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Clock synchronization is necessary for com-
munication and distributed computing tasks.
Previous schemes based on photon timing cor-
relations use pulsed light or photon pairs for
their strong timing correlations. In this work, we
demonstrate successful synchronization of quartz
clocks using weakly time-correlated photons of
180 ns coherence time from a pseudothermal
bunched light source. A synchronization timing
jitter of 10 ns is achieved over symmetric -102 dB
optical loss channels between two parties, over
a span of 25 hours. We also derive a model to
accurately estimate the coherence peak searching
success probabilities.

I. INTRODUCTION

Clock synchronization is used in everyday tasks such
as navigation and distributed computing. This is com-
monly implemented using the Network Time Protocol
or global navigation satellite system (e.g., GPS) time
synchronization, achieving precision of milliseconds or
tens of nanoseconds, respectively [1, 2]. Quantum com-
munication protocols also require clock synchronization,
but on the order of nano- to pico-seconds, and is typi-
cally achieved either using pulsed laser light [3] or with
classical signals on dedicated optical or electronic chan-
nels [4, 5].

Modern systems can use the resources typically in
the protocol itself to perform the clock synchronization,
such as photon pairs from spontaneous parametric down-
conversion (SPDC) [6, 7]. This is possible with the use of
frequency standards such as Rubidium (Rb) clocks which
provide a long term frequency stability of <1 ppb/day. In
comparison, crystal oscillators without temperature sta-
bilization have frequency stability of only 100 ppb/day.

To remove the dependency on Rb frequency standards,
it was proposed to find and track the timing difference
between photon pairs due to their strong timing correla-
tion on the order of picoseconds [7, 8], by identifying an
initial coincidence peak with low timing resolution then
iteratively apply frequency corrections to improve reso-
lution. Weak coherent photon pulses were also proposed
for clock frequency transfer [9]. In both cases, the cross-
correlation peak is very strong, i.e., g(2)(τ = 0) ≫ 2, with
resolution generally limited only by the timing jitter of
the generation and detection optoelectronics.

Other sources of timing-correlated light are thermal
light sources which has been used in application such as
ghost imaging [10] and range finding [11]. These timing
correlations arise from temporal photon bunching, also
known as the Hanbury-Brown-Twiss effect [12]. In par-
ticular, the use of thermal light opens up the potential for
distributed clock synchronization due to photon bunch-
ing being preserved across arbitrary partitioning.

However, unlike photon pairs, identification of this
peak is more challenging due to the low signal (i.e.,
g(2)(τ) ≤ 2) as well as fluctuations about the background
of g(2) = 1. There is an earlier proposal that suggests the
use of thermal light for clock synchronization, relying on
the use of low efficiency two-photon absorption in sin-
gle photon detectors to resolve the bunching characteris-
tic [13, 14]; such a scheme has yet to be demonstrated.

Here, we demonstrate clock synchronization using one
such weak timing correlation light source, i.e., light from
pseudothermal source with a g(2)(τ) = 1.44 and coher-
ence time τc = 180(6) ns, over a -102 dB transmission
channel with an accuracy of 10 ns, and continuously track
the frequency drift over a period of 25 hours to demon-
strate its stability. Our scheme only requires single pho-
ton detection and crystal oscillators as reference clocks.
We additionally derive the probability of achieving clock
synchronization over transmission channels, which is ap-
plicable across different time-correlated photon sources,
including SPDC pair sources and thermal sources.

II. CLOCK SYNCHRONIZATION WITH
BUNCHED LIGHT

Timing synchronization was achieved using bunched
light between two remote parties over symmetrical loss
channels, each with -102 dB average transmission, for
more than 25 hours using only simple crystal oscillators,
see Fig. 1.

The source of bunched light is a pseudothermal
source [15], established using a laser of 780 nm wave-
length sent into an unbalanced Mach-Zehnder interfer-
ometer with optical delay longer than the laser coher-
ence time τc; phase fluctuations in the laser manifests
the bunching effect, see Appendix A for a detailed expla-
nation. This results in an intensity correlation that can
be measured through the second-order coherence func-
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FIG. 1. Top left: Simplified experimental setup for clock synchronization. Bunched (pseudothermal) light is sent to two
different parties through separate -102 dB channels, before detection by Silicon avalanche photodetectors (Si APDs) and times-
tamping by time taggers running on independent quartz crystal oscillators. Singles count rate s1 and s2 of approximately
200 kcounts/s are recorded on each side. BS: beamsplitter; Att: attenuators.

