is sent. The timestamp unit
is gated such that only clicks from when the optical pulse is
present at the atom and up to 400 ns after the end of the pulse is
recorded.

. Next, the MOT beams are turned on to check if the atom had re-
mained in the trap, again by monitoring fluorescence at detector
Df. In this step, the MOT quadrupole coils are not switched on
and the bias magnetic field is switched off. This whole process
takes about 20 ms. At the end of this step, the MOT beams are
switched off and if the atom is still in the trap, steps number 
through  repeated again.

. Otherwise, the background measurement is done. Background
measurement is exactly the same at step  but with the trigger
sent to another channel of the timestamp and 250,000 identical
optical pulses sent instead.

. After performing the background measurement, the MOT beams
and MOT quadrupole coils are switched on again to load another
atom into the dipole trap.

Measurement of pulse parameters

Two different pulse shapes were used in the experiment: rectangular
and rising exponential. The RF envelope shape for the rectangular
pulse is,

Erect(t) =


√
Ω if 0 ≤ t ≤ 1

Ω

0 elsewhere
()

 The reason why the background measurement is done with 250,000 pulses is because
of the relatively long lifetime of the atom in the trap. The background measurement
takes 3 s while the lifetime of the atom in the trap is about 9 s and during this time
about 25,000 pulses are sent to the atom.





and for a rising exponential,

Eexp(t) =


√
Ωexp

(
Ω
2 t

)
if t ≤ 0

0 if t > 0
()

where Ω is the frequency bandwidth of the pulse. The properties of
the pulse can be extracted from the histogram of the photodetection
events on detector Dc during the background measurement.

The average number of photons per pulse is obtained by summing
all the detected events, Nd,i in unit time bin, ∆ti of detector Dc for the
duration of the pulses and normalising it by the number of triggers
sent, NT , and also the attenuation due to losses in the beam and de-
tector efficiency, ηc, and also the stack of neutral density filter ND2.
The average photon number is then,

n=
1

ηcηND2
NT

∑
i

Nd,i . ()

The losses were measured to be ηc = 0.30 ± 0.02 which include the
detector efficiency of Dc, coupling losses to a single mode fibre and
reflection losses from all optical components. ηND2

is measured to an
uncertainty of 0.5 % and is varied from 2.5–5.1 dB. The bandwidth of
the rectangular pulses are extracted directly from the histogram. The
exponential histogram is fitted to the fit function:

Nd(t) = ηcηND2
nNT exp

( t − t0
τ

)
×
(
exp

(
∆t
τ

)
− 1

)
, ()

where the first exponential term reflects the temporal envelope func-
tion and the second is due to the Poissonian distribution of photo-
counts. The time constant, τ , is extracted from the fit.

The parameters that were varied in the experiment were the average
photon number per pulse and the bandwidth for both rectangular and
exponential pulse shapes. As the bandwidth of the pulse decreases, it
looks more and more like a cw probe to the atom. The maximum av-
erage photon number per pulse is limited by the peak instantaneous
power available from the probe beam and also limited by the heat-
ing of the atom especially for the exponential pulse with the smal-
lest bandwidth. The minimum average photon number is limited by
the signal to background ratio of the detectors used, while maximum
bandwidth is determined by the electronics used to generate the elec-
trical pulse fed into the EOM.

Because the forward detector, Dc, is dead just after the pulse is sent
to the atom, all relevant information about the dynamics of the in-
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Figure : Rectangular and rising exponential excitation pulses. Histograms
show the number of detected events, Nd in ns time bin versus
time expressed in the units of natural decay rate 1/Γ = 26.24 ns
of the D line in 87Rb. (Left) Rectangular shaped pulse with a
temporal bandwidth of 15 ns. (Right) Rising exponential pulse
with a characteristic risetime of τ = 15 ns. The solid magenta line
is a fit according to equation 

teraction of the pulse with the atom is recorded by the backward de-
tector, Df, which is an actively quenched Perkin-Elmer single photon
counting module. The spatial overlap of the detector collection mode
and the dipolar emission pattern of the atom, Λ, can be calculated by
doing a mode overlap integral of the Gaussian mode of the collection
optics and the dipolar emission mode of the rotating electric dipole. It
can also be determined experimentally by measuring the reflection of
the atom for a cw beam. A collection efficiency of ≈ 2.7% is measured.

