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Abstract: Optical cavities in the near-concentric regime have near-degenerate transverse modes;
the tight focusing transverse modes in this regime enable strong coupling with atoms. These
features provide an interesting platform to explore multi-mode interaction between atoms and
light. Here, we use a spatial light modulator (SLM) to shape the phase of an incoming light
beam to match several Laguerre-Gaussian (LG) modes of a near-concentric optical cavity. We
demonstrate coupling efficiency close to the theoretical prediction for single LG modes and
well-defined combinations of them, limited mainly by imperfections in the cavity alignment.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Transverse modes of paraxial beams are a set of unique field patterns perpendicular to the
propagation of electromagnetic waves. They have a wide range of applications, such as increasing
the information-carrying capacity in free-space [1] and fiber [2,3] communications, creating
smaller focal volumes to achieve superresolution imaging [4], utilizing orbital angular momentum
(OAM) for quantum key distribution [5], and producing highly-entangled states [6]. In optical
cavities, transverse modes have been used to track atomic position via the observed mode pattern
[7-9], and to help enhancing the cooling process in atomic ensembles [10-12]. Optical cavities
with near-degenerate transverse modes have also been used to engineer inter-mode coupling
[13,14], and to study crystallization domains in Bose-Einstein condensates (BEC) [15-18].
Furthermore, transverse modes can be chosen as a degree of freedom for field quantization, along
with wavelength and polarization, and can be utilized to explore atom-photon interaction as
building blocks of a quantum network.

The near-degeneracy of transverse modes in an optical cavity arises in the region where the
Gouy phase shifts of the cavity modes are fractions of &, notably in the confocal and concentric
region [19,20]. Cavity modes in the near-confocal region have relatively large mode volume,
which is suitable to explore multi-mode interaction in large atomic ensemble such as BEC [16,20].
On the other hand, cavity modes in the near-concentric region have small mode volumes with a
beam waist on the order of the atomic cross section, and thus show potential for strong interaction
between light and single atoms [21-24]. The spatial resolution of the transverse modes can also
be utilized to trap and couple selectively to small ensemble of single atoms. In centimetre-sized
near-concentric cavities, the frequency spacing of the transverse modes ranges between ~ 0.01 to
1 GHz - the lower limit is set by the last stable resonance from the critical point, which is less than
half a wavelength away [25]. Unlike planar cavities, the frequency spacing is on the order of the
hyperfine or the Zeeman level splitting of the atoms. This allows to explore single-quanta atomic
nonlinearities with multiple optical modes coupled to different hyperfine or magnetic energy
levels simultaneously, which has been previously demonstrated with two atomic transitions with
~ 10 THz spacing using planar cavities [26].

The transverse modes of a cavity can be excited by modifying the wavefront of the incoming
Gaussian beam in a TEgyp mode to match the transverse spatial profile of the modes. In this
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work, we use a liquid-crystal spatial light modulator (SLM) to perform mode conversion by
modulating the spatial phase profile. This enables coupling of a SLM-converted beam to a
specific mode or a superposition of transverse modes in a near-concentric cavity. Furthermore,
we examine how close to the critical point the transverse modes are still supported. Previously,
such phase SLM have been utilized to excite the transverse modes of multimode fibers [27],
while excitation of cavity transverse modes in a near-confocal regime has been implemented with
a digital micromirror device (DMD) — a type of binary-mask amplitude SLM [20]. Compared
with amplitude SLMs, phase SLMs can ideally perform mode conversion and coupling with
higher overall efficiency as it does not require parts of the beam to be attenuated or diverted
away. While the near-concentric cavities exhibit some technical complexities specific to the
highly diverging modes in approaching the critical point, an efficient mode conversion enables
interfacing of atomic qubits with multiple near-degenerate photonic modes.

