

Important Notice to Authors

Attached is a PDF proof of your forthcoming article in Optics Express. The article Manuscript ID is 409532. *No further processing of your paper will occur until we receive your response to this proof.*

Note: *Excessive proof corrections submitted by the author can result in significant delays to publication. Please include only essential changes that might be needed to address any shortcomings noticed in the proof-preparation process.*

Author Queries

Please answer these queries by marking the required corrections at the appropriate point in the text or referring to the relevant line number in your PDF proof.

Q1	The funding information for this article has been generated using the information you provided to OSA at the time of article submission. Please check it carefully. If any information needs to be corrected or added, please provide the full name of the funding organization/institution as provided in the Crossref Open Funder Registry (https://search.crossref.org/funding).
----	---

Other Items to Check

- Please note that the original manuscript has been converted to XML prior to the creation of the PDF proof, as described above. The PDF proof was generated using LaTeX for typesetting. The placement of your figures and tables may not be identical to your original paper.
- Please carefully check all key elements of the paper, particularly the equations and tabular data.
- Author list: Please make sure all authors are presented, in the appropriate order, and that all names are spelled correctly.
- If you need to supply new or replacement figures, please upload each figure as an individual PDF file at the desired final figure size. The figure must fit inside the margins of the manuscript, i.e., width no more than 5.3 inches (or 13.46 cm). Confirm the quality of the figures and upload the revised files when submitting proof corrections.

Wide-range wavelength-tunable photon-pair source for characterizing single-photon detectors

LIJIONG SHEN,¹ JIANWEI LEE,¹ ANTONY WINATA HARTANTO,²
PENGKIAN TAN,¹ AND CHRISTIAN KURTSIEFER^{1,2,*}

¹Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore

²Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore

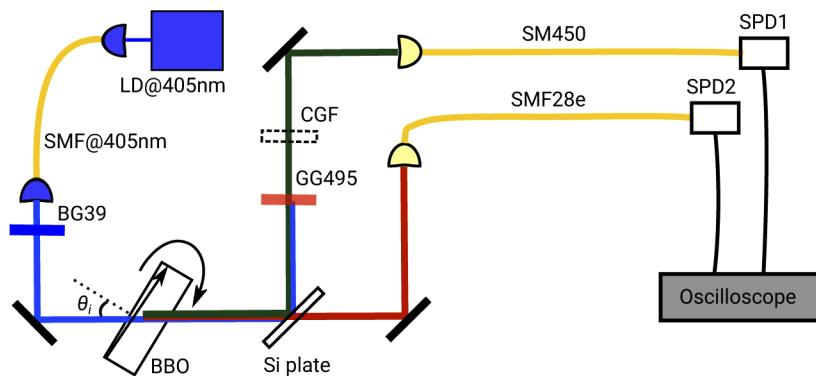
*christian.kurtsiefer@gmail.com

Abstract: The temporal response of single-photon detectors is usually obtained by measuring their impulse response to short-pulsed laser sources. In this work, we present an alternative approach using time-correlated photon pairs generated in spontaneous parametric down-conversion (SPDC). By measuring the cross-correlation between the detection times recorded with an unknown and a reference photodetector, the temporal response function of the unknown detector can be extracted. Changing the critical phase-matching conditions of the SPDC process provides a wavelength-tunable source of photon pairs. We demonstrate a continuous wavelength-tunability from 526 nm to 661 nm for one photon of the pair, and 1050 nm to 1760 nm for the other photon. The source allows, in principle, to access an even wider wavelength range by simply changing the pump laser of the SPDC-based source. As an initial demonstration, we characterize single photon avalanche detectors sensitive to the two distinct wavelength bands, one based on Silicon, the other based on Indium Gallium Arsenide.

© 2021 Optical Society of America under the terms of the [OSA Open Access Publishing Agreement](#)

1. Introduction

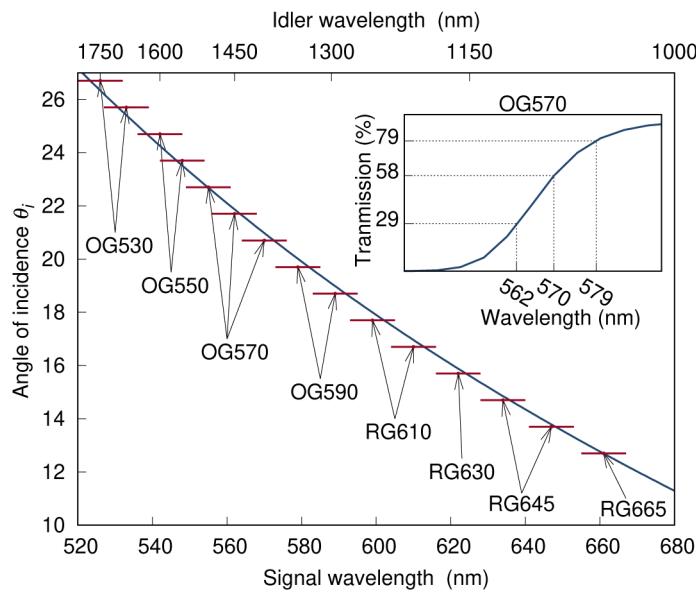
Characterizing the temporal response function of single-photon detectors is crucial in time-resolved measurements, e.g. determining the lifetime of fluorescence markers [1], characterizing the spontaneous decay of single-photon emitters [2] and the photon statistics of astronomical sources [3] and measuring the joint spectral of photon-pair sources [4], so that the timing uncertainty contributed by the detection process can be taken into account. Typically, the temporal response of a detector is obtained from the arrival time distribution of photons collected from a pulsed laser. In this work, we present an alternative approach that leverages on the tight timing correlation [5] of photon pairs generated in spontaneous parametric down-conversion [6,7] (SPDC): the coincidence signature corresponding to the detection of two photons of the same pair is used to infer the temporal response function of the photodetectors. Compared to a pulsed laser, a SPDC source is easier to align, and is wavelength-tunable by changing the critical phase-matching condition of the SPDC process [8]. In addition, one can address two wavelength bands with the same source by choosing a non-degenerate phase matching condition.


