

Dear Author

Please use this PDF proof to check the layout of your article. If you would like any changes to be made to the layout, you can leave instructions in the online proofing interface. First, return to the online proofing interface by clicking "Edit" at the top page, then insert a Comment in the relevant location. Making your changes directly in the online proofing interface is the quickest, easiest way to correct and submit your proof.

Please note that changes made to the article in the online proofing interface will be added to the article before publication, but are not reflected in this PDF proof.

If you would prefer to submit your corrections by annotating the PDF proof, please download and submit an annotatable PDF proof by clicking the link below.

 [Annotate PDF](#)

AUTHOR QUERY FORM

	<p>Journal: Rev. Sci. Instrum.</p> <p>Article Number: RSI23-AR-02290</p>	<p>Please provide your responses and any corrections by annotating this PDF and uploading it to AIP's eProof website as detailed in the Welcome email.</p>
---	--	--

Dear Author,

Below are the queries associated with your article. Please answer all of these queries before sending the proof back to AIP.

Article checklist: In order to ensure greater accuracy, please check the following and make all necessary corrections before returning your proof.

1. Is the title of your article accurate and spelled correctly?
2. Please check affiliations including spelling, completeness, and correct linking to authors.
3. Did you remember to include acknowledgment of funding, if required, and is it accurate?

Location in article	Query/Remark: click on the Q link to navigate to the appropriate spot in the proof. There, insert your comments as a PDF annotation.
<p>Q1</p> <p>Q2</p> <p>Q3</p> <p>Q4</p> <p>Q5</p>	<p>Please check that the author names are in the proper order and spelled correctly. Also, please ensure that each author's given and surnames have been correctly identified (given names are highlighted in red and surnames appear in blue).</p> <p>We have reworded the sentence beginning "To quantify the impact of the shift ..." for clarity. Please check that your meaning is preserved.</p> <p>Figure 5 was not cited in the text. We have inserted a citation in the sentence beginning "Any transverse misalignment. . ." Please check and reposition if necessary.</p> <p>Please provide a data availability statement for your paper.</p> <p>If e-print Ref. 10 has subsequently been published elsewhere, please provide updated reference information (journal title, volume number, and page number).</p> <p>Please confirm ORCIDs are accurate. If you wish to add an ORCID for any author that does not have one, you may do so now. For more information on ORCID, see https://orcid.org/.</p> <p>Florentin Adam – 0009-0006-3356-9916 Wen Xin Chiew – 0009-0004-1379-9242 Adrian Nugraha Utama – 0009-0005-0759-6753 Christian Kurtsiefer – 0000-0003-2190-0684</p> <p>Please check and confirm the Funder(s) and Grant Reference Number(s) provided with your submission: National Research Foundation Singapore, Award/Contract Number NRF2021-QEP2-01-P01/W21Qpd0101</p> <p>Please add any additional funding sources not stated above.</p>

Thank you for your assistance.

1 Low noise near-concentric optical cavity design

2 Cite as: Rev. Sci. Instrum. 95, 000000 (2024); doi: 10.1063/5.0191123

3 Submitted: 11 December 2023 • Accepted: 24 March 2024 •

4 Published Online: 9 99 9999

5 Florentin Adam,¹ Wen Xin Chiew,¹ Adrian Nugraha Utama,¹ and Christian Kurtsiefer^{1,2,a)}

6 AFFILIATIONS

7 ¹ Center for Quantum Technologies, 3 Science Drive 2, Singapore 117543

8 ² Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542

9 ^{a)}Author to whom correspondence should be addressed: christian.kurtsiefer@gmail.com

10 ABSTRACT

11 Near-concentric cavities are excellent tools for enhancing an atom–light interaction as they combine a small mode volume with a large optical access for atom manipulation. However, they are sensitive to longitudinal and transverse misalignments. To address this sensitivity, we present a compact near-concentric optical cavity system with a residual cavity length variation $\delta L_{C,rms} = 0.36(2)$ Å. A key part of this system is a cage-like tensegrity mirror support structure that allows us to correct for longitudinal and transverse misalignments. The system is stable enough to allow the use of mirrors with a higher cavity finesse to enhance the atom–light coupling strength in cavity-QED applications.