2. Theory
2.1. Transverse modes of a cavity

The spatial modes of the near-concentric cavity we investigate here are still well described by the
paraxial approximation up to the last stable resonance [25]. We briefly present the theoretical
framework to express paraxial transverse modes in an optical cavity with a scalar field that forms
a standing wave [19]. In a cylindrically symmetric cavity, the transverse mode profile can be
described by a complex amplitude

1 2 2
wo [ p 1 2p P .
Uyi(p,9,2) =Ap——|—=| L exp|————|exp (i ,$,2)) 1

p,l(p ¢ ) pJW(Z) (W(Z)) D (WZ(Z)) p ( WZ(Z)) p ( wp,l(p ¢ )) ( )
where p and [ are the radial and azimuthal mode numbers of the Laguerre-Gaussian (LG) beams,
Ay, is the normalization constant, w(z) = wov/'1 + (z/z0)? is the beam radius along the z direction
with zg = nwg /A as the Rayleigh range and wy as the waist radius, Lé is the generalized Laguerre
polynomial, and i, (o, ¢, 2) is the real-valued phase of the LG beam, given by

2

Ui 6.9 = ~ka — ks =16+ Gp + 1+ D) @

where R(z) = z+ z% /z is the curvature radius of the wavefront, and £(z) = tan™!(z/z0) is the Gouy
phase.

Inside a cavity, the LG modes are bounded by the two spherical mirror surfaces of radii R; and
R; spaced L apart. The modes are geometrically stable when stability parameters g, = 1 — L/R;
and g» = 1 — L/R; satisfy the confinement condition 0 < g;g> < 1 [28]. In symmetric cavities
(g1 = g2 = g), the marginally stable concentric mode is obtained for a critical mirror separation
of L = 2R and g = —1. Near-concentric modes depart from this point towards the stable region
— the distance away from the critical mirror separation is characterized by the critical distance
d=2R-L,withg=-1+d/R.

The resonance frequencies of the cavity depend on the transverse mode numbers p and /,

A
Vapl = g+ 2p+ 1+ 1)75 VE, 3)

where ¢ is the longitudinal mode number of the cavity, vp = ¢/2L is the cavity free spectral
range, and A = {(za2) — {(zar1) is the Gouy phase difference between the two cavity mirrors. In
near-concentric symmetrical cavities, the frequency spacing between two consecutive transverse
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modes is given by

R

where Av,, — 0 as d — 0. By measuring the frequency separation between the transverse modes,
we can estimate the critical distance d and deduce the waist radius wq [25].

VF -1 d
AV = V400 = Vg-1,0,1 = — €os (1 - —) , 4

2.2. Atom-light coupling in near-concentric cavities

The strength of atom-light interaction is characterized by the coupling constant gu. & dy/\ Vi,
which depends on the atomic dipole moment d, and the effective mode volume V,,, = HW%L/ 2
[29]. Small mode volumes can be achieved either with short cavity length L or small waist radius
wo. Due to the small wy in approaching the critical point, near-concentric cavities exhibit strong
atom-light coupling strength g,., comparable to um-length cavities or fiber cavities [23].

In addition, all the radial transverse modes (LG modes with [ = 0) at a particular critical
distance d have identical effective mode volumes V,,. Imposing the normalization condition
de |U,0(p, ¢,2)|* = 1 with the prefactor A, = 1/4/V,, from Eq. (1), we obtain V,, = nwéL/Z
for all values of p (radial mode number), by applying the relation fow du e‘”.[j,(,)(u)2 = 1 where
u = 2p*/w?. This relation also implies that even though higher order radial modes appear to be
“larger”, their intensity cross-section areas remain the same. This allows coupling between an
atom and cavity modes with equal strength across all radial transverse modes. A more thorough
calculation of the atom-cavity coupling constant for radial transverse modes is provided in
Supplement 1.

2.3. Mode-matching to a cavity

We briefly describe the method to measure the mode matching efficiency in a cavity with realistic
losses, following the cavity characterization technique in Ref. [30]. The power transmission
through a cavity with mirrors of the same reflectivity is given by
P t(“)) =7 Ksz

P, (K + K1) + (W — wp)?