For an initial demonstration, we generate photon pairs with a tunable wavelength range over 100 nm in the visible band, and over 700 nm in the telecommunication band – a tunability at least comparable to existing femtosecond pulsed lasers – and use it to characterize both Silicon (Si-APDs) and Indium Gallium Arsenide (InGaAs-APDs) avalanche photodiodes. In particular, we characterize the timing behaviour of a fast commercial Si-APD (Micro Photon Devices PD-050-CTC-FC) over a continuous wavelength range, for which we previously assumed an approximately uniform temporal response of the detector in the wavelength range from 570 nm to 810 nm [3]. With the measurement reported in this work, we observe a significant variation of

52 the timing jitter even on a relatively small wavelength interval of ≈ 10 nm. A better knowledge of
 53 the timing response of this particular Si APD contributes to a better understanding of coherence
 54 properties of light in such experiments. Similarly, better characterization of the timing response
 55 over a wide wavelength range helps to better model fluorescence measurements regularly carried
 56 out with such detectors [1].
 57

58 2. Correlated photon pair source

59 The basic configuration of the spontaneous parametric down conversion source is shown in Fig. 1.
 60 The output of a laser diode (central wavelength $\lambda_p = 405$ nm, output power 10 mW) is coupled
 61 to a single-mode optical fiber for spatial mode filtering, and focused to a Gaussian beam waist
 62 of $70 \mu\text{m}$ into a 2 mm thick β -Barium Borate crystal as the nonlinear optical element, cut for
 63 Type-II phase matching ($\theta_0 = 43.6^\circ$, $\phi = 30^\circ$).
 64


65 For this cut, SPDC generates photon pairs in the visible and telecommunications band,
 66 respectively. We collect the photons in a collinear geometry, with collection modes (beam waists
 67 $\approx 50 \mu\text{m}$) defined by two single-mode fibers: one fiber (SMF450: single mode from 488 nm to
 68 633 nm) collects signal photons and delivers them to the single-photon detector SPD1, while
 69 the other fiber (standard SMF28e, single transverse mode from 1260 nm to 1625 nm) collects
 70 idler photons and delivers them to SPD2. The signal and idler photons are separated to their
 71 respective fibers using a $100 \mu\text{m}$ -thick, polished Silicon (Si) plate as a dichroic element. The
 72 plate acts as a longpass filter (cut-off wavelength $\approx 1.05 \mu\text{m}$), transmitting only the idler photons
 73 while reflecting approximately half of the signal photons.
 74

87 **Fig. 1.** Wavelength-tunable photon pair source based on Type-II SPDC. The critical
 88 phase-matching condition is changed by varying the angle of incidence θ_i of the pump at
 89 the crystal, in order to generate photon pairs at the desired wavelength in the visible and
 90 telecommunications band. A Silicon (Si) plate separates the photons in each pair. Tight
 91 timing correlations between photons in each pair, and a characterized detector SPD2, allow
 92 measuring the jitter of a single-photon detector (SPD1). A calibrated color glass filter (CGF)
 93 can be inserted to infer the wavelength of the photons sent to SPD1 using a transmission
 94 measurement. LD: laser diode, BBO: β -Barium Borate, SMF: single-mode fiber, GG495,
 95 BG39: color glass filters.

96 To suppress uncorrelated visible and infrared photons detected by our SPDs, we insert both a
 97 blue color glass bandpass filter (BG39) in the pump path, attenuating parasitic emission from the
 98 pump laser diode and broadband fluorescence from the mode cleaning fiber, and a green color
 99 glass longpass filter (GG495) in the path of the idler photons to suppress pump light at SPD1.
 100 For the idler path, the silicon dichroic is sufficient. To tune the wavelength of down-converted
 101 photons, we change the critical phase-matching condition of the SPDC process by varying the
 102 angle of incidence θ_i of the pump beam at the crystal [9,10]. Figure 2 (red dots) shows the signal

103 and idler wavelengths, λ_s and λ_i , measured for our source for $\theta = 12.7^\circ$ to 26.7° . To measure the
 104 signal wavelength λ_s , we insert different standardized color glass longpass filters (CGF in Fig. 1)
 105 for different angles θ_i , and measure the transmission of the signal photons in order to infer their
 106 wavelength. The inset of Fig. 2 shows an example where a filter OG570 is used to infer λ_s close
 107 to the cut-off wavelength of the filter. The corresponding idler wavelength is calculated through
 108 energy conservation in SPDC, $\lambda_i^{-1} = \lambda_p^{-1} - \lambda_s^{-1}$. Our measured SPDC wavelengths can be well
 109 described by a numerical phase matching model based on optical dispersion properties of BBO
 110 [11,12] (blue line).
 111

