\relax \providecommand\hyper@newdestlabel[2]{} \providecommand\HyperFirstAtBeginDocument{\AtBeginDocument} \HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined \global\let\oldcontentsline\contentsline \gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global\let\oldnewlabel\newlabel \gdef\newlabel#1#2{\newlabelxx{#1}#2} \gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\ifx\hyper@anchor\@undefined \let\contentsline\oldcontentsline \let\newlabel\oldnewlabel \fi} \fi} \global\let\hyper@last\relax \gdef\HyperFirstAtBeginDocument#1{#1} \providecommand*\HyPL@Entry[1]{} \citation{Kimble2008} \citation{Volz2011,Reiserer1349} \citation{Piro2011,Sandoghdar:2012,Leong2016,Brito:2016} \citation{Golla2012,Sondermann2013} \citation{Enk2000,Enk2004,Sondermann2007,Tey2009,Hetet2010} \citation{Wineland:87,Vamivakas2007,Gerhardt2007,Tey:2008,Wrigge2008,Aljunid2009,Piro2011,Pototschnig2011,Fischer:2014,Tran2016} \citation{Vamivakas2007,Gerhardt2007,Piro2011,Tran2016} \citation{Sortais2007,Tey:2008} \citation{Streed2011} \citation{Maiwald:2012,Alber2016} \citation{Fischer:2014,Tey2009} \citation{Guthohrlein2001} \citation{Schlosser2001,Schlosser2002} \citation{Tey2009,Aljunid2013} \HyPL@Entry{0<>} \newlabel{FirstPage}{{}{1}{}{Doc-Start}{}} \@writefile{toc}{\contentsline {section}{\numberline {I}Introduction}{1}{section*.1}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Setup for probing light-atom interaction in free space. D:\nobreakspace {}detector, UHV:\nobreakspace {}ultra-high vacuum chamber, IF:\nobreakspace {}interference filter centered at 780\tmspace +\thinmuskip {.1667em}nm, $\lambda $/2:\nobreakspace {}half-wave plate, $\lambda $/4:\nobreakspace {}quarter-wave plate, C:\nobreakspace {}fiber coupling lens, PBS:\nobreakspace {}polarizing beam splitter, BS:\nobreakspace {}beam splitter, L:\nobreakspace {}high numerical aperture lens, B:\nobreakspace {}magnetic field, OP: optical pumping. }}{1}{figure.1}} \newlabel{fig:setup}{{1}{1}{Setup for probing light-atom interaction in free space. D:~detector, UHV:~ultra-high vacuum chamber, IF:~interference filter centered at 780\,nm, $\lambda $/2:~half-wave plate, $\lambda $/4:~quarter-wave plate, C:~fiber coupling lens, PBS:~polarizing beam splitter, BS:~beam splitter, L:~high numerical aperture lens, B:~magnetic field, OP: optical pumping}{figure.1}{}} \@writefile{toc}{\contentsline {section}{\numberline {II}Experimental setup and measurement sequence}{1}{section*.2}} \newlabel{sec:setup}{{II}{1}{}{section*.2}{}} \citation{Lett1988} \citation{Aljunid2009} \citation{Wineland:87,Gerhardt2007,Vamivakas2007,Hwang2007,Wrigge2008,Tey:2008} \citation{Gerhardt2007} \citation{Aljunid2009} \citation{Volz1996} \citation{Tey:2008} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Experimental sequence to probe the light-atom interaction. }}{2}{figure.2}} \newlabel{fig:sequence}{{2}{2}{Experimental sequence to probe the light-atom interaction}{figure.2}{}} \newlabel{eq:lambda}{{1}{2}{}{equation.2.1}{}} \@writefile{toc}{\contentsline {section}{\numberline {III}Extinction measurement}{2}{section*.3}} \newlabel{sec:tx}{{III}{2}{}{section*.3}{}} \newlabel{eq:tx}{{3}{2}{}{equation.3.3}{}} \citation{Syed2011,Agio:2008} \citation{Fischer:2014} \citation{Hucul2015,Ghadimi2016} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Transmission measurement of a weak coherent probe beam. The solid line is a fit of Eq.