Bottom left: Plot of g(2)(τ) of the pseudothermal light source, with the curve fit in grey corresponding to g(2)(0) = 1.44(1)
peak and coherence time τc = 180(6) ns. Error bars correspond to Poissonian errors from counting statistics.
Right: Long-term trace of frequency offset, timing offset, and event rates during a 25 hour clock synchronization run between
independent time taggers running on separate quartz crystal oscillators, after an initial frequency correction of 4.0 ppm. Cor-
relation peak tracking is performed using a 256 ns coincidence window. The sharp spike and dip in event rates are attributed
to laser mode hopping.

tion g(2)(τ), given by

g(2)(τ) = 1 +
1

2
exp

(
−2|τ |

τc

)
(1)

due to the Lorentzian spectral profile of the laser, where
the coherence time τc is inversely proportional to the fre-
quency spectral width ∆f of the source [16]. The bright-
ness of the source is 1.55(2)mW, with a measured coher-
ence peak of g(2)(τ = 0) = 1.44(1) and coherence time of
τc = 180(6) ns.

The light from the source is shared between n =
2 parties with optical fiber channel tranmissions of
−101.9(4) dB and −102.2(4) dB using optical attenua-
tors. Photon arrival events are detected using Silicon
avalanche photodetectors (APDs) on each side, with
count rates of 192 kcounts/s and 182 kcounts/s without
correcting for dark counts and afterpulsing.

The detection events are read by independent time tag-
gers disciplined by different free-running 10MHz quartz
crystal oscillators. The generated timestamps are then
exchanged for coincidence peak finding and tracking
in real-time. The peak tracking program continuously
serves a timing offset between each party by pairing pho-
ton detection events between both parties within a 256 ns

coincidence window, over the span of the 25 hour mea-
surement. The average coincidence rate of 8, 500 events/s
is consistently higher than the accidental count rate of
7, 000 events/s, indicative of successful frequency track-
ing.

Due to the presence of clock frequency drift, typically
from temperature fluctuations and electronic noise, the
frequency offset between the clocks changes over time as
well. We are able to reconstruct this offset, by monitor-
ing the drift in served timings using individual samples
spanning 10.74 s, with a resolution of 0.537 s, shown in
Fig. 1.

The actual frequency offset was obtained via a het-
erodyne measurement using identical copies of the clock
signals with integration time of 10 s, shown in Fig. 2. A
maximum instantaneous frequency difference of 35.4 ppb,
corresponding to an average drift of 3.3 ppb/s, was ob-
served.

We estimate the error in the reconstructed signal by
performing linear interpolation on the measurement and
subsequent differencing. The reconstructed frequency
offset is found to be in good agreement with the mea-
sured frequency offset, with a root-mean-squared error
of 3.2 ppb averaged over the 25 hour span.
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FIG. 2. A concurrent measurement of the actual frequency
offset between the two external 10MHz clocks, as well as the
corresponding error in the reconstructed frequency offset. The
accuracy of the frequency servoed by the peak tracking algo-
rithm is 3.2 ppb on average.

III. PEAK SEARCHING

Clock synchronization can be decomposed into two
parts: first identifying the initial clock frequency and
time difference between two parties, then tracking of
said peak to monitor the timing drift. The former is
performed by distributing photons with time-correlated
statistics to each party, and finding the coincidence peak
using cross-correlation to identify the time delay.

Efficient peak identification relies on the circular con-
volution theorem to compute the cross-correlation be-
tween two sets of detection timestamps a[k] and b[k],

g(2)(τ) ∼ (a ⋆ b)[k] = F−1
{
F{a} · F{b}

}
[k], (2)

under the discretization τ = kδt with k ∈ Z and time
resolution δt, using the Fourier Transform F and its in-
verse [7][17]. The success of peak identification is con-
strained by the singles rate and the rate of true coinci-
dences, and additionally requires the choice of optimal
parameters for the Fast Fourier Transform (FFT) pa-
rameters for computing the time delay: specifically, the
number of time bins N = 2q (q ∈ Z+), and initial bin
width δt.