T(w) = &)

where P,(w) is the light power transmitted through the cavity, P;, is the input power, 7, is the
spatial mode matching efficiency, wy is the cavity resonance frequency, and «,, and «; are the
cavity decay rates due to the mirror transmission and scattering losses, respectively. On the other
hand, the fraction of power reflected back from the cavity is given by

Pr(w) K,2n + 2K, K]
Pin B n(Km+Kl)2+(w_w0)2 ’

R(w) = (6)
where P,(w) is the light power reflected by the cavity. The total cavity decay rate, « = k,, + Ky,
determines the cavity finesse, ¥ = mvp/k, and can be obtained by fitting Eq. (5) to the measured
transmission spectrum.
The mode matching efficiency n can be obtained from Eq. (5) and Eq. (6) on the cavity
resonance (w = wy),
(1+a)?
= —T(wo), 7
ay (wo) (M
where a = ,,/(2k; + Ky, is determined by the cavity decay rates, and thus is a physical property
of the cavity mirrors — for mirrors with no scattering or absorption losses, @ = 1. The parameter
a can be estimated from the measurement of the cavity transmission and reflection at resonance:
T
o= T ®)
1 = R(wo)
which represents the effectiveness of the cavity transmission. The cavity decay rates can be
obtained as «,, = 2xa /(1 + @) and kx; = k(1 — @)/(1 + «) from measured values of x and «.
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2.4. Beam shaping with SLM

To prepare LG beams and couple to the transverse modes of the near-concentric cavity, we
use a liquid-crystal phase SLM to perform mode conversion from a collimated single mode
fiber ouput (approximating a Gaussian beam). Such a transformation can be performed with
a spatial filter which modulates both the amplitude and the phase of the incoming mode, and
described by a generalized filter function T(x) = M(x) exp(i ®(x)). However, a liquid-crystal
SLM only modulates the phase of the incoming beam and hence only provides the transformation
T(x) = exp(i D(x)).

There are several methods to perform both amplitude and phase modulation using only a
phase SLM. In one method, the SLM can be operated in a phase-grating configuration — this
produces both the carrier and first-order diffraction beams, where phase and amplitude can
be varied using the modulation angle and the modulation depth, respectively [31,32]. This
method typically requires a high-resolution SLM to encode the phase and amplitude information
sufficiently precise with the phase grating. However, recent works explored encoding techniques
with different sets of amplitude modulation bases which allow the usage of a low-resolution
phase SLM [33-36]. Another method relies on using two SLMs with a polarizer to modulate the
amplitude and phase of the incoming beam independently [37-39].

Here, we use a much simpler technique that does not require parts of the beam to be diverted
away or attenuated, because LG modes with relatively high purity can be created by spatially
modulating the incoming Gaussian beam with only the phase component of the desired LG
modes [40—42]. The cavity then acts as a filter to attenuate the remaining off-resonant LG
mode components, while transmitting the desired LG mode. The SLM phase function for this
transformation is given by

2 2
D(p, ¢) = arg [Up(p, ¢,0)| = arg [L,’, (%)] -1 )

The mode overlap is defined as / (do)U7(p, $)Uz(p, ¢), evaluated over the cross sectionat z = 0,
where Uj(p, ¢) = Ag exp (—p2 /w%) exp [iD(p, ¢)] is the SLM-modulated output of the incoming
Gaussian mode, and U, (p, ¢) is the targeted LG mode, while the normalization coefficients Ag
and A, are chosen such that the modes are normalized, i.e. f (do)Ui(p, $)Ui(p, ¢) = 1. Thus,
the modulus square of the mode overlap is equivalent to the mode matching efficiency 7, as
defined in Section 2.3. The ratio between the targeted LG mode waist and the incoming Gaussian
mode waist w/wq can also be varied to maximize the mode overlap. For relatively small mode
indices p and /, the mode matching efficiencies of the same LG modes are relatively high, with
low mode matching efficiencies to different LG modes (see Table 1). Due to the simplicity of the
phase function, this technique can also be implemented using physical phase plates [43,44].