131 **Fig. 2.** Signal (λ_s) and idler (λ_i) wavelength dependence on the angle of incidence θ_i of the
 132 pump beam at the β -BBO crystal, produced in Type-II SPDC. We obtain λ_s by measuring
 133 the transmission of signal photons through a set of calibrated color glass filters (OGs and
 134 RGs). λ_i is calculated from λ_s by the law of energy conservation. Error bars: uncertainty of
 135 the central transmission wavelength of the filters. Solid line: model predicting the output
 136 wavelengths based on energy and momentum conservation laws governing SPDC. Inset: the
 137 transmission-wavelength calibration curve of color glass filter OG570 used to experimentally
 138 determine three values of λ_s .

139 This simple pair source provides photons in a wavelength range of $\lambda_s = 526$ nm to 661 nm
 140 and $\lambda_i = 1050$ nm to 1760 nm, comparable with existing dye and solid-state femtosecond pulsed
 141 lasers [13,14]. In the following section, we demonstrate how the tight timing correlations of each
 142 photon pair can be utilized to characterize the temporal response of single photon detectors.
 143

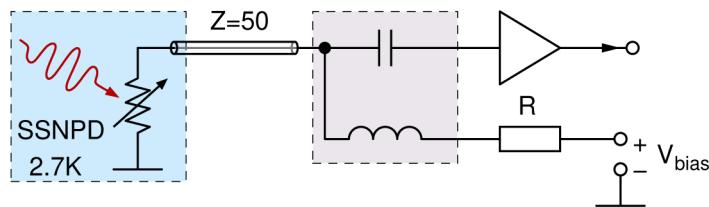
144 3. Characterizing the temporal response of single-photon detectors

145 The time response function $f(t)$ of a single photon detector characterizes the distribution of signal
 146 events at a time t after a photon (of a sufficiently short duration) is absorbed by a detector. It
 147 characterizes the physical mechanism that converts a single excitation into a macroscopic signal,
 148 and can be measured e.g. recording the average response to attenuated optical pulses from a
 149 femtosecond laser [15]. In this paper, we use the timing correlation in a photon pair, which
 150 emerges at an unpredictable point in time. This requires two single photon detectors registering a
 151 photon. As the photon pair is correlated on a time scale of femtoseconds, and the relevant time
 152 scales for detector responses is orders of magnitudes larger, the correlation function $c_{12}(\Delta t)$ of
 153

154 time differences Δt between the macroscopic photodetector signals is a convolution of the two
 155 detector response functions,
 156

$$157 \quad c_{12}(\Delta t) = N(f_1 * f_2)(\Delta t) = N \int f_1(t)f_2(\Delta t - t)dt, \quad (1)$$

158


159 where N the total number of recorded coincidence events. Obtaining the detector response
 160 function $f_1(t)$ from a measured correlation function $c_{12}(\Delta t)$ requires the known response function
 161 $f_2(t)$ of a reference detector. For a device under test, $f_1(t)$ can then be either reconstructed by
 162 fitting a $c_{12}(\Delta t)$ in Eq. (1) with a reasonable model for $f_1(t; P)$ (with a parameter set P) to a
 163 measured correlation function, or obtained from it via deconvolution.
 164

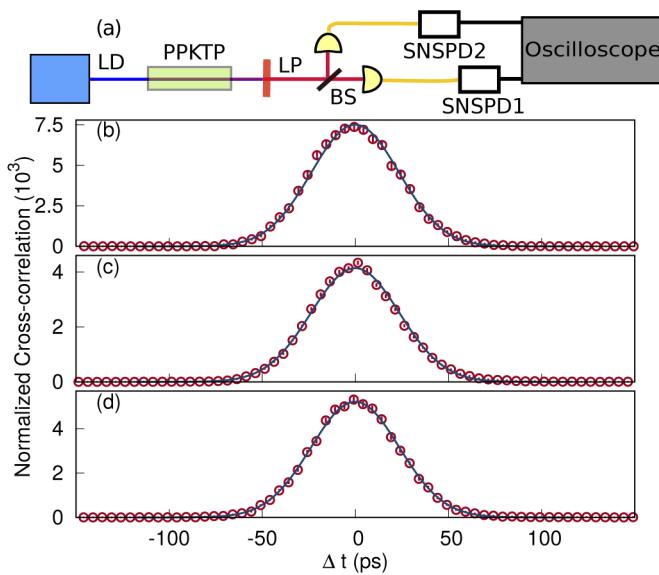
165 To measure $c_{12}(\Delta t)$, we evaluate the detection time at single photon detector SPD1 by recording
 166 the analog detector signal with an oscilloscope, and interpolating the time it crosses a threshold
 167 of around half the average signal height with respect to a trigger event caused by a signal of
 168 single photon detector SPD2. The histogram of all time differences Δt for many pair events then
 169 is a good representation of $c_{12}(\Delta t)$.
 170