We model the peak finding probability — in both cases,
with and without a reliable frequency reference between
both parties — and perform an exhaustive parameter
scan to identify appropriate FFT parameters in Fig. 3.
Our model provides better estimations of the peak find-
ing probability compared to previous works, by avoiding
the normal approximation to the noise in the FFT (see
Appendix B).

FIG. 3. Simulated probabilities to find the correct peak
position by solving the required true coincidence equation
found in Eqn. 5, given the singles detection rate s1 = s2 =
100 kcounts/s, coincidence rate c = 650 counts/s, bin overlap
ν = 0.5, and frequency offset error of up to ∆u = 100 ppb.
These parameters correspond to the setup in Fig. 1 with an
additional 3 dB attenuation per channel, and shows good
agreement with measurements.

A. No frequency offset

The minimum acquisition time required for the cross-
correlation is T = Nδt to obtain a flat cross-correlation
noise floor. This noise floor arises from accidental co-
incidences — attributed to noise sources, such as co-
incidences with uncorrelated detection events and dark
counts — with an expected value of Ca = (s1s2δt)T ,
where s1 and s2 are the detection event rates on each
channel. The detection events are well-approximated by
a Poisson distribution after binning, so the accidental
coincidences in each time bin also follows a Poisson dis-
tribution P, i.e., Xk∈{1,...,N} ∼ P(λ = Ca).
The maximum observed value across all time bins

X(N) ≡ max{Xk} is therefore given by the max-order
Poisson distribution (derived in Appendix C) whose
probability distribution is

fX(N)
(x) = [FX(k|λ)]N − [FX(k|λ)− fX(k|λ)]N ,

where fX and FX correspond to the probability mass and
cumulative distribution functions of a single bin.
The coincidence rate above background accidentals in

a single time bin (denoted ce) required to be identified
as the highest peak in the cross-correlation is thus

ce >
1

T

(
X(N) −X

)
. (3)

The coincidence rate per time bin can be maximized
by setting the timing resolution δt to be of the same scale
as the coherence time τc, so that most of the coincidence
events fall within the same time bin, i.e., δt ∼ τc. Some
of these events may fall into an adjacent time bin instead
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due to off-centered bins (since the exact time offset is not
known a priori): this introduces a smudge factor into
Eqn. 3 representing the degree of bin overlap ν ∈ [0.5, 1],
yielding

ce >
1

νT

(
X(N) −X

)
. (4)

B. Variable frequency offset

In the case of two separate clocks with slightly different
clock frequencies, the timing delay between photon ar-
rivals between each party can drift by ∆τdrift ≈ T∆u(t)
due to the non-zero clock-frequency offset ∆u(t) after
some elapsed time T . Under a sufficiently small T , the
frequency offset can be approximated as a constant, i.e.,
∆u(t) = ∆u.

In order to maximize the number of coincidences in a
single time bin, the time bin should ideally be as wide
as the timing drift, i.e., δt > ∆τdrift, or in other words,
N < 1/∆u. We model this as an additional smudge fac-
tor µ ≡ max {1, N∆u}, and together with Eqn. 4 yields
the minimum required true coincidence rate for successful
peak finding given by

ce >
1

µνT

(
X(N) −X

)
. (5)

The surface of this equation is plotted in Fig. 3, by per-
forming Monte Carlo simulations for a specific set of pa-
rameters and across different N and δt.

The reduction in coincidence counts due to the pres-
ence of frequency offset can be mitigated either by choos-
ing a smaller N , or by performing a frequency precom-
pensation [8] on the set of timestamps {ti} to reduce the
apparent ∆u between the two clocks and allow for larger
N values. The compensation is given by the mapping

ti → ∆ti(1 + ∆u) + ti−1 = ti +∆ti∆u, (6)

where ∆ti ≡ ti − ti−1 is the separation between consecu-
tive timestamps.

In practice, while the frequency offset between quartz
clocks can be high (∼ 10 ppm), the short-term stability
of the clocks themselves are much higher (< 10 ppb/s),
so after an initial precompensation reference, a small
frequency precompensation step size of 100 ppb is suf-
ficient to identify most peaks within 3 peak searching
attempts [18].

Once a initial peak has been found, the frequency
and timing resolution can be further improved by re-
peating the respective corrections with progressively
smaller time bins, until the desired resolution has been
reached [7]. Our optimized implementations of peak find-
ing in Python, and frequency compensation in C, are
available under GPLv2 license in GitHub [19].