17 Published under an exclusive license by AIP Publishing. <https://doi.org/10.1063/5.0191123>

18 INTRODUCTION

19 Establishing a strong atom–light interaction is essential for 45
20 the implementation of quantum networks in atomic systems.^{1,2} 46
21 However, interfacing with atoms can be challenging due to their 47
22 small cross section. Commonly used approaches to enhance the 48
23 atom–light interaction involve highly focusing lenses³ or optical 49
24 resonators.⁴ For the latter, cavity quantum electrodynamics (CQED) 50
25 has extensively been researched with optical resonators in various 51
26 configurations⁵ and demonstrated with single atoms since the 52
27 1980s.^{6,7} To attain a strong atom–light coupling strength g , typically 53
28 short cavities with a small mode volume and high reflectivity, low 54
29 loss mirrors are used. This leads to atom–light interactions using 55
30 cavity mirror spacings ranging from micrometers^{8,9} to millimeters¹⁰ 56
31 with a high quality factor Q . Most of the cavities for CQED involve a 57
32 near-planar geometry, with a mirror separation much smaller than 58
33 their radius of curvature. This allows for stable mechanical designs 59
34 but requires a short distance between the mirror surfaces. 60
35

36 Optical cavities in the near-concentric (NC) regime, where the 61
37 length of the cavity is close to the sum of the spherical mirrors' 62
38 radii of curvature, have most of the cavity modes strongly focused 63
39 at the center, leading to a small effective mode volume^{11,12} and thus 64
40 a strong atom–light coupling strength g while providing easy optical 65
41 access through the relatively large mirror separation.

42 However, NC cavities are challenging to work with compared 66
43 to planar micro-cavities, as the transverse displacement of the 67
44 mirrors affects the cavity resonance. As the optical cavity resonance 68
45 needs to have a well-defined relation to fixed atomic resonances in 69

50 CQED applications, the mechanical cavity stability is critical. In NC 51 cavities, there is an additional requirement for transverse adjustability 52 and stability, leading to the need for control of three degrees of 53 freedom for relative mirror positions.

54 Here, we present a NC configuration of an optical resonator 55 exhibiting low susceptibility to external mechanical noise and thus 56 stability, while maintaining adjustability in all necessary degrees of 57 freedom, allowing us to operate the cavity close to the concentric 58 point and hence explore a stronger atom–light coupling.

59 CAVITY DESIGN

60 To facilitate an atom–cavity interaction at a specific transition, 61 in our case, the D_2 line of ^{87}Rb at $\lambda = 780$ nm with an atomic half- 62 linewidth $\gamma = 2\pi \times 3.03$ MHz, the cavity resonance frequency ω_C has 63 to match with the atomic resonance frequency. In addition, as ^{87}Rb 64 atoms are to be trapped at the cavity center using a magneto-optical 65 trap¹³ and a dipole trap¹⁴ in an ultra-high-vacuum (UHV) environment, 66 optical access to the system is necessary. To minimize the size 67 of magnetic coils, a small glass cuvette with inside dimensions of 68 $25 \times 25 \times 150$ mm³ is used.

69 Stability requirement

70 To quantify the impact of the shift in cavity resonance and the 71 cavity performance, we introduce a “noise limit factor” ξ , which 72 normalizes the ratio of the frequency fluctuation $\delta\omega_C$ due to mechanical 73 noise to the cavity linewidth 2κ . This factor is equivalent to the ratio 74

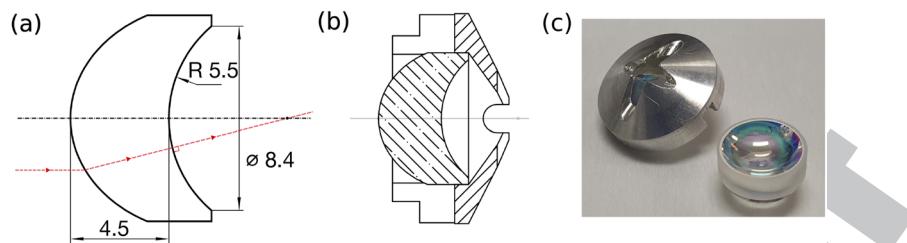


FIG. 1. Schematic of the cavity mirror: (a) with an example of ray propagation in red through the mirror (units in mm), (b) with the mirror mount, and (c) corresponding pictures.