4. Reference detector characterization

171 We use a superconducting nanowire detector (SNSPD) with a design wavelength at 1550 nm as
 172 the reference detector SPD2, because a SNSPD has an intrinsic wide-band sensitivity and fast
 173 temporal response. To determine its response function $f_2(t)$, we measure the correlation function
 174 c_{12} from photon pairs with two detectors of the same model (Single Quantum SSPD-1550Ag).
 175

176 Figure 3 shows the biasing and readout circuit of a single SNSPD. The SNSPD is kept at
 177 a temperature of 2.7 K in a cryostat, and is current-biased using a constant voltage source
 178 ($V_{bias} = 1.75$ V) and a series resistor ($R = 100$ k Ω) through a bias-tee at room temperature. The
 179 signal gets further amplified by 40 dB at room temperature to a peak amplitude of about 350 mV.
 180

181
 182
 183
 184
 185
 186
 187
 188 **Fig. 3.** Biasing and readout circuit for the superconducting nanowire single-photon detector
 189 (SNSPD). The SNSPD is current-biased using a constant voltage source and a series resistor
 190 R . When a photon is absorbed by the SNSPD, it changes temporarily from a superconducting
 191 to a conducting state. The resulting current change reaches a signal amplifier, which provides
 192 the photodetection signal.


193 We first expose both detectors to photons at a wavelength of 810 nm using a degenerate
 194 PPKTP-based photon pair source pumped with a 405 nm laser diode (Fig. 4 (a)). The choice of
 195 using this source instead of the BBO-based source shown in Fig. 1 was borne out of convenience
 196 rather than from any limitation in our BBO-based source described before, as the PPKTP-based
 197 type-II SPDC source was readily available [16]. Fig. 4 (b) shows the cross-correlation $c_{12}(\Delta t)$ for
 198 the two SNSPDs, normalized to background coincidences (red dots).
 199

200 The histogram closely follows a Gaussian distribution (blue line) with standard deviation
 201 $\sigma_{12} = 23.6(1)$ ps. This suggests that the two responses $f_1(t), f_2(t)$ are also Gaussian distributions,
 202 and Eq. (1) can be simplified to

$$203 \quad c_{12}(\Delta t) = NG(\sigma_{12}, \Delta t) + C_0 = NG(\sigma_1, \Delta t) * G(\sigma_1, \Delta t) + C_0, \quad (2)$$

204

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235

Fig. 4. (a) Simplified schematic of the PPKTP-based photon-pair source. We generate orthogonally-polarized, degenerate photon pairs at 810 nm using Type-II SPDC, by pumping a PPKTP crystal (9.55 μ m poling period) with a 405 nm laser beam. The photon pairs are separated by a polarizing beam-splitter and fibre-coupled to two SNSPDs. By changing the pump wavelength to 532 nm, the same crystal generates 810 nm and 1550 nm photon pairs in a Type-0 SPDC process. We use a Si plate as a beam splitter to separate the non-degenerate photon pairs. BS: beam splitter, LD: laser diode, LP: longpass filter, PPKTP: Periodically Poled Potassium titanyl phosphate crystal. Cross-correlation of photodetection times registered by two SNSPDs detecting (b) degenerate 810 nm photon pairs, and (c) non-degenerate photon pairs at 810 nm and 1550 nm from the PPKTP-based source. (d) Cross-correlation of photodetection times of non-degenerate photon pairs at 548 nm and 1550 nm from the BBO-based source in Fig. 1.

236 where N is the total number of correlated photon pairs detected, $G(\sigma, \Delta t) = e^{-\Delta t^2/(2\sigma^2)} / \sqrt{2\pi\sigma^2}$
 237 is a normalized Gaussian distribution, and C_0 is associated with the accidental coincidence rate.
 238 The standard distribution of the correlation is then simply related to those of the individual
 239 detectors by $\sigma_{12}^2 = \sigma_1^2 + \sigma_2^2$. Assuming the same response for both detectors, we can infer at a
 240 wavelength of 810 nm, corresponding to a the full-width at half-maximum (FWHM) of 39.2(2) ps.
 241

242 Next, we calibrate the SNSPD at 1550 nm using photon pairs at 810 nm and 1550 nm generated
 243 from the same PPKTP-based SPDC source pumped with a 532 nm laser diode [Fig. 4(a)]. The
 244 non-degenerate photon pairs are separated by a Si plate as a dicroic element. Figure 4(c) shows
 245 the cross-correlation (red dots) of the photodetection times at the two SNSPDs, and a fit of
 246 a Gaussian distribution (blue line) with a standard deviation $\sigma_{12,810/1550} = 23.8(2)$ ps. With
 247 $\sigma_{1,810} = 16.7(1)$ ps obtained at 810 nm previously, we obtain $\sigma_{2,1550} = \sqrt{\sigma_{12,810/1550}^2 - \sigma_{1,810}^2}$
 248 resulting in a timing jitter of 39.9(6) ps (FWHM) of the SNSPD at 1550 nm.

249 Finally, to determine the temporal response function of a SNSPD at 548 nm, we used the
 250 BBO-based pair source [Fig. 1] to prepare non-degenerate photon pairs at 548 nm and 1550 nm.
 251 Figure 4(d) shows the cross-correlation obtained with our detectors. The fit to a Gaussian
 252 distribution (blue line) leads to a standard deviation $\sigma_{12,548/1500} = 23.7(1)$ ps. With the same
 253 argument as before, and using $\sigma_{1,1500} = 16.9(2)$ ps, we obtain a timing jitter of 38.9(7) ps
 254 (FWHM) at 548 nm. So in summary, the timing jitter of the SNSPD shows no statistically
 255 significant dependency on the wavelength in our measurements.