.. Results

Figure  shows the histogram of detector events for an exponential
pulse with average photon number, n = 104 ± 6, and a characteristic
risetime of 15 ns. As mentioned in section ., a possible way to
quantify interaction of the light pulse with the atom is through the
measurement of the excitation probability of the atom. With an atom
in a 2-level system, this probability is directly related to the atomic
scattering/fluorescence of the atom, which is detected with detector
Df. The temporal evolution of the detected events is directly related
to the expectation value of the atomic operator from which the excit-
ation probability can be determined. The probability of detecting an
event in time bin, ∆t, per trigger, Pd,i , is related to the excitation prob-
ability, Pe,i , as

Pd,i =
Nd,i

NT
= Pe,iΓ ∆tηf

3
8π

Λf , ()

where Pe,iΓ is the rate at which the atom scatters photons, ηf =0.30 ±
0.02, is the losses through the backward arm to detector Df inclusive
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Figure : Histogram of detector events for an exponential excitation pulse.
The red circles are recorded during the background measurement
while the blue crosses are recorded when the atom is present dur-
ing the pulse. In this histogram, the background measurement is
recorded over    triggers with an, ηND2

= 4.3 dB, while
the other measurement is recorded over    triggers.

of the coupling to the single mode fibre and the quantum efficiency
of the APD and, Λf = 0.027 · 8π

3 , is the solid angle extended by the
collection optics.

In figure , the blue data set shows the evolution of the detected
events on detector Df as a function of time. There are two regions of
interest, one where the pulse is still present and the other where the
pulse is absent. They correspond to the coherent and incoherent part
of the evolution of atomic operators. The falling exponential due to
the fluorescence (incoherent) has a decay rate of Γ = 26.29 ± 0.05 ns,
where the error quoted is statistical error from the fit. To compare
the interaction between rising exponential and square shaped pulses,
the maximal excitation probability, Pe,max, is plotted with respect to
the average photon number in the pulse for different bandwidths as
shown in figure .

It can be seen that as the bandwidth of the pulse decreases (larger
time), the value of Pe,max saturates at 0.5 for the exponential pulse
while for the rectangular pulse, it keeps on increasing. This is because
as the bandwidth decreases the exponential pulse, with its long tail,
resembles cw light to the atom and the excitation probability for cw
light, after long times, is 0.5. For the rectangular pulse however, since
the edge is sharp, the beginning of the pulse is always sufficient to
excite the atom to a large Pe,max before it begins to look like a cw light





 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000

P
e

,m
ax

n

5 ns

Rect
Exp.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000

P
e

,m
ax

n

15 ns

Rect
Exp.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000

P
e

,m
ax

n

60 ns

Rect
Exp

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000  10000

P
e

,m
ax

n

250 ns

Rect
Exp

Figure : Maximal excitation probability versus the average photon num-
ber in the pulse with different temporal bandwidths. The the-
oretical curves were obtained by numerically solving differential
equations for time-dependent evolution operators [].

to the atom. As such the Pe,max will eventually approach unity for
large enough value of n for the rectangular pulse.

For the largest bandwidth (Ω−1 = 5 ns), the data points for both
the exponential and rectangular pulses do not follow the theoretical
curves after the turning point. This is still not understood but might
be due to the deviation of the experimental parameters from the theor-
etical definition used. For the exponential pulse, the tail is finite and
extends to about 25 ns. Hence it will not saturate as quickly compared
to an infinitely long pulse. The square pulse on the other hand has a fi-
nite rise- and fall-time of ≈ 3 ns which for this bandwidth, looks more
like a triangular pulse.

As the bandwidth approaches the optimal value of Ω
Γ
≈ 1, the num-

ber of average photons needed to excite the atom to a particular Pe,max <
0.6 reduces to a minimum or conversely, for a fixed photon number,
say n < 50, the value of Pe,max is maximum close to the optimal band-
width. However, since larger bandwidths (shorter pulse) are not easily
accessible, the extrema are not so clearly distinguished.