\nobreakspace {}(\ref {eq:tx}) with free parameters: linewidth\nobreakspace {}$\Gamma /2\pi =6.9(1)$\tmspace +\thinmuskip {.1667em}MHz, frequency shift\nobreakspace {}\nobreakspace {}$\delta \omega =48.03(3)\tmspace +\thinmuskip {.1667em}$MHz, spatial overlap\nobreakspace {}$\Lambda =4.67(2)\tmspace +\thinmuskip {.1667em}\%$, and phase\nobreakspace {}$\phi _0=0.13(1)\tmspace +\thinmuskip {.1667em}$rad ($\chi ^2_{\text {red}}=1.01$), resulting in a resonant extinction of $\epsilon =17.7(1)\%$. Error bars represent one standard deviation due to propagated Poissonian counting uncertainties. }}{3}{figure.3}} \newlabel{fig:tx}{{3}{3}{Transmission measurement of a weak coherent probe beam. The solid line is a fit of Eq.~(\ref {eq:tx}) with free parameters: linewidth~$\Gamma /2\pi =6.9(1)$\,MHz, frequency shift~~$\delta \omega =48.03(3)\,$MHz, spatial overlap~$\Lambda =4.67(2)\,\%$, and phase~$\phi _0=0.13(1)\,$rad ($\chi ^2_{\text {red}}=1.01$), resulting in a resonant extinction of $\epsilon =17.7(1)\%$. Error bars represent one standard deviation due to propagated Poissonian counting uncertainties}{figure.3}{}} \@writefile{toc}{\contentsline {section}{\numberline {IV}Saturation measurement}{3}{section*.4}} \newlabel{sec:sat}{{IV}{3}{}{section*.4}{}} \newlabel{eq:refl}{{4}{3}{}{equation.4.4}{}} \newlabel{eq:sat_power}{{5}{3}{}{equation.4.5}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces (a) Light scattered into the backward detector\nobreakspace {}$D_\textrm {b}$ for different probe detunings. The solid line is a Lorentzian fit of Eq.\nobreakspace {}(\ref {eq:refl}) with free parameters linewidth\nobreakspace {}$\Gamma /2\pi =6.9(1)$\tmspace +\thinmuskip {.1667em}MHz, frequency shift\nobreakspace {}$\delta \omega /2\pi = 48.0(1)$\tmspace +\thinmuskip {.1667em}MHz, and resonant backscattering probability\nobreakspace {}$P_\textrm {b,0}=0.61(1)\%$, with $\chi ^2_{\text {red}}=1.03$. (b)\nobreakspace {}Resonant saturation measurement, with the solid line representing the fit of Eq.\nobreakspace {}(\ref {eq:sat}) with saturation power\nobreakspace {}$P_{\textrm {sat}}=26(2)$\tmspace +\thinmuskip {.1667em}pW and total detection efficiency\nobreakspace {}\nobreakspace {}$\eta =1.95(2)$\% as free parameters ($\chi ^2_{\text {red}}=1.3$). Error bars represent one standard deviation due to propagated Poissonian counting uncertainties. }}{3}{figure.4}} \newlabel{fig:refl_sat}{{4}{3}{(a) Light scattered into the backward detector~$D_\textrm {b}$ for different probe detunings. The solid line is a Lorentzian fit of Eq.