Table 1. Calculated values of the mode matching efficiencies ; between the SLM output and the
LG modes for / = 0, up to LG59 — mode matching to modes higher than LG5 are smaller (not shown
in table), and the cumulative efficiencies sum up to unity asymptotically. The model does not
incorporate pixellation and aperture effects caused by a real SLM.

Mode matching efficiencies

SLM output W/ Wo LGgo LG LG LG3o LGao LGso
LGyg 0.57 0.1% 81.2% 0.0% 2.4% 1.3% 0.7%
LGy 0.45 1.3% 0.1% 76.9% 0.1% 1.6% 4.5%
LGjg 0.39 0.4% 1.2% 0.5% 74.6% 0.3% 0.9%
LGy 0.35 0.2% 0.4% 1.2% 0.8% 73.2% 0.5%




205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

5 |

Research Article Vol. 0, No. 0/00 00 0000/ Optics Express

Optics EXPRESS

3. Experiment

3.1.  Experimental setup

The design and construction of the near-concentric cavity was described previously [22,25]. The
cavity is formed by two lens-mirrors with mirror radius of curvature of 5.5 mm and aperture
diameter of 4.07 mm — the anaclastic design allows highly divergent modes of the near-concentric
cavity to be transformed into collimated modes with a single element. This simplifies the
requirement of the optical components to generate and measure collimated LG beams on the
input and output of the cavity (see Fig. 2).

=3
L 5
9o LGoo
Pin — Py 2
£
y _} _} 2
; . B s
I—»Z § | G LGxn LGy
“— 2w, 20vy
N N |
R R
P 1 2
p Vq,0,0
frequency

Fig. 1. Left: Schematic and coordinate system of the near-concentric cavity with a highly
focused mode with 2w waist diameter. Right: Example of the cavity transmission with input
beam from a collimated fiber output. As the input beam has no orbital angular momentum
(I = 0), the frequency spacing between adjacent LGpp modes would be 2Avy,.

SLM

PZT
Probe Laser & O
NN
cc FM  PD

Fig. 2. Optical setup. A spatial light modulator (SLM) transforms light emerging from
a single mode optical fiber to match the LG modes of the near concentric cavity (CC). A
telescope (TL) facilitates mode matching between the SLM output and the cavity. Cavity
transmission is monitored using either a photodetector (PD) or mode camera (C), selected
by a flip mirror (FM).

3.1.1. Mode conversion with SLM

We use a liquid-crystal SLM (Meadowlark HV 512 DVI) with an active area of 12.8 mm X
12.8 mm and resolution of 512x512 pixels. As this SLM only modulates light with a particular
linear polarization, a sequence of a polarizing beam-splitter (PBS) and a half-wave plate (HWP)
prepares the correct polarization to match the SLM polarization axis. We minimize the pixelation
artifact by using a significant portion of the SLM area. To achieve this, we prepare a slightly
divergent beam with beam diameter (1/e? width) ranging from 3 to 7 mm, measured at the SLM.

The phase modulation applied on the SLM consists of three components: the LG mode-
generating phase pattern as described in Eq. (9), the correction phase pattern provided by the

QI
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manufacturer, and a quadratic phase pattern which effectively acts as a Fresnel lens with variable
focal length. This SLM-generated Fresnel lens helps in supressing the unmodulated light on
the SLM output (more commonly done with a blazed grating pattern [42]). In addition, the
combination of the Fresnel lens with a telescope of variable length and magnification creates a
collimated LG beam with tunable beam size. The appropriate values for the Fresnel lens and
telescope parameters are obtained with ray-tracing simulations.

The overall diffraction efficiency of the SLM due to the aforementioned phase modulation is
measured to be around 60%, similar throughout different LG mode-generating phase patterns,
which can potentially improve with better SLM designs. Thus, the overall fiber-to-cavity coupling
efficiency is only limited by the SLM diffraction efficiency, losses due to on-path optical elements,
and the mode matching efficiency as measured in Section 3.1.3. This is much better than using
the DMD-based devices which have much higher loss due to the amplitude mask [45,46].