FIG. 4. Characterization of peak tracking accuracy under a
constant frequency offset ∆u = 10ppb, with a time constant
β = 50ms chosen for the exponential moving average filter
used in the experiment.
Top: Measurement of reported timing offsets (blue) against
the actual offset (black) over a period of 30 seconds. The
inset highlights a ≈30 ns timing error over a 0.5-second win-
dow, which suggests that a histogram fit does not improve
accuracy.
Bottom: Measurements of average offset error and jitter
across different time constants β, over a measurement pe-
riod of 10minutes. Timing jitter is equivalent to the root-
mean-squared error, and corresponds to 10 ns with β = 50ms
(marked in grey dashed line). Peak tracking fails with time
constants less than 5ms.

IV. PEAK TRACKING

The use of quartz crystal oscillators as frequency refer-
ences result in changes in frequency offset over time, due
to their long-term ∆u(t) stability of up to 100 ppb/day.
This causes a drift in the correlation peak position over
time which needs to be tracked.
Tracking can be performed by looking for coincidences

within a sufficiently wide coincidence window, such that
drifts in the peak are captured. However, when using
bunched light for peak tracking, coincidences events are
effectively dominated by background accidentals due to
the low g(2)(τ) of the light source. Directly returning
each time difference τi found will result in the peak being
quickly lost.
We apply a smoothing operation using an exponen-

tial moving average filter, to introduce damping against
events far from the current estimated peak position. This
effectively minimizes noise fluctuations and allows for the
peak to be tracked.
In order to quantify the accuracy of the peak tracking,

we supply a constant 10 ppb frequency offset between the
two timestamps using a function generator and derive the
true timing offset. Using a time constant β = 50ms for
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the moving average filter, a timing jitter of 10 ns can be
obtained, as shown in Fig. 4, which is an order of mag-
nitude better than the τc = 180(6) ns coherence time of
the source. The jitter was tested to remain the same even
under larger frequency offsets of 50 ppb as well.

A tracking lag is also present and can be seen in Fig. 4,
where the measurement best-fit line is slightly displaced
from the true timing offset. This is attributed to the
frequency offset being non-zero and constant, and mani-
fests as a mean timing error of around 6 ns at β = 50ms.
While this lag scales proportionally to the frequency off-
set, this lag is expected to not contribute significantly
due to the random fluctuations of the frequency offset
about its mean, in the case of free-running clocks.

We also make a small note regarding the use of tim-
ing offset histograms to improve timing resolution. For
photon pair and pulsed sources, higher timing resolution
can be achieved by collecting a histogram within a small
timing window and extracting the peak from a normal
distribution curve fit, due to the narrow peak coherence
signature of τc ≪ 1 ns. However, for the bunched source
with a significantly noisier coherence peak signature, this
technique does not improve the timing jitter, as can be
seen in the served timing offset in the inset of Fig. 4 being
consistently far from the mean.

Active frequency compensation is also performed on-
line to keep the frequency offset small, to avoid peak
tracking loss since the correlation peak is less likely to
drift out of the coincidence window. We do this by esti-
mating the frequency offset ∆u from the rate of change
in timing drift (see Appendix D), then performing tim-
ing compensation for each timestamp using the estimated
frequency offset, identical to that of Eqn. 6.

V. CONCLUSION

We demonstrated successful clock synchronization be-
tween two parties over a symmetrical -102 dB transmis-
sion channel, using a pseudothermal bunched light source
of coherence time τc = 180(6) ns. Peak tracking was per-
formed online over a span of 25 hours with active fre-
quency compensation and an exponential moving aver-
age filter of time constant β = 50ns, achieving an overall
timing jitter of 10 ns.

Previous papers on clock synchronization performed
using photon pair sources rely on a peak significance
metric for peak finding [7, 8], used as a threshold for

quantifying the probability of the cross-correlation peak
being attributed to noise. While it remains a useful
metric for estimating peak location, this underestimates
the peak finding probabilities under low signal conditions
with small time bins. We develop a model that accounts
for the Poisson nature of the coincidences, and calculate
instead the true probability of the cross-correlation peak
being the signal, as well as derive optimal FFT param-
eters for a given true coincidence and singles rate. This
remains applicable even when using any other sources of
timing correlations, including photon pairs and thermal
light.
The clock synchronization scheme in this work can be