of the mechanical noise (standard deviation δL_C of the cavity length) to the resonant wavelength, multiplied by the cavity finesse F ,

$$\xi = \frac{\delta\omega_C}{2\kappa} = \frac{\delta L_C}{\lambda/2} F. \quad (1)$$

A noise limit factor $\xi = 1$ indicates that the cavity resonance fluctuation is equal to its linewidth. Here, we aim for a target of $\xi = 0.15$, which means that the mechanical noise along the cavity axis contributes to the cavity linewidth by at most 15%.

Both transverse and longitudinal misalignments will affect the reflection and/or transmission of the NC cavity. Close to the concentric point, the cavity becomes increasingly sensitive to transverse displacement. This heightened sensitivity leads to fluctuations in cavity resonance and transmission and requires addressing transverse stabilization in the cavity structure. For convenience, we map all mechanical effects on the cavity resonance to the effective fluctuation of the cavity length δL_C .

Mirror characteristics

The cavity mirrors (see Fig. 1) have a concave spherical surface to form the cavity and a convex ellipsoidal surface, which provides a straightforward mode matching of a collimated input/output beam to the highly focused cavity mode.¹¹ The radius of curvature of the concave side is 5.5 mm, resulting in a cavity length $L_C = 2R - d$ in the NC regime, where R is the radius of curvature and d is the (small) critical distance from the concentric point located at $L_C = 2R = 11$ mm. The mirrors have a reflectivity of $\mathcal{R} = 99.5\%$ at $\lambda = 780$ nm, corresponding to a cavity finesse of $F = 627$. The target noise limit factor $\xi = 0.15$ then corresponds to a cavity length fluctuation of $\delta L_{C,rms} \approx 0.9$ Å.

Cavity support structure

To accommodate the cavity mirrors, a structure that allows for adjustment of three degrees of freedom of relative mirror positions is required. Moreover, it needs to fit within the constraints of the vacuum system. In addition, the structure has to have a low susceptibility to external noise. To tackle these limiting factors, a tensegrity structure is chosen.

First, the cavity mirrors are fixed with epoxy to metal mirror mounts [see Fig. 1(b)], which protect the mirrors during handling and shield them from the possible line-of-sight contamination from the atomic source. Gaps at the tip of the shield provide optical access for laser cooling beams to the center of the cavity where the

atoms are trapped. The mirrors in their mounts are fixed to aluminum frames. These are separated by piezoelectric actuators (PI PICMA P-882.51) with a rectangular profile, forming the compression members of the tensegrity structure. Different orientations of these actuators with respect to the frames were evaluated.

To implement the tension members, two alternatives are tested. The first alternative used a 0.4 mm thick, laser-cut steel sheet, bent to a clip to hold the two mirror frames together. The clamp is designed such that only three points are in contact with the structure [see Fig. 3(a)]. The second alternative used helical springs (MISUMI AUT3-20), with contact points defined by the hooks of the springs [see Figs. 2(c) and 2(d)].

One of the mirror frames is glued (MasterBond EP21TCHT-1) on a stainless steel plate to avoid applying pressure onto the structure when handling it during installation in the vacuum chamber, while