~(\ref {eq:refl}) with free parameters linewidth~$\Gamma /2\pi =6.9(1)$\,MHz, frequency shift~$\delta \omega /2\pi = 48.0(1)$\,MHz, and resonant backscattering probability~$P_\textrm {b,0}=0.61(1)\%$, with $\chi ^2_{\text {red}}=1.03$. (b)~Resonant saturation measurement, with the solid line representing the fit of Eq.~(\ref {eq:sat}) with saturation power~$P_{\textrm {sat}}=26(2)$\,pW and total detection efficiency~~$\eta =1.95(2)$\% as free parameters ($\chi ^2_{\text {red}}=1.3$). Error bars represent one standard deviation due to propagated Poissonian counting uncertainties}{figure.4}{}} \newlabel{eq:sat}{{6}{3}{}{equation.4.6}{}} \@writefile{toc}{\contentsline {section}{\numberline {V}Temperature dependence of light-atom interaction}{3}{section*.5}} \newlabel{sec:temp}{{V}{3}{}{section*.5}{}} \citation{Teo2011} \citation{Tey2009} \citation{PhysRevA.78.033425} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Time-resolved extinction measurement. Each row presents a transmission spectrum similar to Fig.\nobreakspace {}\ref {fig:tx} and is obtained by collecting photodetection events in 0.5\tmspace +\thinmuskip {.1667em}ms wide time bins. As the atom is heated by scattering probe photons, the transmission increases, and also the frequency of the minimal transmission shifts to a lower detuning from the unperturbed resonance. }}{4}{figure.5}} \newlabel{fig:tx_matrix}{{5}{4}{Time-resolved extinction measurement. Each row presents a transmission spectrum similar to Fig.~\ref {fig:tx} and is obtained by collecting photodetection events in 0.5\,ms wide time bins. As the atom is heated by scattering probe photons, the transmission increases, and also the frequency of the minimal transmission shifts to a lower detuning from the unperturbed resonance}{figure.5}{}} \newlabel{eq:scat_ph}{{7}{4}{}{equation.5.7}{}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces The effect of recoil heating on the resonance frequency\nobreakspace {}(a) and extinction\nobreakspace {}(b) obtained by rearranging the histogram in Fig.\nobreakspace {}\ref {fig:tx_matrix} with a bin width of 30 scattered photons. Resonance frequency and extinction decreases fairly linearly as the atom heats up. (a)\nobreakspace {}Solid red line is the numerical result of Eq.\nobreakspace {}(\ref {eq:tx_T}) with the frequency shift at the center of trap\nobreakspace {}$\delta \omega (0)$ as a free fit parameter ($\chi ^2_{\text {red}}=1.4$). (b)\nobreakspace {}The temperature dependence is well reproduced by Eq.\nobreakspace {}(\ref {eq:tx_T}) with\nobreakspace {}$\alpha =0.54(1)$ as a free fit parameter\nobreakspace {}(red solid line, $\chi ^2_{\text {red}}=11.6$). Dashed blue line is the expected extinction for an ideal lens, Eq. (8) with\nobreakspace {}$\alpha =0$. Error bars represent one standard deviation obtained from least-squares fit of the individual spectra. }}{4}{figure.6}} \newlabel{fig:scat_tx_res}{{6}{4}{The effect of recoil heating on the resonance frequency~(a) and extinction~(b) obtained by rearranging the histogram in Fig.