directly applied to protocols that use the photon bunch-
ing as a resource, or indirectly by compensating the re-
ported timings with the measured timing and frequency
offsets. Direct frequency compensation can also be per-
formed by actively correcting the quartz oscillator fre-
quencies, e.g., by means of a voltage error signal, so that
the clock signals themselves can be utilized as part of a
clock distribution network.
We can also take advantage of the fact that the second-

order coherence is preserved across arbitrary partitioning
of the light, to distribute the signal amongst multiple
parties in a star topology. Since splitting light into two
separate channels incurs an additional insertion loss of
3 dB per channel, clock distribution to 2n parties can be
achieved with only −3n dB of additional loss per chan-
nel, e.g., a 128-party setup with this source incurs about
−80 dB.
This work paves the way towards clock synchronization

using telecommunication O-band and C-band bunched
light, which will be able to propagate with minimal chro-
matic dispersion over longer distances, e.g., 500 km of
G.652 telecommunication fiber with 0.2 dB/km optical
loss at 1550 nm. This additionally opens up the possi-
bility of using erbium-doped fiber amplifiers to amplify
the correlation signal. While timing offset changes as a
result of thermal expansion in optical fibers will need to
be addressed, this effect is fundamentally indistinguish-
able from a clock frequency drift in this scheme and can
hence be compensated for in the same manner.
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stochastischen prozesse. Mathematische Annalen,
109(1):604–615, Dec 1934.

[23] AJF Siegert. On the fluctuations in signals returned by
many independently moving scatterers. Radiation Labo-
ratory, Massachusetts Institute of Technology, 1943.

[24] Xi Jie Yeo, Eva Ernst, Alvin Leow, Jaesuk Hwang, Li-
jiong Shen, Christian Kurtsiefer, and Peng Kian Tan. Di-
rect measurement of the coherent light proportion from
a practical laser source. Phys. Rev. A, 109:013706, Jan
2024.

Appendix A: Pseudothermal source and
experimental setup

The primary source used in the frequency tracking
measurement is a pseudo-thermal light source, where
light from a laser running above the lasing threshold is
split into two separate paths, one of which is delayed be-
yond the coherence time of the laser. If the two paths
are perfectly indistinguishable (i.e., in polarization, spa-
tial mode, and brightness), they act as independent light
emitters and exhibit bunching effects.
From the Wiener-Khintchine theorem [22], the

Lorentzian spectral profile from a coherent laser light
source corresponds to a g(1) with a Laplacian timing pro-
file of the form,

g(1)(τ) :=
⟨E∗(t)E(t+ τ)⟩
⟨E∗(t)E(t)⟩

= exp

(
−|τ |

τc

)
as a function of coherence time τc.
Thermal light can be modelled as a large collection

of independent emitters of light [16]. In the case of ν
emitters, we have

⟨E∗(t)E(t+ τ)⟩ = ν⟨E∗
i (t)Ei(t+ τ)⟩

and

⟨E∗(t)E∗(t+ τ)E(t+ τ)E(t)⟩
= ν⟨E∗

i (t)E
∗
i (t+ τ)Ei(t+ τ)Ei(t)⟩

+ ν(ν − 1) [⟨E∗
i (t)Ei(t)⟩+ |⟨E∗

i (t)Ei(t+ τ)⟩|] ,

and we can recover the Siegert relation [23] and determine
the g(2) of the light source

g(2)(τ) :=
⟨E∗(t)E∗(t+ τ)E(t+ τ)E(t)⟩

⟨E∗(t)E(t)⟩2

= 1 +
ν − 1

ν

∣∣∣g(1)(τ)∣∣∣2
= 1 +

1

2
exp

(
−2|τ |

τc

)
, ν = 2,

https://github.com/s-fifteen-instruments/fpfind
https://github.com/s-fifteen-instruments/fpfind
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FIG. 5. Detailed experimental setup using a pseudothermal bunched light source. BS: 50:50 beamsplitter; Att: attenuator;
HWP: half-wave plate; QWP: quarter-wave plate; APD: avalanche photodiode.

which saturates at a value of g(2)(τ = 0) = 1.5.
Our experimental setup, per Fig. 5, uses light from

a distributed-feedback (DFB) laser diode of wavelength
780 nm, coupled into 780-HP fiber to project into a sin-
gle optical mode. The coherence length of the laser is
approximately 200m; a delay fiber of length 400m was
used in the delay arm, corresponding to a 2 µs delay. Po-
larization rotation in the delay arm is compensated using
a free-space link with a HWP and QWP, while attenu-
ation is achieved by slight decoupling of the collection
mode, before recombination using a fused-coupler beam-
splitter (BS). The g(2)(τ = 0) = 1.44(3) achieved in the
setup is attributed to the fact that the laser is not fully
coherent [24] and other experimental imperfections.