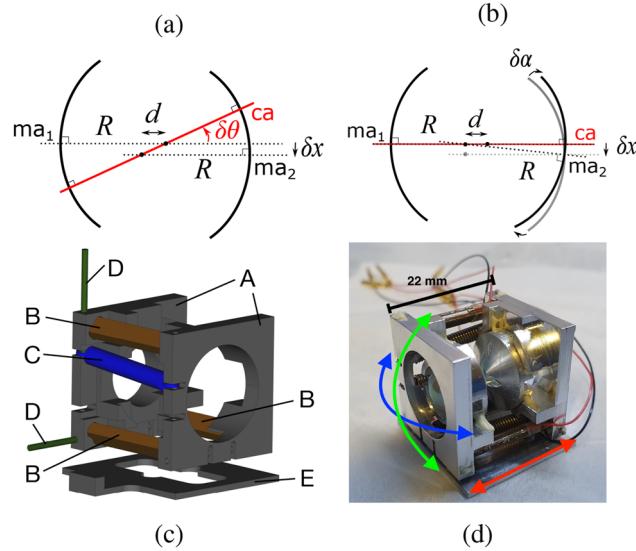


FIG. 2. (a) Rotation of the cavity axis due to transverse misalignment. In a NC cavity of critical distance d , a small transverse misalignment δx of the second mirror rotates the cavity axis by an angle $\delta\theta$. (b) Equivalence of transverse and angular misalignments. A small transverse misalignment δx can be corrected by rotating the mirror by a small angle $\delta\alpha$. (c) CAD drawing: A: mirror frames, B: actuators, C: spring, D: metal rod, E: transportation plate, and (d) assembled NC cavity.

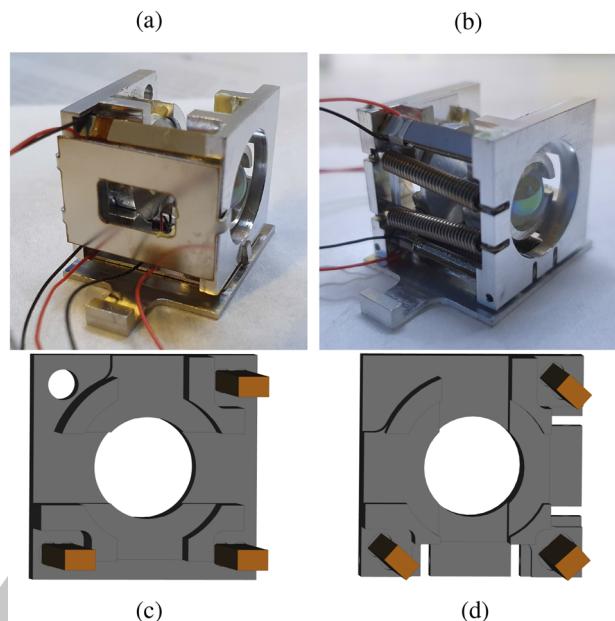
133 the other frame can move freely in order not to constrain the relative
134 tip-tilt movement of the mirrors.
135

136 The piezoelectric actuators have a maximal expansion of $15 \mu\text{m}$
137 for an operating voltage of 100 V, sufficient to compensate for mis-
138 alignment after careful pre-alignment. The transverse misalignment
139 can be corrected via different expansion rates of the three actuators,
140 leading to a relative tip-tilt motion of the mirrors [see Figs. 2(a) and
141 2(b)]. To allow for independent correction mechanisms for different
142 degrees of freedom, the tip/tilt corrections T_{tip} and T_{tilt} as well as
143 an overall cavity length change ΔL_C are combined to the respective
actuator voltages $V_{A,B,C}$,

$$144 \begin{pmatrix} V_A \\ V_B \\ V_C \end{pmatrix} = G \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \begin{pmatrix} \Delta L_C \\ T_{tip} \\ T_{tilt} \end{pmatrix}, \quad (2)$$

146 where G is a constant representing the transducer gain. This allows
147 for both fast changes of the cavity length and a slower servo
148 mechanism to maintain the transverse cavity alignment.¹²

149 Different support structure configurations

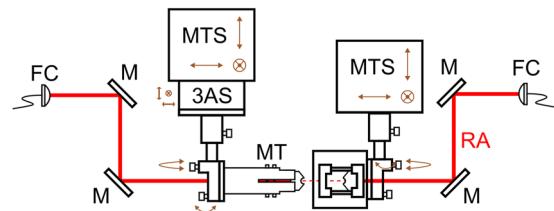

150 The small expansion range of the piezoelectric actuators lim-
151 its the correction range for the transverse misalignment. As large
152 transverse displacements can occur in the cavity structure dur-
153 ing the assembly process (epoxy curing and baking of the vacuum
154 chamber), the structure needs careful pre-alignment. A significant
155 aspect of this pre-alignment is the static deformation of the com-
156 pression structures due to the tension elements and a consequent
157 transverse misalignment. Thus, it is necessary to check and reduce
158 the transverse misalignment resulting from the operation of the
159 actuators.