256 The timing jitter partially originates from the threshold detection mechanism: for a photo-
 257 todetection signal $V(t)$, the timing uncertainty σ_t for crossing a threshold, contributed by the
 258 electrical noise σ_V , is given by $\sigma_{t,\text{noise}} = \sigma_V / (dV/dt)$ at the threshold [17,18]. For our SNSPDs,
 259 we estimate $\sigma_{t,\text{noise}} \approx 15$ ps, corresponding to a contribution of about 35 ps to the timing jitter of
 260 the combined SNSPD and electronic readout system, i.e., we are dominated by this electrical
 261 noise. The jitter of the oscilloscope is claimed to be a few ps, which suggests that the intrinsic
 262 jitter of these SNSPDs is about 10 – 20 ps (FWHM) [19].

263 In the following section, we use the standard deviation σ_2 obtained at these wavelengths to
 264 define the temporal response function of the reference detector $f_2 = G(\sigma_2)$ in Eq. (1), and use the
 265 method outlined in Sec. 3. to characterize f_1 of an unknown detector.

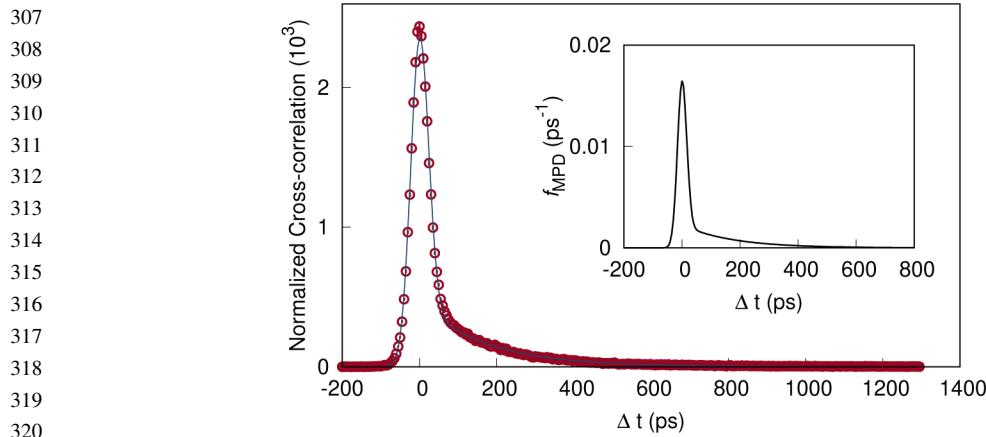
267 5. Avalanche photodetector characterization

268 First, we characterize the temporal response function f_{Si} of a thin Silicon avalanche photodiode
 269 (Si-APD) from Micro Photon Devices (PD-050-CTC-FC). Although thin Si-APDs have been
 270 characterized in previous works at a few discrete wavelengths [20–22], there has yet been a
 271 characterization performed over a continuous wavelength range.

272 Following Refs. [3,23], we describe the temporal response function with a heuristic model

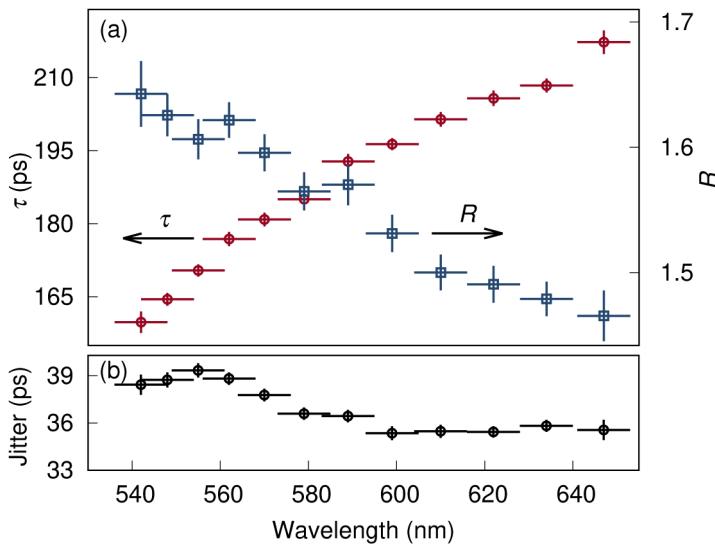
$$274 f_{\text{Si}}(\Delta t) = A G(\sigma, \Delta t - \mu) + B G(\sigma, \Delta t - \mu) * e^{-(\Delta t - \mu)/\tau}, \quad (3)$$

276 a combination of a Gaussian component of mean μ and standard deviation σ , and an exponential
 277 term with a characteristic decay constant τ . The weights of each distribution are described by A
 278 and B . The Gaussian component is associated with an avalanche that occurs due to the absorption
 279 of a photon in the depletion region. The exponential component, convoluted with a Gaussian
 280 distribution, is associated with an avalanche that is initiated by a photoelectron that diffused into
 281 the depletion region produced by photon absorption elsewhere.