3.1.2. Cavity alignment

In the cavity design [25], one cavity mirror is placed on 3D piezo translation stage (Fig. 2) to
allow for both the longitudinal (z direction) and transverse alignment (x and y directions). The
longitudinal alignment changes the cavity length to be resonant to a particular optical frequency,
while the transverse alignment is performed to establish cylindrical symmetry of the system.
Small tip-tilt misalignment can also be corrected by the transverse alignment, if the mirrors are
perfectly spherical. However, such a correction misaligns the two anaclastic lens-mirror axes
from the cavity axis, resulting in slightly asymmetric collimated output modes.

The transmission and reflection spectrum of the cavity are obtained by measuring the light
intensity with a photodetector while varying the cavity length linearly over time. The detuning
from the cavity resonance is expressed in corresponding units of light frequency — the conversion
factor is determined by measuring the spacing of the frequency sideband generated with an
electro-optical modulator.

3.1.8. Measurement of the mode-matching efficiency

The mode matching efficiency 1 (Eq. (7)) quantifies how well the input mode couples to the
cavity mode. It only depends on the resonant power transmission at resonance 7(wp) and the
effective transmission coefficient a (Eq. (8)). We characterize the value of a by coupling a
Gaussian beam (from a collimated single mode fiber output mode) into the cavity without the
SLM. The transmission and reflection spectrum were recorded. From the fitting, we obtain
T(wp) = 19.5(1)%, R(wp) = 33.6(2)%, and x = 27 x 24.8(8) MHz, which corresponds to a
cavity finesse of ¥ = 275(9). From these parameters, we estimate @ = 0.294(2), which results
in a mode matching efficiency of n = 94(1)% for Gaussian beam, and cavity decay rates of
Km = 21 X 11.3(4) MHz and «; = 27 X 13.5(4) MHz.

To estimate the mode matching efficiencies for SLM-generated LG modes, we obtain the cavity
transmission spectrum 7(w) and multiply it with (1 + a)?/(2a)? (the prefactor in Eq. (7)) to
obtain the mode transmission spectrum n(w). We fit this spectrum with a Lorentzian profile, and
estimate the mode matching efficiency n = n(wp) from the fit amplitude. The parameters from
the ray-tracing simulation helps to start the coupling procedure, and we fine-tune these values
further to maximize the mode matching efficiency.

3.2. Mode-matching to single LG modes

We generate a single LG mode using the SLM and couple it to the near concentric cavity. The
cavity is located at a critical distance of d = 4.8(2)um with g = —0.99912(4), corresponding to
a measured transverse mode spacing of Av,. = vp(1 — Al /n) = 182(5) MHz between adjacent
LG modes. The cavity spectra and the camera-captured output modes are depicted in Fig. 3
for LG modes with no angular momentum (/ = 0), and in Fig. 4 for LG modes with angular
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momentum (/ # 0). The measured mode matching efficiencies are close to the simulated values
(see Table 2), although they decrease with higher mode numbers. We attribute this to limited
SLM pixel resolution, axial mismatch between the cavity and the anaclastic lens axis due to
tip-tilt misalignment, and a mirror surface deviation from a perfect spherical profile. These
factors also contribute to some irregularities on the output mode observed by the mode camera.

1
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Fig. 3. Left: measured cavity transmission for radial LG modes (/ = 0). The detuning is
defined with respect to the LG resonance; higher order the modes are spaced 2Av;, apart.
Right: the corresponding cavity output mode observed with the mode camera.
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Fig. 4. Left: measured cavity transmission for LG modes with low angular momentum
(I =1and!=2). Right: the corresponding cavity output mode.

3.3. Mode-matching to a superposition of LG modes

Superpositions of transverse modes in a cavity provide an interesting avenue to explore multi-
photon interaction with atomic medium [26]. We demonstrate the coupling of the SLM-generated
beam to an arbitrary superposition of LG modes. We use the method described in Section 3.1.1
by considering the resultant mode as a superposition of individual LG modes,

Ures = ZAP’I exXp (ié:p,l) LGpl 5 (10)

where A, ; is the amplitude of each constituting LG mode and &, is the relative phase of the LG
mode.