Another clear trend is the higher value of Pe,max for an exponential
pulse compared to a pulse with a rectangular profile for pulses with
optimal and larger bandwidths and for small values of n. It should be
noted however, that the optimal bandwidth is not really a well defined
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Figure : Maximum excitation probability versus average photon number
for rectangular and exponential pulses at their respective optimal
bandwidths (at n= 1).

parameter. This is because Pe,max is dependent not only on the pulse
shape but also both Ω and n, even for a coherent pulse. However, it is
quite obvious that a rising exponential pulse gives a larger Pe,max than
a rectangular one for a bandwidth that is optimal or larger and for an n
that is below saturation. Following [], for an average photon number
of n = 1 we can define an optimal bandwidth of 1.9Γ (Ω−1 = 15 ns)
for a rising exponential pulse and 1.3Γ (Ω−1 = 20 ns) for a rectangular
pulse. In figure , it can be seen that for n < 100 , the exponential
pulse always attains a larger value of Pe,max than the rectangular pulse
for a similar n. As the atom saturates (n > 100) the value of Pe,max for
the rectangular pulse overtakes that of the rising exponential.

Looking at Pe,max, the full coherent dynamics of the atom cannot be
seen, since the maximal excitation probability only occurs at the early
stage of the pulse, before any incoherent radiative decay sets in. Fig-
ure  shows the evolution of Pe for pulses with characteristic time
15 ns and a large enough average photon number (n ≈ 1300) such that
Rabi oscillations are visible on both the exponential and rectangular
pulses. As can be seen, the oscillation amplitude gradually decays due
to the incoherent scattering before the pulse is switched off. Once the
pulse ends, the atomic evolution is just given by it’s coupling to the va-
cuum mode and it will decay to the ground state with a characteristic
lifetime of Γ = 26.24 ns [, ]. The data points fall approximately
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Figure : Excitation probability, Pe, versus time in units of the natural radi-
ative lifetime, Γ = 26.24 ns, for pulses with a characteristic time of
15 ns and average photon number of≈ 1300. The dashed magenta
lines are numerical solution of the time-dependent operators with
Λ= 0.03 and n as that measured from the data.

on the theoretical simulations for both pulse shapes except for the in-
coherent part of the rectangular pulse. This may be due to the finite
fall time of the rectangular pulse in the actual experiment and hence
stopping at a different phase of the Rabi oscillation. On hind sight,
the theoretical curves could have been computed with the actual ex-
perimental pulse shapes that was used in the experiment, i.e. finite
rise and fall time instead of infinitely sharp edges. However, the main
physics and dynamics of the interaction would still be the same.

In order to compare the dynamics of atom for various parameters of
the pulse and pulse shapes, the excitation probability at a fixed time,
Pe(t), say t = 0, can be extracted and plotted. Because the evolution of
the radiative decay part is very much an exponential with

Pe(t) = Pe(t = 0)exp(−Γ t), ()

the quantity Pe(t = 0) can be also extracted by integrating Γ Pe(t) from
t = 0 to∞ to get better statistics on the value or summing in the case
of discrete bins with width ∆t,

Pe,tot = Γ ∆t
∞∑
i=0

Pe,i . ()
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Figure : Excitation probability at t = 0, extracted from Pe,tot, versus aver-
age photon number n for exponential (blue crosses) and rectan-
gular (red pluses) pulses of various bandwidth. The theoretical
curves were again solved numerically with Λ= 0.03.

The quantity Pe,tot is then plotted versus average photon number n for
different bandwidths and pulse shapes in figure . Oscillations are
clearly visible for both exponential and rectangular pulses for large
bandwidths. For the smallest bandwidth (Ω−1 = 250 ns), no oscilla-
tions are visible as the atom losses all coherence at t = 0. In all other
cases it can be seen that Pe,tot decays to 0.5 for an exponential shape
and oscillates around 0.5 for a rectangular shaped pulse.

Although the datapoints do not fit nicely to the theoretical curves,
the trend of the experimental data points is clearly similar to that of
theory. It can also be seen that for an atom with a relatively short life-
time, defining a π-pulse that inverts the atomic population is not an
easy task as both the pulse duration and the power in the pulse need
to be kept relatively constant for the atom to end up in the excited
state at the end of the pulse.

. conclusion

In conclusion, two quantities that quantify atom-light interaction in
two different regimes were experimentally measured. For the case
of a weak coherent continuous probe beam, the scattering ratio, Rsc,
was measured from two complementary measurements and related to
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three measurable quantities: transmission(extinction), reflection and
the phase shift induced. Simultaneous measurements of extinction
and reflection of 91.8 ± 0.2 % and 0.161 ± 0.007 % both give similar
values of Rsc within the statistical uncertainty. Similar measurements
were done with extinction and phase shift, although the value of Rsc
was only extracted from the extinction measurement and used to plot
a theoretical phase shift curve. A maximal phase shift of 1◦ is meas-
ured. The experimental values of Rsc does not match the theoretically
predicted values. A more careful study on the effects of temperature
of the atom on the measured Rsc is important in order to fully under-
stand the source of this discrepency.