282 We characterize the Si-APD over a wavelength range from $\lambda_1 = 542$ nm to 647 nm in steps
 283 of about 10 nm. The photon wavelength is tuned by rotating the crystal, changing the angle
 284 of incidence θ_i of the pump from 13.7° to 24.7° , in steps of 1° . For each θ_i , we obtain the
 285 cross-correlation $c_{12}(\Delta t)$ similarly as in section 4. Figure 5 (red dots) shows $g^{(2)}$, the cross-
 286 correlation normalized to background coincidences, obtained when signal and idler wavelengths
 287 are $\lambda_1 = 555$ nm and $\lambda_2 = 1500$ nm, respectively. For every $(\theta_i, \lambda_1, \lambda_2)$, we deduce f_{Si} by fitting
 288 the measured c_{12} to the model in Eq. (1) with $f_1 = f_{\text{Si}}$, and f_2 a Gaussian distribution with
 289 full-width at half-maximum (39.9 ps) corresponding to the SNSPD jitter at 1550 nm. For the
 290 SNSPD, we assume that its jitter remains constant over the wavelength range $\lambda_2 = 1082$ nm
 291 to 1602 nm, motivated by the observation that it does not differ significantly for $\lambda_2 = 810$ nm
 292 and 1550 nm. The fit results in parameters σ and τ which characterize f_{Si} at the corresponding
 293 wavelength λ_1 . Figure 5 (inset) shows $f_{\text{Si}}(\Delta t)$ for $\lambda_1 = 555$ nm.

294 Two figures of merit are of interest for characterizing the thin Si APD: the duration τ of the
 295 exponential tail, and the ratio R between the coincidences attributed to the Gaussian component
 296 to those attributed to the exponential component,

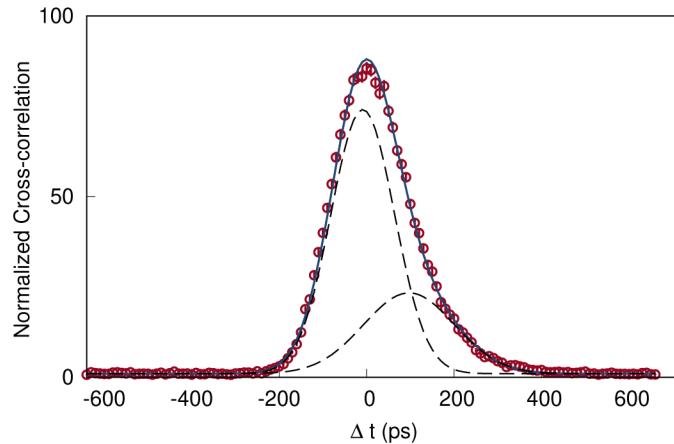
$$297 R = \frac{\int_{-\infty}^{\infty} A G(\sigma, \Delta t - \mu)}{\int_{-\infty}^{\infty} B G(\sigma, \Delta t - \mu) * e^{-(\Delta t - \mu)/\tau}} = \frac{A}{B\tau}. \quad (4)$$


301 Both values determine if the full-width at half-maximum (FWHM), a value typically quoted
 302 for the detector jitter, serves as a good figure of merit for the temporal response of a detector.
 303 For example, the jitter of a detector with $R \ll 0.5$ and $\sigma \ll \tau$, is better described by τ than the
 304 FWHM of the temporal response function.

305 Figure 6 (a) shows that R reduces while τ increases with increasing wavelength. The detector
 306 jitter (FWHM) is shown in Fig. 6 (b). The observation that τ changes significantly with wavelength

Fig. 5. Cross-correlation between photodetection times at a Si-APD and a characterized SNSPD, normalized to background coincidences $g^{(2)}(\Delta t)$. The detectors were illuminated by a non-degenerate (555 nm, 1500 nm) photon pair source. By fitting the data (red dots) to a model (blue line) obtained by convolving the individual temporal response model of both detectors, we are able to extract parameters describing the temporal response of the Si-APD (inset). Δt : photodetection time difference.

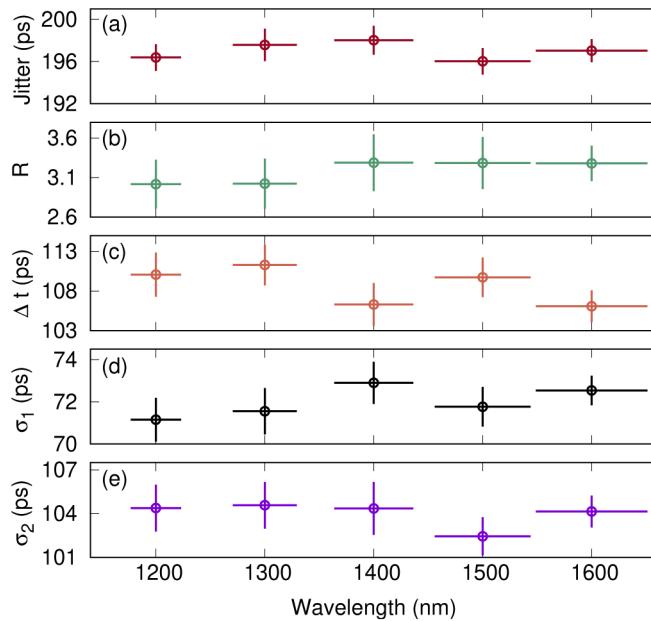
is especially relevant for fluorescence lifetime measurements, where the exponential tail in the temporal response function can be easily misattributed to fluorescence when the detector is not characterized at the wavelength of interest [1].