~\ref {fig:tx_matrix} with a bin width of 30 scattered photons. Resonance frequency and extinction decreases fairly linearly as the atom heats up. (a)~Solid red line is the numerical result of Eq.~(\ref {eq:tx_T}) with the frequency shift at the center of trap~$\delta \omega (0)$ as a free fit parameter ($\chi ^2_{\text {red}}=1.4$). (b)~The temperature dependence is well reproduced by Eq.~(\ref {eq:tx_T}) with~$\alpha =0.54(1)$ as a free fit parameter~(red solid line, $\chi ^2_{\text {red}}=11.6$). Dashed blue line is the expected extinction for an ideal lens, Eq. (8) with~$\alpha =0$. Error bars represent one standard deviation obtained from least-squares fit of the individual spectra}{figure.6}{}} \newlabel{eq:tx_T}{{8}{4}{}{equation.5.8}{}} \citation{Tey2009} \citation{Kaufman2012,Thompson2013} \citation{Trautmann2016,Leong2016} \bibcite{Kimble2008}{{1}{2008}{{Kimble}}{{}}} \bibcite{Volz2011}{{2}{2011}{{Volz\ \emph {et~al.}}}{{Volz, Gehr, Dubois, Esteve,\ and\ Reichel}}} \bibcite{Reiserer1349}{{3}{2013}{{Reiserer\ \emph {et~al.}}}{{Reiserer, Ritter,\ and\ Rempe}}} \bibcite{Piro2011}{{4}{2011}{{Piro\ \emph {et~al.}}}{{Piro, Rohde, Schuck, Almendros, Huwer, Ghosh, Haase, Hennrich, Dubin,\ and\ Eschner}}} \bibcite{Sandoghdar:2012}{{5}{2012}{{Rezus\ \emph {et~al.}}}{{Rezus, Walt, Lettow, Renn, Zumofen, G\"otzinger,\ and\ Sandoghdar}}} \bibcite{Leong2016}{{6}{2016}{{Leong\ \emph {et~al.}}}{{Leong, Seidler, Steiner, Cer\`e,\ and\ Kurtsiefer}}} \bibcite{Brito:2016}{{7}{2016}{{Brito\ \emph {et~al.}}}{{Brito, Kucera, Eich, M{\"u}ller,\ and\ Eschner}}} \bibcite{Golla2012}{{8}{2012}{{Golla\ \emph {et~al.}}}{{Golla, Chalopin, Bader, Harder, Mantel, Maiwald, Lindlein, Sondermann,\ and\ Leuchs}}} \bibcite{Sondermann2013}{{9}{2013}{{Leuchs\ and\ Sondermann}}{{}}} \bibcite{Enk2000}{{10}{2000}{{van Enk\ and\ Kimble}}{{}}} \bibcite{Enk2004}{{11}{2004}{{van Enk}}{{}}} \bibcite{Sondermann2007}{{12}{2007}{{Sondermann\ \emph {et~al.}}}{{Sondermann, Maiwald, Konermann, Lindlein, Peschel,\ and\ Leuchs}}} \bibcite{Tey2009}{{13}{2009}{{Tey\ \emph {et~al.}}}{{Tey, Maslennikov, Liew, Aljunid, Huber, Chng, Chen, Scarani,\ and\ Kurtsiefer}}} \bibcite{Hetet2010}{{14}{2010}{{H\'etet\ \emph {et~al.}}}{{H\'etet, Slodi\v {c}{}ka, Gl\"atzle, Hennrich,\ and\ Blatt}}} \bibcite{Wineland:87}{{15}{1987}{{Wineland\ \emph {et~al.}}}{{Wineland, Itano,\ and\ Bergquist}}} \@writefile{toc}{\contentsline {section}{\numberline {VI}Conclusion}{5}{section*.6}} \newlabel{sec:con}{{VI}{5}{}{section*.6}{}} \@writefile{toc}{\contentsline {section}{\numberline {}Acknowledgments}{5}{section*.7}} \@writefile{toc}{\contentsline {section}{\numberline {}References}{5}{section*.8}} \bibcite{Vamivakas2007}{{16}{2007}{{Vamivakas\ \emph {et~al.}}}{{Vamivakas, Atat\"ure, Dreiser, Yilmaz, Badolato, Swan, Goldberg, Imamo{\u {g}}lu,\ and\ \"Unl\"u}}} \bibcite{Gerhardt2007}{{17}{2007}{{Gerhardt\ \emph {et~al.}}}{{Gerhardt, Wrigge, Bushev, Zumofen, Agio, Pfab,\ and\ Sandoghdar}}} \bibcite{Tey:2008}{{18}{2008}{{Tey\ \emph {et~al.