160 To evaluate the transverse displacement in the different direc-
161 tions with regard to individual excitation of each actuator, one
162 mirror frame is fixed in place with a clamp, and the displacement
163 of the second mirror frame is measured with a microscope [with a
164 $\times 10$ magnifying objective imaged onto a CCD camera (Point Grey
165 CM3-U3-13S2M-CS)]. The displacements of each structure config-
166 uration are listed in Table I. The helical springs show a much smaller
167 transverse misalignment when added to the structure than the flat
168 clip. We believe that this is because the contact points and the static
169 forces of the clips are not as well defined as the ones from the springs,
170 with their spring constant tolerance of $\pm 10\%$.

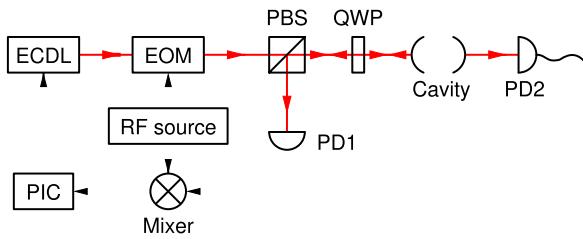
171 Likely due to the actuator's rectangular cross section
172 ($2 \times 3 \text{ mm}^2$), an anisotropic bending behavior is observed, with
173 greater flexural deformation along one axis. Rotating the actuators

174 TABLE I. Transverse displacement for several structure configurations.

175 Structure configuration	176 Maximum observed 177 transverse 178 displacement (μm)
179 Clamp [Fig. 3(a)]	3.75
180 Spring [Fig. 3(b)]	1.25
181 Parallel base [Fig. 3(c)]	7
182 45° base [Fig. 3(d)]	3.75


185 FIG. 3. (a) Structure using a three contact point clamp. (b) Structure using springs.
186 (c) Actuator base parallel to the mirror frame. (d) Actuator base rotated by 45°
187 from the mirror frame.

188 with respect to the frame orientation [see Figs. 3(c) and 3(d)]
189 significantly reduced the transverse displacement (see Table I).


190 Cavity alignment

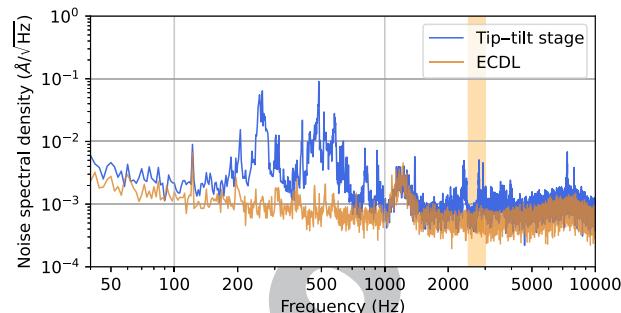
191 To assemble the near-concentric cavity, a reference axis is
192 established by coupling light between two fiber couplers using four
193 mirrors (see Fig. 4). The cavity system, with the first mirror glued on
194 using a low-outgassing epoxy (MasterBond EP21TCHT-1), is then
195 fixed onto the right tip-tilt stage attached to a three-axis manual
196 translation stage. The combination of the two stages allows the cav-
197 ity mirror to be freely adjusted along the reference axis. The second
198 mirror is held with a tweezer. The tweezer is also fixed onto the same
199 type of tip-tilt stage as the first mirror, along with a three-axis piezo-
200 electric translation stage with $100 \mu\text{m}$ moving range (Piezosystem
201 Jena Tritor 101 CAP) for fine adjustment.

202 By maximizing the coupling of the retro-reflected light from
203 both cavity mirror convex surfaces back into the fiber couplers, each

204 FIG. 4. Alignment setup of the NC cavity. RA: reference axis, FC: fiber coupler, M:
205 mirror, MT: mechanical tweezer, MTS: manual translation stage, and 3AS three-
206 axis actuator stage.

FIG. 5. Schematic of the experimental setup. ECDL: external cavity diode laser, EOM: electro-optical modulator, PIC: proportional integral control, PBS: polarized beam splitter, QWP: quarter waveplate, and PD: photodiode.