Fig. 6. (a) Si-APD temporal response characteristics: ratio R between the Gaussian and the exponential component of the temporal response function (red), and characteristic decay constant τ of the exponential component (blue). (b) Measured timing jitter of a Si-APD as a function of wavelength. Horizontal error bars: uncertainty of the cut-off wavelength of the color glass filter used to measure photon wavelength. Vertical error bars: fit error of R , τ , and timing jitter.

358 Next, we characterize the temporal response function f_{InGaAs} of an InGaAs avalanche photodiode
 359 (S-Fifteen Instruments ISPD1) which is sensitive in the telecommunication band. We extract
 360 f_{InGaAs} by measuring the cross-correlation c_{12} of the detection times between the InGaAs-APD
 361 and our reference SNSPD. We note that since the expected jitter of the InGaAs-APD (≈ 200 ps)
 362 is significantly larger than that of the SNSPD (≈ 40 ps), f_{InGaAs} is well-approximated by c_{12} .

363 Again, we fit $c_{12}(\Delta t)$ to a heuristic model [24], here comprising of a linear combination of two
 364 Gaussian distributions

$$366 c_{12}(\Delta t) \approx N f_{\text{InGaAs}}(\Delta t) + C_0 = N[A G(\mu_1, \sigma_1, \Delta t) + B G(\mu_2, \sigma_2, \Delta t)] + C_0, \quad (5)$$


367 where A and B are the weights of each distribution, μ_1 (μ_2) and σ_1 (σ_2) is the mean and standard
 368 deviation characterizing the Gaussian distribution G , and C_0 is associated with the accidental
 369 coincidence rate. Figure 7 shows the measured cross-correlation c_{12} (red dots) and the fit result
 370 (blue line) when the InGaAs-APD detected photons with a wavelength of 1200 nm.

374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387 **Fig. 7.** Cross-correlation function normalized to background coincidences $g^{(2)}(\Delta t)$ of the
 388 InGaAs-APD and the reference SNSPD. The cross-correlation approximates the InGaAs-
 389 APD temporal response well since the latter is much slower than the SNSPD. We fit the
 390 measured $g^{(2)}(\Delta t)$ (red dots) with a model consisting of two Gaussian distributions (solid line)
 391 with an overall width of 196 ps (FWHM). Dashed lines: individual Gaussian components,
 392 Δt : time difference between the photodetection times.

393 We tune the wavelength of the photons sent to the InGaAs-APD from 1200 nm to 1600 nm
 394 in steps of 100 nm, and obtain c_{12} for each wavelength. Figure 8 shows the parameters
 395 describing the temporal response of the InGaAs-APD: its jitter, the ratio $R = A/B$ of the two
 396 Gaussian distributions contributing to f_{InGaAs} , the temporal separation between the two Gaussian
 397 distributions ($\mu_1 - \mu_2$), and the standard deviation of the two Gaussian distributions (σ_1, σ_2). We
 398 find no significant variation of any parameter over the entire wavelength range.

409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

Fig. 8. Parameters describing the temporal response function f_{InGaAs} of an InGaAs-APD, measured over a wide wavelength range for a linear combination of two Gaussian distributions to model f_{InGaAs} (Eq. (5)). The parameters are extracted by fitting the measured temporal response to this model: (a) timing jitter, (b) the weight ratio R of the Gaussian distributions, (c) the temporal separation $\mu_1 - \mu_2$ between the Gaussian distributions, (d) and (e) the standard deviations σ_1 and σ_2 of the Gaussian distributions.

6. Conclusion

We have presented a widely-tunable, non-degenerate photon-pair source that produces signal photons in the visible band, and idler photons in the telecommunications band. With the source, we demonstrate how the tight-timing correlations within each photon pair can be utilized to characterize single-photon detectors. This is achieved by measuring the cross-correlation of the detection times registered by the device-under-test (DUT), and a reference detector – an SNSPD, which has a relatively low and constant jitter over the wavelength range of interest. By taking into account the jitter introduced by the reference detector, we are able to extract the temporal response function of the DUT. As the source is based on SPDC in a BBO crystal, its output wavelengths are continuously tunable by varying the angle of incidence of the pump at the crystal. We experimentally demonstrated wavelength-tunability of over 100 nm in the visible band, and over 700 nm in the telecommunications band – a similar tunability compared to existing femtosecond pulsed laser systems.

With our source, we measured the temporal response functions of two single-photon detectors, an Si-APD and an InGaAs-APD, over a continuous wavelength range centered at the visible and telecommunications band, respectively. For the InGaAs-APD, we observed no significant variation of its jitter over a wide wavelength range. For the Si-APD, we observed that the exponential component of its temporal response increases with wavelength. This observation emphasizes the need for an accurate accounting of Si-APD jitter in precision measurements, e.g. characterizing fluorescence markers at the wavelength of interest [1], or measuring the photon statistics of narrowband astronomical sources [3].

Funding. National Research Foundation Singapore (RCE programme, QEP-P1); Ministry of Education - Singapore (RCE programme). Q1

460

Disclosures. LJS: S-Fifteen Instruments Pte. Ltd. (C), CK: S-Fifteen Instruments Pte. Ltd. (I,S).