For a strong coherent pulsed probe, the excitation probability Pe was
measured directly from the observed scattering/fluorescence of light
from the atom. It was seen that for this overlap of Λ ≈ 0.027 · 8π

3 , the
atomic transition saturates for an average photon number of n ≈ 60
in a pulse. Also it was seen that the shape and the temporal band-
width of the excitation pulse is important for achieving a maximum
Pe for a minimum n. For a bandwidth that is comparable or larger
the atomic lifetime, and before the pulse reaches saturation, the rising
exponential pulse has a larger probability to excite the atom into the
excited state. This then implies that to efficiently couple a light pulse
or a photon strongly to an atom without a cavity, not only is strong
focusing necessary, tailoring the shape of the pulse will also benefit
this endeavour.





4
C O N C LU S I O N A N D F U T U R E O U T L O O K

It has been experimentally shown that a single atom can significantly
scatter a strongly focused continuous wave Gaussian beam even though
the excitation probability of the atom itself is quite small for such a cw
probing. When a pulsed probe is sent to the atom instead, the atom
saturates with an average number of about ≈ 60 photons in a pulse.
It was also shown that the temporal profile of the pulse is important
although the difference in excitation probability for a coherent pulse
is not that obvious. It is more interesting to send temporally shaped
real single photon pulses to the atom []. Possible sources of determ-
inistic single photons [] that has frequency and linewidth close to
that of the atomic transition frequency are those from ensembles of
Rubidium [], a single Rubidium atom in a cavity [, ] or in free
space []. A heralded single photon source can also be used with the
most common example being a bright spontaneous parametric down
source either generated in an interferometer [] and subsequently
filtered to the narrow atomic transition frequency line and then sent
to the atom[].

However, temporally shaping these single photons cannot be done
with the current technique that was performed on the coherent pulses
since it is too lossy. Other methods of single photon shaping [] an-
d/or generation [, ] need to be investigated. Currently, only 3%
of the maximum overlap Λ is in use to excite the atom. And even for a
maximum focusing strength of u = 2.239, the overlap expected is just
Λ = 0.364 · 8π/3 and thus a maximum excitation probability of 0.36
for a single-photon Fock state pulse [] with perfect temporal overlap.
In order to get a higher excitation probability, the pulse has to come in
from all sides of the atom while still be in a single mode of the electro-
magnetic radiation in the basis of the dipole vector. This can be done
by using a deep parabolic mirror as is being pursued by the group of
Gerd Leuchs []. For that experiment, the mirror transforms a plane
electromagnetic wave with a suitably chosen radial polarisation into
an inward-moving dipole wave that addresses the π dipole transition.

Another possibility of addressing the atom from all sides is to split
the single photon on a beamsplitter and send it to the atom from both
sides using both lenses. The atom is then in a superposition of being
excited from the left and right by the single photon. The phase of
the left and right path needs to interfere constructively for the excita-
tion probability to be twice compared to a single sided excitation. The
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splitter

Figure : Excitation of a single atom from both sides by splitting a single
photon on a beam splitter and sending both outputs to the atom.
The phase of one arm, ∆φ, is adjusted such that the two arms of
the photon arrive at the atom with the same “phase”. To detect the
fluorescence of the atom, the phase ∆φ can be changed by π after
sending the excitation pulse such that the photon generated al-
ways exits from the other (unused) port of the beam splitter which
then can be detected by a single-photon detector (not shown).

maximal excitation probability will then be 0.72 for just a simple fo-
cusing of a single photon with a Gaussian spatial profile and rising ex-
ponential temporal profile with optimal rise time. Although it seems
counter-intuitive that splitting a photon into two different modes on
a beamsplitter can still result in a single mode excitation of the atom,
this is just due to the choice of plane-waves as a typical basis mode of
a beam splitter. If the spherical modes corresponding to the standard
electric dipole radiation transition of π,σ± are taken as basis modes
instead, the single photon can still be written as a single excitation of
the vacuum mode.