210 cavity mirror's axis is aligned along the reference axis (see Fig. 4).
 211 The second mirror is then slowly translated toward the first mirror
 212 to form a cavity mode. The cavity mode and the transmission spec-
 213 trum of the cavity are observed with a CCD camera and an amplified
 214 photodiode (Thorlabs PDA36A2). Any transverse misalignment is
 215 corrected using the three-axis piezoelectric translation stage (Fig. 5).


216 The critical distance d can be estimated from the frequency
 217 spacing of the cavity transverse modes. The target critical distance
 218 is around $d \approx 7.8 \mu\text{m}$. This value is chosen as it is around half of the
 219 travel distance of the cavity's piezoelectric actuators, which will allow
 220 a greater tip–tilt tuning as the cavity approaches concentricity.

Once the target critical distance is reached, mirrors are fixed to the frame with a small amount of epoxy such that additional misalignment during the curing process is minimized. During the initial curing of the epoxy (2 h), any misalignment is corrected using the three-axis piezoelectric translation stage. When the epoxy is fully cured after another 70 h, the tweezer is released and removed. The NC cavity is subsequently moved to the glass cuvette using the dedicated transportation plate. This plate, affixed to the cavity stage, directly rests onto the cuvette, which, in turn, is connected to the main vacuum chamber. The vacuum chamber is placed on an optical table stabilized from external vibrations by pneumatic isolators. Due to space constraints in the glass cuvette, the cavity was not mounted on a passive isolation stage, thus remaining susceptible to vibrations transmitted by the vacuum chamber. Any potential noise sources on the optical table, such as cooling fans or loose cables connected to the vacuum chamber, are either powered off, removed, or securely fastened during the measurement process.

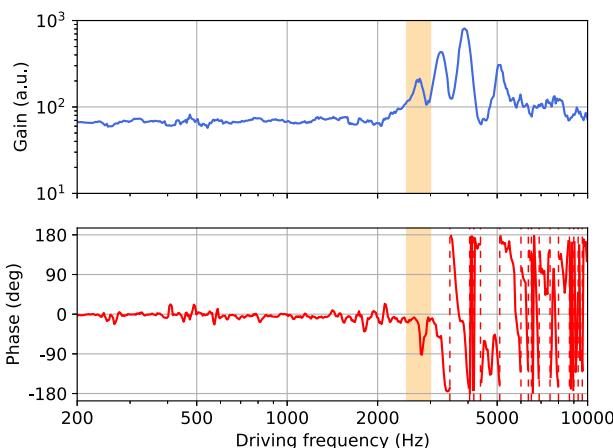
238 CAVITY STABILITY

To characterize the susceptibility of the mounted cavity to external noise, the cavity resonance shift $\delta\omega_C$ is measured with respect to a laser, which is loosely locked to the cavity with a Pound-Drever-Hall (PDH)¹⁵ scheme through an integral controller with a small gain and a sub-Hz cutoff frequency. With this method, fast cavity length changes at high frequencies can be measured, while ensuring that the error signal remains in the linear regime with respect to the length change δL_C , i.e., the mapping to frequency detuning stays injective.

248 The error signal from the PDH scheme is recorded with an
 249 oscilloscope and converted to a length change $\delta L_C(t)$. The noise
 250 spectral density of the recorded length change is shown in Fig. 6
 251 for a critical distance of $d = 1.06(5) \mu\text{m}$, corresponding to three

FIG. 6. Noise spectral density of the cavity length over an integration time of 0.5 s. The measurement is conducted at a critical distance of $d = 1.06(5) \mu\text{m}$ for the NC cavity. The total displacement noise is $0.36(2) \text{ \AA rms}$. The shaded region highlights the first resonance of the cavity, centered at 2750 Hz (see Fig. 7).

resonant cavity lengths before the concentric point. At this critical distance, the finesse and linewidth of the cavity are measured to be 323(8) and 42(2) MHz, respectively. The root mean square (rms) mechanical noise of the cavity system over the whole spectrum is $\delta L_{C,rms} = 0.36(2)$ Å, or a corresponding frequency uncertainty of $\delta\omega_C = 2\pi \times 1.28(5)$ MHz. Considering one fixed mirror, this rms cavity length change corresponds to a rms transverse displacement of the second mirror of 12 nm.