461

References

462

1. W. Becker, *Advanced time-correlated single photon counting techniques* (Springer Science & Business Media, 2005).
2. M. J. Stevens, R. H. Hadfield, R. E. Schwall, S. W. Nam, R. P. Mirin, and J. A. Gupta, "Fast lifetime measurements of infrared emitters using a low-jitter superconducting single-photon detector," *Appl. Phys. Lett.* **89**(3), 031109 (2006).
3. P. K. Tan, A. H. Chan, and C. Kurtsiefer, "Optical intensity interferometry through atmospheric turbulence," *Mon. Not. R. Astron. Soc.* **457**(4), 4291–4295 (2016).
4. K. Zielnicki, K. Garay-Palmett, D. Cruz-Delgado, H. Cruz-Ramirez, M. F. O'Boyle, B. Fang, V. O. Lorenz, A. B. U'Ren, and P. G. Kwiat, "Joint spectral characterization of photon-pair sources," *J. Mod. Opt.* **65**(10), 1141–1160 (2018).
5. C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," *Phys. Rev. Lett.* **59**(18), 2044–2046 (1987).
6. D. N. Klyshko, A. N. Penin, and B. F. Polkovnikov, "Parametric luminescence and light scattering by polaritons," *JETP Lett.* **11**, 5–8 (1970).
7. D. C. Burnham and D. L. Weinberg, "Observation of simultaneity in parametric production of optical photon pairs," *Phys. Rev. Lett.* **25**(2), 84–87 (1970).
8. S. E. Harris, "Tunable optical parametric oscillators," *Proc. IEEE* **57**(12), 2096–2113 (1969).
9. R. L. Sutherland, *Handbook of nonlinear optics* (CRC, 2003).
10. R. W. Boyd, *Nonlinear Optics* (Academic, 2008).
11. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, and A. Zalkin, "Optical, mechanical, and thermal properties of barium borate," *J. Appl. Phys.* **62**(5), 1968–1983 (1987).
12. D. N. Nikogosyan, "Beta barium borate (BBO) - A review of its properties and applications," *Appl. Phys. A: Solids Surf.* **52**(6), 359–368 (1991).
13. F. J. Duarte, P. Kelley, L. W. Hillman, and P. F. Liao, *Dye laser principles: with applications* (Academic, 1990).
14. E. Sorokin, S. Naumov, and I. T. Sorokina, "Ultrabroadband infrared solid-state lasers," *IEEE J. Sel. Top. Quantum Electron.* **11**(3), 690–712 (2005).
15. A. Lamas-Linares and C. Kurtsiefer, "Breaking a quantum key distribution system through a timing side channel," *Opt. Express* **15**(15), 9388–9393 (2007).
16. L. Shen, J. Lee, L. P. Thinh, J.-D. Bancal, A. Cerè, A. Lamas-Linares, A. Lita, T. Gerrits, S. W. Nam, V. Scarani, and C. Kurtsiefer, "Randomness extraction from bell violation with continuous parametric down-conversion," *Phys. Rev. Lett.* **121**(15), 150402 (2018).
17. G. Bertolini and A. Coche, *Semiconductor Detectors* (North-Holland, 1968).
18. J. Wu, L. You, S. Chen, H. Li, Y. He, C. Lv, Z. Wang, and X. Xie, "Improving the timing jitter of a superconducting nanowire single-photon detection system," *Appl. Opt.* **56**(8), 2195–2200 (2017).
19. B. Korzh, Q.-Y. Zhao, J. P. Allmaras, S. Frasca, T. M. Autry, E. A. Bersin, A. D. Beyer, R. M. Briggs, B. Bumble, M. G. M. C. Colangelo, A. E. Dane, T. Gerrits, F. Marsili, G. Moody, E. Ramirez, J. D. Rezac, M. J. Stevens, E. E. Wollman, D. Zhu, P. D. Hale, K. L. Silverman, R. P. Mirin, S. W. Nam, M. D. Shaw, and K. K. Berggren, "Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector," *Nat. Photonics* **14**(4), 250–255 (2020).
20. A. Lacaita, M. Ghioni, and S. Cova, "Double epitaxy improves single-photon avalanche diode performance," *Electron. Lett.* **25**(13), 841–843 (1989).
21. A. Giudice, M. Ghioni, R. Biasi, F. Zappa, S. Cova, P. Maccagnani, and A. Gulinatti, "High-rate photon counting and picosecond timing with silicon-spad based compact detector modules," *J. Mod. Opt.* **54**(2-3), 225–237 (2007).
22. S. Cova, G. Ripamonti, and A. Lacaita, "Avalanche semiconductor detector for single optical photons with a time resolution of 60 ps," *Nucl. Instrum. Methods Phys. Res., Sect. A* **253**(3), 482–487 (1987).
23. Q. Hernandez, D. Gutierrez, and A. Jarabo, "A Computational Model of a Single-Photon Avalanche Diode Sensor for Transient Imaging," arXiv:1703.02635 (2017).
24. A. Tosi, F. Acerbi, A. Dalla Mora, M. A. Itzler, and X. Jiang, "Active area uniformity of ingaas/inp single-photon avalanche diodes," *IEEE Photonics J.* **3**(1), 31–41 (2011).

500

501

502

503

504

505

506

507

508

509

510