}}}{{Tey, Chen, Aljunid, Chng, Huber, Maslennikov,\ and\ Kurtsiefer}}} \bibcite{Wrigge2008}{{19}{2008}{{Wrigge\ \emph {et~al.}}}{{Wrigge, Gerhardt, Hwang, Zumofen,\ and\ Sandoghdar}}} \bibcite{Aljunid2009}{{20}{2009}{{Aljunid\ \emph {et~al.}}}{{Aljunid, Tey, Chng, Liew, Maslennikov, Scarani,\ and\ Kurtsiefer}}} \bibcite{Pototschnig2011}{{21}{2011}{{Pototschnig\ \emph {et~al.}}}{{Pototschnig, Chassagneux, Hwang, Zumofen, Renn,\ and\ Sandoghdar}}} \bibcite{Fischer:2014}{{22}{2014}{{Fischer\ \emph {et~al.}}}{{Fischer, Bader, Maiwald, Golla, Sondermann,\ and\ Leuchs}}} \bibcite{Tran2016}{{23}{2016}{{Tran\ \emph {et~al.}}}{{Tran, Wrachtrup,\ and\ Gerhardt}}} \bibcite{Sortais2007}{{24}{2007}{{Sortais\ \emph {et~al.}}}{{Sortais, Marion, Tuchendler, Lance, Lamare, Fournet, Armellin, Mercier, Messin, Browaeys,\ and\ Grangier}}} \bibcite{Streed2011}{{25}{2011}{{Streed\ \emph {et~al.}}}{{Streed, Norton, Jechow, Weinhold,\ and\ Kielpinski}}} \bibcite{Maiwald:2012}{{26}{2012}{{Maiwald\ \emph {et~al.}}}{{Maiwald, Golla, Fischer, Bader, Heugel, Chalopin, Sondermann,\ and\ Leuchs}}} \bibcite{Alber2016}{{27}{2016}{{Alber\ \emph {et~al.}}}{{Alber, Fischer, Bader, Mantel, Sondermann,\ and\ Leuchs}}} \bibcite{Guthohrlein2001}{{28}{2001}{{Guthohrlein\ \emph {et~al.}}}{{Guthohrlein, Keller, Hayasaka, Lange,\ and\ Walther}}} \bibcite{Schlosser2001}{{29}{2001}{{Schlosser\ \emph {et~al.}}}{{Schlosser, Reymond, Protsenko,\ and\ Grangier}}} \bibcite{Schlosser2002}{{30}{2002}{{Schlosser\ \emph {et~al.}}}{{Schlosser, Reymond,\ and\ Grangier}}} \bibcite{Aljunid2013}{{31}{2013}{{Aljunid\ \emph {et~al.}}}{{Aljunid, Maslennikov, Wang, Dao, Scarani,\ and\ Kurtsiefer}}} \bibcite{Lett1988}{{32}{1988}{{Lett\ \emph {et~al.}}}{{Lett, Watts, Westbrook, Phillips, Gould,\ and\ Metcalf}}} \bibcite{Hwang2007}{{33}{2007}{{Hwang\ and\ Moerner}}{{}}} \bibcite{Volz1996}{{34}{1996}{{Volz\ and\ Schmoranzer}}{{}}} \bibcite{Syed2011}{{35}{2011}{{Aljunid\ \emph {et~al.}}}{{Aljunid, Chng, Lee, Paesold, Maslennikov,\ and\ Kurtsiefer}}} \bibcite{Agio:2008}{{36}{2008}{{Zumofen\ \emph {et~al.}}}{{Zumofen, Mojarad, Sandoghdar,\ and\ Agio}}} \bibcite{Hucul2015}{{37}{2015}{{Hucul\ \emph {et~al.}}}{{Hucul, Inlek, Vittorini, Crocker, Debnath, Clark,\ and\ Monroe}}} \bibcite{Ghadimi2016}{{38}{2016}{{Ghadimi\ \emph {et~al.}}}{{Ghadimi, Blums, Norton, Fisher, Connell, Amini, Volin, Hayden, Pai, Kielpinski, Lobino,\ and\ Streed}}} \bibcite{Teo2011}{{39}{2011}{{Teo\ and\ Scarani}}{{}}} \bibcite{PhysRevA.78.033425}{{40}{2008}{{Tuchendler\ \emph {et~al.}}}{{Tuchendler, Lance, Browaeys, Sortais,\ and\ Grangier}}} \bibcite{Kaufman2012}{{41}{2012}{{Kaufman\ \emph {et~al.}}}{{Kaufman, Lester,\ and\ Regal}}} \bibcite{Thompson2013}{{42}{2013}{{Thompson\ \emph {et~al.}}}{{Thompson, Tiecke, Zibrov, Vuleti\'{c}{},\ and\ Lukin}}} \bibcite{Trautmann2016}{{43}{2016}{{Trautmann\ \emph {et~al.}}}{{Trautmann, Alber,\ and\ Leuchs}}} \global \chardef \firstnote@num43\relax \bibstyle{apsrev4-1} \newlabel{LastPage}{{}{6}{}{page.6}{}} \newlabel{LastBibItem}{{43}{6}{}{section*.8}{}}