The recorded error signal combines both laser noise and cavity noise. To separate the two contributions, the laser noise is characterized independently from the NC cavity setup, via modulation transfer spectroscopy¹⁶ using a rubidium vapor cell. The corresponding trace is shown in Fig. 6 as well, with an integral rms frequency uncertainty of $\delta\omega_{laser} = 2\pi \times 0.11(1)$ MHz.

More than 70% of the noise energy of the laser+cavity system is contained in a spectral window between 200 and 2500 Hz, dominated by cavity contributions. This noise contribution could be caused by the susceptibility of transverse vibration modes of the springs to external noise, ultimately coupling to the cavity length.

The analysis above assumes that mode-decoupling from the desired cavity mode due to transverse mirror displacements is negligible during the measurement window. To verify this, we scanned a probe beam to observe the fundamental mode transmission spectrum of the NC cavity and a near-planar cavity with the same support structure separately. We observed no significant difference in the fluctuations of the transmission peak values; thus, we expect cavity resonance shifts to be the main contribution to the noise measurements.

To further enhance the system's stability, one can consider a stronger active stabilization scheme, in addition to the existing loose I lock, for the cavity. This becomes feasible with access to a feedback signal for the cavity length, such as through the PDH scheme mentioned earlier. To implement this, we assess the cavity resonance response to an actuator length change stimulus at different frequencies.

A network analyzer (Agilent E5061b) generates this stimulus, which is added to the actuator's voltage, and picks up the error signal from the PDH scheme in the same loose-lock configuration as above. The resulting Bode diagram of the system response is shown

295 **FIG. 7.** Cavity response to the stimulus sent to the piezoelectric actuators. The
296 shaded region highlights the first resonance of the cavity, centered at 2750 Hz.

297 in Fig. 7. A first resonance is observed around 2750 Hz, only
298 contributing 1% of the mechanical noise, with a fairly flat phase response
299 below this resonance. Establishing a phase margin of 60° as the limit
300 of the control for an active stabilization implementation, an active
301 length control of the NC cavity system up to a control bandwidth of
302 ≈ 2500 Hz should be possible, removing the strong broad contribution
303 up to 2000 Hz in the observed cavity noise spectrum. However,
304 in our application, the passive effective cavity length uncertainty of
305 $\delta L_{C,rms} = 0.36(2)$ Å is sufficient.

306 CONCLUSION

307 We implemented a passively stable compact structure for
308 a near-concentric cavity, with an effective length uncertainty of
309 $0.36(2)$ Å at a critical distance of $d = 1.06(5)$ μm. This corresponds
310 to a noise limit factor [see Eq. (1)] of $\xi \approx 0.05$. The passive stabil-
311 ity permits an increase in the resonator's finesse while maintaining
312 the cavity's stable relative to its linewidth such that the system can
313 operate effectively close to the concentric point. This increase in
314 finesse will give access to an even stronger atom-light interaction.
315 Implementing an active cavity length stabilization should suppress
316 the susceptibility to external noise even further.

317 By relying purely on the current susceptibility to the external
318 noise of the cavity system, we can already enter the strong
319 coupling regime with single rubidium atoms with a relatively low
320 finesse of 627. With the current cavity parameters, targeting the D_2
321 cycling transition of ^{87}Rb , the coupling strength can reach up to
322 $g = 2\pi \times 17.3$ MHz, for a cavity decay rate of $\kappa = 2\pi \times 10.9$ MHz,
323 leading to a maximum cooperativity of $C = g^2/2\kappa\gamma = 4.5$. This strong
324 coupling will be used to explore an atom-light interaction at the last
325 near-concentric stable point.

326 In summary, we showed that the near-concentric cavity geom-
327 etry can provide a viable alternative to near-planar cavity geometries
328 for cavity-QED experiments, offering good optical access to the center
329 of the cavity mode for atomic state preparation in quantum
330 information processing schemes and a large separation of mirror
331 surfaces from the mode region with a strong field, reducing, for

example, the influence of charges on the mirror surfaces in ion trap
332 configurations.
333

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation, Singapore, and A*STAR under Project No. NRF2021-QEP2-01-P01/W21Qpd0101.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Florentin Adam: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Validation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). **Wen Xin Chiew:** Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Visualization (equal); Writing – review & editing (equal). **Adrian Nugraha Utama:** Conceptualization (equal); Formal analysis (equal); Investigation (equal); Methodology (equal); Software (equal); Validation (equal); Writing – review & editing (equal). **Christian Kurt-siefer:** Conceptualization (equal); Project administration (equal); Resources (equal); Supervision (equal); Writing – review & editing (equal).