Figure  shows a schematic of how such an excitation experiment
may look like. An obvious problem would be to how to detect the dy-
namics of the atom (from the fluorescence) since all sides of the atom
are now covered by the excitation mode. A simple way is to adjust
the phase of one of the arm of the interferometer such that the fluor-
escent photon always exits at the unused port of the beam splitter.
This reversibility of transforming the input (output) of the beam split-
ter mode into (from) a dipole wave (assuming that the lenses do per-
fect transformations) with a correctly chosen relative phase ∆φ, would
show that exciting the atom from both sides should be possible.
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Another challenge is to reduce the average temperature of the atom
in the trap, such that the atom stays in the region of maximal elec-
tric field strength, assuming the dipole trap and the probe beam is
perfectly overlapped. One way of “cooling” is to lower the power of
the dipole beam and hence the trap depth such that only the colder
atoms stay trapped before probing the atom and keeping the results
only if there’s an atom left after the probing cycle which was done by
Tuchendler et al. []. To have a really deterministic way of cooling
the atom, a different cooling technique needs to be employed. Ra-
man sideband cooling is one such method, where not only is the atom
cooled, but the final temperature of the atom can also be determined
from the ratio of the final sidebands []. If a successful application
of sideband cooling is possible, the atom can theoretically be cooled
to the motional ground state of the trap, if it’s recoil frequency (en-
ergy) is less than the trap frequencies (energies). In the case of 87Rb,
the recoil frequency is 2π · 3.77 kHz [], which is less than the trap
frequencies used. At the ground state of the trap, the spread of the
atomic wavefunction, are 32 nm and 91 nm in the lontitudinal and
transverse direction respectively. The main difficulty in Raman cool-
ing such a neutral atom in our shallow dipole trap is the relatively low
trap frequencies.

Preliminary Raman Cooling

A preliminary measurement of Raman cooling was done on the atom.
The setup to generate the beams to drive the Raman transitions is
shown in figure . The maximum optical power available in the each
beam is ' 5 mW.

The two Raman beams are sent to the atom in the orientation shown
in figure , with the polarisation of one beam linear along the quant-
isation axis and the other polarisation linearly perpendicular to it.
This orientation is chosen partly due to the available optical access
and partly to keep the Lamb-Dicke parameter, η, small. Although the
first order sideband Rabi rate, Ω±, scales with the carrier Rabi rate,
Ω0, as Ω± ≈ ηΩ0, and η shouldn’t be made too small to ensure an
efficient Raman cooling, the initial average motional number in the
experiment is large and that may complicate Raman cooling. The
Lamb-Dicke parameter is given by

η = kz0, ()

 The average motional number, 〈n〉, for an atom with a thermal energy with a Doppler
temperature (146mK) in the radial direction is, ' 40, if the energy is equipartioned
equally among the axes. Even if the initial temperature is 5 times smaller, 〈n〉 will
still be on the order of 10.


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Figure : Setup of the laser system used to generate the Raman beams
for the Raman sideband cooling measurement.. A laser beam is
locked to the wavemeter such that its frequency is ≈ 15 GHz red
detuned from the D2 transition. The beams are split into two,
with one of them forming one of the pair of Raman beams and the
one of them sent through an EOM, modulated at 6.8 GHz. The
generated red sideband which is phase-coherent with the carrier
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beams are sent to AOMs which are used to tune the frequencies
and also used to switch off the beams.
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where k is the resultant wavevector amplitude of the two-photon Ra-

man beam or the wavevector of repumping beam and z0 ≡
√(
h̄/2mωρ

)
is the ground state spread of the atom in the radial direction of the
trap. Since the longitudinal trap frequency is very small, we shall con-
sider only the radial direction first. They are

ηsrρ = |∆k|z0 = 0.083, ()

for the stimulated Raman transition projected along the radial direc-
tion and

η
rp
ρ = 0.26 ()

for the repumping transition from a circularly polarised beam along
the quantisation axis as seen in figure . If anharmonicity is present
in the trap and if the repumping transistion rethermalises the atom,
the cooling of the other degrees of freedom can also be accomplished..
If they do not couple, additional beams need to be introduced, or the
Raman beams realigned such that the cooling direction overlaps with
the principal axes of the trap,to address those other degrees of free-
dom.