Figure 5 (left) shows the mode matching efficiency in coupling the SLM-generated beam to
the cavity superposition mode Ujng,10) = (LGOO + eifLGlo) / V2 with a varying relative phase
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Table 2. Comparison of mode matching
efficiencies between simulation and
experiment for single LG modes.

Mode Sim. Exp.

LG 100% 96(1)%
LGy 81.2% 68(1)%
LGy 76.9% 57(1)%
LG3p 74.7% 38(1)%
LGo; 93.1% 81(1)%
LG 84.4% 67(1)%
LGy 81.8% 63(1)%
LGs 79.8% 53(1)%

angle £. To obtain a balanced distribution of LGgy and LG, we introduce a mode amplitude
Ajp to the SLM spatial phase pattern,

LGy + A10¢é LG

2 b
1/1+A10

and vary the amplitude Ao and w/wg, maximising the mode matching efficiency subject to the
balanced distribution constraint. The mode matching efficiency 7 is obtained by adding the mode
transmission amplitudes of both the LGy and LG9 modes, while ensuring that they are balanced
within ~ 1%. The measured values follow a similar trend with the simulated values, with some
offset (~ 10%) attributable to the SLM pixel size and the mirror irregularities as described
previously. The highest mode matching efficiency ( = 87(1)%) occurs around ¢ = /2, in
which case the LGy mode is encoded with no phase shift with respect to the SLM output (in the
“in-phase” component), while the LGy mode is encoded with a /2 phase shift with respect to
the SLM output (in the “quadrature” component).

@ = arg [Uqoo10}]| = arg (11)

1

P uniform dist (case 1) ——
. - N double LG, content (case 2) ——
B .
S 09 e *. 04 r
Q2 . 'y \ 5
&% L7 L] \ g
e 08} -” . E
£ g
5 . g
w® 07F . o 021
E 8
[
B 06 E
1S simulation - - - -
measurement —e—
05 . L - 0 L : : :
0 n/2 n -1000 -800 -600 -400 -200 0 200

phase & cavity detuning (2 MHz)

Fig. 5. Left: Coupling to equal parts of LGy and LG while varying their phase difference.
Right: Coupling to a superposition of LGy, LG1¢ and LGyg.

Figure 5 (right) shows the transmission spectra of a superposition of three modes. Modes
LGoo, LG9, and LGy are superposed with a relative phase difference of 271/3 to distribute the
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phases evenly on the complex plane. The corresponding SLM spatial pattern is given by

LG()() + A10€i2”/3LG10 + A206i4”/3LG20

2 2 ’
,/1 +A10 +A20

where Ao, Azg and w/wy are parameters to be varied to obtain the desired mode distribution
and the efficiency. Two cases are illustrated in Fig. 5 (right): (1) equally distributed modes, i.e.
U00.1020) = (LGoo + €2*3LG1g + e**/3LGag) /V3, and (2) LGy content double the content
of the other modes, i.e. Uqo0.1020} = (LGOO + V267 BLG + €7/ 3LG20) /2. The theoretical
efficiencies under optimized parameters are 95.6% and 97.2% for case (1) and (2), while the
measured efficiencies are 71(1)% and 70(1)%, respectively. We attribute this discrepancy to the
imperfections of the SLM and cavity as described previously, and in particular when coupling to
the superposition component with higher mode numbers.