DATA AVAILABILITY

■

REFERENCES

1. J. P. Covey, H. Weinfurter, and H. Bernien, “Quantum networks with neutral atom processing nodes,” *npj Quantum Inf.* **9**, 90 (2023).
358
359
2. L. J. Stephenson, D. P. Nadlinger, B. C. Nichol, S. An, P. Drmota, T. G. Ballance, K. Thirumalai, J. F. Goodwin, D. M. Lucas, and C. J. Ballance, “High-rate, high-fidelity entanglement of qubits across an elementary quantum network,” *Phys. Rev. Lett.* **124**, 110501 (2020).
360
361
362
363
3. Y.-S. Chin, M. Steiner, and C. Kurtsiefer, “Nonlinear photon-atom coupling with 4pi microscopy,” *Nat. Commun.* **8**, 1200 (2017).
364
365
4. C. Hamsen, K. N. Tolazzi, T. Wilk, and G. Rempe, “Strong coupling between photons of two light fields mediated by one atom,” *Nat. Phys.* **14**, 885–889 (2018).
366
367
5. A. Reiserer and G. Rempe, “Cavity-based quantum networks with single atoms and optical photons,” *Rev. Mod. Phys.* **87**, 1379–1418 (2015).
368
369
6. S. Haroche, “Nobel lecture: Controlling photons in a box and exploring the quantum to classical boundary,” *Rev. Mod. Phys.* **85**, 1083–1102 (2013).
370
371
7. J. Ye, D. W. Verma, and H. J. Kimble, “Trapping of single atoms in cavity qed,” *Phys. Rev. Lett.* **83**, 4987–4990 (1999).
372
373
8. C. J. Villas-Boas, K. N. Tolazzi, B. Wang, C. Ianzano, and G. Rempe, “Continuous generation of quantum light from a single ground-state atom in an optical cavity,” *Phys. Rev. Lett.* **124**, 093603 (2020).
374
375
376

377 ⁹M. Baghdad, P.-A. Bourdel, S. Schwartz, F. Ferri, J. Reichel, and R. Long, 388
378 "Spectral engineering of cavity-protected polaritons in an atomic ensemble," *Nat. 389*
379 *Phys.* **19**, 1104–1109 (2023).
380 ¹⁰Z. Yan, J. Ho, Y.-H. Lu, S. J. Masson, A. Asenjo-Garcia, and D. M. 381
382 Stamper-Kurn, "Super-radiant and sub-radiant cavity scattering by atom arrays,"
383 *arXiv:2307.13321* [quant-ph] (2023).
384 ¹¹K. Durak, C. H. Nguyen, V. Leong, S. Straupe, and C. Kurtsiefer, "Diffraction- 385
386 limited Fabry-Perot cavity in the near concentric regime," *New J. Phys.* **16**, 103002
387 (2014).
388 ¹²C. H. Nguyen, A. N. Utama, N. Lewty, and C. Kurtsiefer, "Operating a near-
389 concentric cavity at the last stable resonance," *Phys. Rev. A* **98**, 063833 (2018).
390

391 ¹³E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, "Trapping of 392
392 neutral sodium atoms with radiation pressure," *Phys. Rev. Lett.* **59**, 2631–2634
393 (1987).
394 ¹⁴R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, *Optical Dipole Traps for 395
395 Neutral Atoms* (Academic Press, 2000), pp. 95–170.
396 ¹⁵R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, 397
397 and H. Ward, "Laser phase and frequency stabilization using an optical resonator,"
398 *Appl. Phys. B: Photophys. Laser Chem.* **31**, 97–105 (1983).
399 ¹⁶D. J. McCarron, S. A. King, and S. L. Cornish, "Modulation transfer 399
399 spectroscopy in atomic rubidium," *Meas. Sci. Technol.* **19**, 105601
400 (2008).
401

Author PROOF