Raman sideband cooling works by first driving a two-photon Ra-
man transition that takes away one quanta of motional energy. The
Rabi rate and detuning of the Raman beams are such that the trans-
ition linewidth is smaller than the trap frequency and the sidebands
can be resolved. The detuning is also made large enough such that
the spontaneous Raman scattering rate is low. The atom is then re-
cycled by optically pumping it back to the initial state. For cooling to
be successful, this recycling process should not increase the average
motional state of the atom. This is done by having ηrpρ small and thus
the atom is cooled at the end of the process. However, for an atom in
a mixed thermal distribution of motional state with average quantum
number n̄, the Rabi rate of the Raman transitions has an dependence
meaning that different levels will see a different Rabi rate which will
cause a decoherence in the Rabi flopping curve.

A destructive hyperfine state sensitive detection scheme which drives
out the atom out of the trap if it is in the F = 2 ground state is em-
ployed []. Using this state detection beam and the Raman beams,
we performed a coherent transfer of population on the carrier trans-
ition of 5S1/2 |F = 2,mF = −2, n= N 〉↔ 5S1/2 |F = 1,mF = −1, n= N 〉
as shown in figure . A two-photon Rabi oscillation of 2π · 220 kHz
with a decoherence time of about 40 ms was measured. If the decoher-
ence was assumed to be entirely due to the different Rabi rates of differ-
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Figure : (Left) Rabi oscillation of the atomic population from the two hy-
perfine ground states when doing Raman transfer with strong Ra-
man beams. A two-photon Rabi oscillation frequency of (2π) ·
220 kHz and a damping time of about 40 μs were measured.
(Right) The two-photon Rabi frequency of the beams is then re-
duced, and its probing time fixed at 1.5 ms, and the frequency of
ωc is scanned. Resolved motional sidebands of the atom in the
trap can be seen as ωc is scanned across resonance. After 20 cool-
ing pulses are applied to the atom, is can be seen that the popula-
tion in the blue sideband is decreased, implying that the atom is
closer to the motional ground state.

ent motional states n, then this corresponds to an average motional
state of ≈ 6 in the radial direction. Since the decoherence time is too
small, Rabi oscillations on the motional sideband transition (18 kHz)
cannot be readily observed.

Next, we perform a sideband scan of the atom. The optical power
of the beams were reduced and the length of the pulse kept constant
at 1.5 ms such that the linewidth of the two-photon transition is about
7 kHz. The detuning between the two Raman beams, is then scanned
across the two-photon resonance by varying the Raman beam frequency,
ωc (see figure ). Figure  shows the red, carrier and blue side-
bands of the atom in the trap. The separation of ≈ 60 kHz is given
by the radial trap frequency. All the sidebands have a population of
0.5, due to the short decoherence time. A first attempt at cooling is
done by sending 20 pulses of 100 ms each at the blue sideband fre-
quency, with respect to ωc, to the atom. The intensity of the Raman
beams was chosen such that the carrier Rabi rate (∆n = 0) is about
50 kHz. A decrease in the amplitude of the sideband can be seen in
figure . However, since the decoherence time is still too small, and
the sideband frequency not stable, cooling is still not reliable as the
sideband frequency drifts slowly. The state detection currently used
is also lossy and limits the duration of the experiment. A lossless de-
tection scheme is currently being implemented [, ]. Upon comple-

 This is obviously untrue since the carrier Rabi oscillation frequency is 2π · 220 kHz,
which is much larger than the trap frequency. Nonetheless, this gives a good estimate.
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tion of the thesis, two new preprints of two new experiment of Raman
sideband cooling of single neutral atoms trapped in optical tweezers
were published [, ]. They had slightly larger trap frequencies (∼ 3
times larger) and were able to reach close to the ground state energies
of their trap.

Only when it is possible to cool the atom enough such that it is at
the ground state of the trap and always in the region of maximal elec-
tric field strength, which is on the scale of a diffraction limited spot
size, does it make sense to come in with a tighter focus of the probe.
It should also be noted that the maximal interaction of the probe with
the single atom will ultimately be limited by the lens used to trans-
form the Gaussian beam into a dipolar wave. In order to break this
limit, either a suitable optical element that does the ideal transforma-
tion needs to be designed or a non-Gaussian beam mode can be used
in order to get that perfect spatial overlap of the probe with the single
atom which will give an Rsc = 2 or a Λ= 8π/3 [, ].
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Figure : A typical trace of the spectrum on as seen on the oscilloscope. The
yellow trace is the Doppler-free signal directly from the photodi-
ode. The blue trace is the output voltage of the piezo. The green
trace is the FM spectroscopy error signal from the 5S1/2F = 2→
5P3/2 transitions. The red trace is the sawtooth used to ramp the
voltage to the piezo.
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M E T H O D S