® = arg [Ujoo,1020 | = arg (12)

3.4. Mode-matching at different critical distances

Small critical distances provide strong field focusing and a small mode volume. In addition, the
frequency spacing of the transverse modes decreases with smaller critical distances, leading to
the mode degeneracy at the critical point [25]. We study how the mode matching of a single LG
mode performs at different critical distances. We use the SLM to couple to LGgg, LG9, and LGpg
modes of the cavity, and obtain the cavity transmission spectra. We find that the linewidth of the
cavity spectra increases for smaller critical distances, while the mode transmission amplitude
decreases. This is likely due to diffraction losses as the cavity approaches the critical point.
The critical distance can be estimated from the transverse mode spacing. By changing the
cavity length and keeping the laser frequency fixed, we obtain neighbouring cavity spectra spaced
Ad = A/2 apart. Figure 6 shows the cavity transmission amplitudes and the cavity linewidths for
various critical distances. Without diffraction loss, the mode transmission amplitude is equivalent
to the mode-matching efficiency . However, as the diffraction loss increases, the effective
transmission coefficient @ also changes. Hence, the mode transmission amplitude describes
the mode-matching efficiency weighted by a factor associated with the diffraction loss. In the
high diffraction loss regime, it becomes hard to couple to a particular lossy eigenmode, and
characterize its linewidth to obtain «, as different transverse modes start to overlap in frequency.
Figure 7 shows the spatial profile of the cavity transmission, captured with the mode camera.
Diffraction rings become visible at the critical distance where the linewidth increases.
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Fig. 6. Left: transmission amplitude of different LG modes over a range of critical distances.
Right: The corresponding linewidth (FWHM).
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increasing diffraction loss
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Fig. 7. The cavity modes observed with the mode camera. For a small critical distance,
diffraction loss becomes significant and distorts the mode profile. The diffraction rings are
caused by the aperture of the anaclastic lens.

The near-concentric cavity can support several LG modes reasonably close (~ a few ym) to
the critical point. However, higher order LG modes start to exhibit diffraction losses at larger
critical distances, due to larger LG beam sizes. The performance of the cavity mirrors can be
characterized with an effective aperture — for every round trip, the cavity mode is clipped by a
circular aperture with diameter a on the mirror, effectively blocking some outer parts of the beam.
As a first order approximation, we assume the LG modes to be unperturbed after subsequent
round trips. To estimate the onset of the diffraction loss, we choose an aperture size to block
~ 1% of the mode (the diffraction loss is 2k, ~ 2 X 20 MHz), which is on the same order as
the mirror transmission and scattering losses. From Fig. 6 (right), the effective aperture diameter
is estimated to be aeyp = 1.40(6) mm with the onset of the diffraction loss at critical distances of
0.46(8) um for LG, 1.8(3) um for LGy, and 3.8(6) um for LGyo.

The estimated effective aperture dey, = 1.40(6) mm is comparatively lower than the nominal
aperture of the anaclastic lens-mirror design apom = 4.07 mm. We suspect this to be due to a
combination of: (1) local aberrations of the mirror surface due to mechanical stresses induced by
the temperature change and the clamping process [47,48], (2) angle-dependent variation on the
wavefront due to the multi-layered coating [49], and (3) the validity of the paraxial approximation
for strongly diverging modes [50], particularly for higher orders. By slightly modifying the
mirror shape or the coating layers, it might be possible to increase the effective aperture of the
cavity and obtain stable LG modes even closer to the critical point.

4. Conclusion

In summary, we presented a mode-matching procedure to excite several transverse modes of a
near-concentric cavity with a relatively high conversion efficiency. We use an SLM to engineer
the spatial phase of an input Gaussian beam to selectively match a specific LG mode, and observe
experimental mode matching efficiencies close to theoretical predictions for several low-order
LG modes, despite the imperfections in the cavity alignment and mirror surface, and the limited
resolution of the SLM. We demonstrated that a superposition of cavity modes can be generated
with a high fidelity, and showed that a near-concentric cavity can support several LG modes up to
critical distances of a few um before the diffraction loss dominates.

The near-concentric regime of an optical cavity supports transverse modes which are spaced
close to one another, on the same order of the magnetic level or hyperfine splitting of the atoms.
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Exciting the transverse modes in such a regime is a step towards exploring interaction between
atoms and strongly focused near-degenerate spatial modes. The nonlinearity arising from multiple
photons interacting with single atoms can therefore provide a building block for scalable quantum
networks.
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