In this appendix, we describe in detail how we record the data for the
weak coherent continuous wave probing experiments of section .
was recorded and processed. However, the procedure for data acquis-
ition is complicated by the lack of synchronisation of the data acquisi-
tion device and the sequencer that controls the experiment. A DT340
PCI card from Data Translation® was used as a counter to record
counts from the detector and a 2MHz square wave from a function
generator, used as a timer. The pattern generator, which generates the
sequence for the experiment, is a home made board which consist of
8 fast 512 kibibytes SRAM chips that holds a look-up table for con-
trolling the experiment by switching on and off the AOMs, coil cur-
rents, etc. It has 4 external input lines which allows up to 16 different
look-up tables and 48 digital output lines.

b. data acquisition setup for cw experiments

Figure  shows the schematic of the data acquisition setup for the cw
experiments. The pattern generator holds the look-up tables that con-
trols data taking for experiment. The digital outputs are connected to
AOMs that switches the beams on and off, the current controller of the
quadrupole and compensation coils. It also controls the on/off state
of the AND gates and other secondary triggers including ones that
loop back to the pattern generator itself to go between different look-
up tables. The external digital input comes from a counter that gives
the count rate of detector Df when the presence of the atom needs to
be determined. There are 4 main look-up tables, which are the initial
trigger for starting the sequence, measurement with the atom in the
trap, checking whether the atom is still present in the trap and finally
the background measurement.

The experiment begins by uploading the appropriate look-up tables
into the pattern generator. Next the detuning and power for the probe
beam is set, such that the scattering rate is approximately 2500s−1

at that particular detuning. Finally the computer begins recording
counts from counter 2 every 100 ms (see fig. ). Counter 2 has a
dead time of about 10 ms which is the time for the data is written to
the computer hard disk and the counter reset. By default, all the out-
puts of the pattern generator are switched off throughout all look-up
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Figure : Schematic of the measurement setup for the cw experiments.

tables except for ones controlling the dipole trap, probe, repump in
the probe beams which are always switched on, and the outputs that
loop back into itself to control the look-up table used. This is to sim-
plify the population of the look-up table such that only the required
output channels needs to be switched on.

The 4 look-up tables are:

. For the initial trigger, the MOT beams, the quadrupole coils and
AND gate 6 are switched on. AND gate  controls the measured
fluorescence from the atom from detector Df at counter 1. Once
the count rate exceeds the set threshold, counter 1 sets the input
to the pattern generator high and holds it high until it is resetby
an external trigger, also from the pattern generator.

. The atom is optically pumped and probed in this look-up table.
The bias magnetic field, used to define the quantisation axis of
the atom, is switched on and atom is optically pumped into the
desired 2-level system via the probe and repump in the probe
beam for 20 ms. Up to this point, counter 2 has not recorded any

 The function of counter 1 can be done via software in the look-up table as well. In
this case, the output of AND gate 6 goes directly to a second input of the pattern
generator, while the output of counter 1 going to the pattern generator now comes
from another output of the pattern generator itself.
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data yet. The pattern generator then keeps the second inputs to
AND gates 1,2,3 and 5 high for 150 ms. Channels 1,2 and 5
of counter 2 records the clicks from the detectors while channel
3 records the number of cycles of the 2 MHz clock within the
100 ms integration time. The number of cycles, divided by the
2 MHz clock then gives the time during which the detector clicks
were measured.

. Checking for the presence of the atom in the trap is done via
this look-up table. The pattern generator sends a reset trigger
to counter 1. The MOT beams are switched on again for about
20 ms to detect the fluorescence from the atom at detector Df
by switching on AND gate 6. If the count rate exceeds the set
threshold after the detection time, the input to the pattern gen-
erator is then set high again by counter 1 and step 2 repeated. If
the count rate does not reach the set threshold, the input to the
pattern generator is kept low and the look-up table goes to step
4.

. If the atom is no longer in the trap at the end of step 3, a back-
ground measurement will be performed. The bias magnetic field
is switched on here as well. Nothing is done for 200 ms such that
counter 2 records an empty line of zero counts in all channels.
This is done to have a clear separation of data with the atom
in the trap and the data due to background measurement After
that, the pattern generator keeps the second inputs to AND gates
1,2,4 and 5 high for 2 s while counter 2 records the data used for
background reference. The magnetic field bias is then switched
off and step 1 repeated.

Steps 2–4 will give the detector counts and integration time of meas-
urement both with and without atom in the trap. The normalised
count rate for when the atom is in the trap, tA and rA (see subsec-
tion ..) can then be calculated by dividing the total detector counts
by the integration time. The data from the final measurement of
step 2, —just before the final check for the atom and background
measurement (steps 3 and 4 consecutively)— is discarded since it is
not certain if the atom had remained trapped during the measure-
ment. The normalised background count rate without the atom can
be measured in a similar way. Once enough data has been acquired,
the computer stops recording data from counter 2 and the next detun-
ing and power levels are set.

b. magnetic coils switching
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Figure : Oscilloscope trace of magnetic field in the x-direction when
switching off the quadrupole field. The cyan trace (C) is the trig-
ger for the switch while the yellow trace (C) is the field probed
with a fluxgate magnetometer (Stefan Mayer FLC ). The red
trace is unused. A full switch-on time of ∼ 2 ms and a switch-
off time of ∼ 4 ms were measured. The magnetometer, which has
a maximal bandwith of 1 kHz and range of ±1 Gauss, is placed
along the quadrupole x-axis and at a distance away such that it
does not reach saturation. During switching of the magnetic field
coils, about ∼ 10–20 ms is given to allow the magnetic fields in the
coils to stabilise.
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E X P O N E N T I A L P U L S E C I R C U I T

Here we describe the details of the home-built circuit for the exponen-
tial pulse which is publised in []. As mentioned in section .., the
rising exponential signal is generated by exploiting the base voltage
and collector current relationship of a bipolar junction transistor. Fig-
ure  shows the electrical circuit that implements this idea, together
with other component that enable a fast switch-off of the pulse. The
time constant τR for the exponential rise was designed to be tunable
about 27 ns to match the decay time of the optical transition on a D
line in Rubidium.

A linearly rising VBE is provided by charging the capacitor C1 with
a constant current IR. Transistor T1 then performs the transforma-
tion of the linear slope into an exponentially rising current IC through
equation . For the nominal τR = 27 ns, a slope ∂VBE/∂t ≈ 106 V/s
is necessary. Choosing C1 = 3.9 nF, this slope can be accomplished
with a reasonable charging current of IR = 3.9 mA.

The charging current IR is provided by the current source combin-
ation T7 and R11, which generates a current defined by an analog
input voltage Vin, and allows for a variation of τR by a factor of about
 in both directions for exploring different interaction regimes of the
optical pulse with the atom. The exponential time constant of the out-
put pulse is then given by

τR = R11C1
VT

Vin − 0.7
, ()

where VT is the thermal voltage and 0.7 V refers to the base emitter
forward voltage. The desired pulse does not only has to have an ex-
ponential rise, but also a steep cutoff at a given time, and the whole
shape of the pulse needs to be defined with respect to some external
timing reference. For this purpose, a digital signal following a stand-
ard suitable to interact with the control equipment was used.

This timing signal starts the charging of capacitor C1 when active
(VP = −1 V), and also routes the output current IC via T2 into the
load impedance. When it is switched to the passive state (VP ≈ 0 V),
the output current IC is diverted through T3 away from the output,

 Since this electrical pulse generated will be used to envelope the electric field modu-
lation that is sent to the EOM, the optical pulse generated, under weak linear modu-
lation, will have a time constant that is half of that of the electrical pulse because of
the square dependence of the optical intensity to the electric field.
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Figure : Operation of the exponential circuit. Triggered by VP (top trace),
the base-emitter voltage of transistor T1 rises linearly (middle
trace), leading to an exponential rising voltage Vout (bottom trace).
When the trigger signal returns to the passive state, the current is
diverted away from the output, leading to a sudden drop of the
envelope in Vout, while capacitor C1 is slowly discharged.

and C1 is discharged via T4. The basis voltage levels of T2 and T3
are chosen such that the main transistor T1 has a collector potential
of 3.7 . . . 4.2 V to keep them unsaturated. T2 and T3 themselves stay
out of saturation for an output voltage up to 2 V corresponding to an
IC ≈ 40 mA.

The timing of the pulse in now critically determined by the length
of the control pulse sent to Vin, and also critically dependent on the
thermal voltage, VT . A timing diagram of the relevant voltages for a
typical time constant of .ns is shown in figure .
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Figure : Photos of the experimental setup.
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Figure : Laser system together with part of the data acquisition electron-
ics.
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