A second BS is used to further split the light into
two symmetrical channels for downstream detection us-
ing fiber-pigtailed active-quenched Si avalanche photodi-
odes (Excelitas SPCM-800-10-FC). Attenuation in each
channel is achieved by cascading fiber beamsplitters as
well as fiber decoupling at the mating sleeves, and is mea-
sured to be relatively stable over multiple days. Fiber
spools for delay was not used to avoid potential com-
plications from timing delays attributed to fiber length
changes.

Time tagging is subsequently performed by timestamp
devices (S-Fifteen Instruments TDC2) with 4 ps nominal
timing resolution and 20 ps 1-σ timing jitter. The clock
to each timestamp device is supplied by external 10MHz
clock distribution boards with quartz crystal oscillators
and without any onboard temperature stabilization.

The actual frequency offset between the two clocks was
measured concurrently with the clock synchronization ex-
periment by mixing separate copies of the 10MHz sig-
nals and passing through a low pass filter with 4GHz
cut-off frequency. This mixed signal was sampled by an
oscilloscope at a rate of 2.5 ksamples/s over 10 s, before
performing a 214-bin FFT (nominal resolution of approx-
imately 0.15Hz) with a Hann window.
The frequency offset error is then calculated by mea-

suring the difference between the servoed frequency offset
(from the frequency estimation step in the clock synchro-
nization) and the measured frequency offset with linear
interpolation. The histogram of offset errors is fitted us-
ing a Gaussian probability density function, obtaining a

standard deviation of 3.2 ppb.

Appendix B: Peak finding probabilities using
Poisson statistics vs Gaussian assumption

The corresponding probabilities for Poisson model and
the corresponding Gaussian approximation model are
presented in Fig. 6. We find that the previous models as-
suming Gaussian-distributed bin values incorrectly pre-
dict the success probability of peak finding: in particular,
it generally underestimates the probability for low time
bin widths, and overestimates for small number of FFT
bins.
FFT can be efficiently implemented if the number of

bins N are either in powers of 2, or has factorizations
with small primes. Here we use N = 2q, q ∈ Z+ for its
logarithmic scale.

Appendix C: Derivation of max-order distribution

Given that the FFT is performed with N bins, the
accidental coincidences in each of these bins follow the
Poisson distribution with mean λ. The maximum value
across all these bins increases with an increasing number
of bins. The distribution of the max-order statistic (i.e.,
the maximum of all bins) with respect to the number of
coincidences k and number of bins N of mean value λ is
denoted f(N)(k|λ).
Since each bin is assumed to be independent and iden-

tically distributed, the corresponding max-order cumula-
tive distribution function (CDF) can be expressed as the
product of the CDF of individual bins,

F(N)(k|λ) = F (k|λ)× . . . × F (k|λ)︸ ︷︷ ︸
N times

= [F (k|λ)]N .

We therefore express the max-order probability mass
function (PMF) in terms of the Poisson PMF and CDF
of a single bin,

f(N)(k|λ) = F(N)(k|λ)− F(N)(k − 1|λ)

= [F (k|λ)]N − [F (k − 1|λ)]N

= [F (k|λ)]N − [F (k|λ)− f(k|λ)]N .
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FIG. 6. Left: Probabilities to find the correct peak position by solving Eqn. 4, given the singles detection rate s1 = s2 =
100 kcounts/s, coincidence rate c = 650 counts/s, and bin overlap of ν = 0.5. Since there is no frequency offset, the peak finding
probabilities reaches 100% with increasing number of FFT bins.
Right: Probabilities to find the correct peak position using the normal approximation for Xi in Eqn. 4, with the same
parameters.

Notably, this form is already tenable for direct com-
putation without further simplification, even though
computing the difference of nth-powers generally causes
catastrophic cancellation due to floating-point rounding
errors. The max-order Poisson PMF distribution width
heuristically scales roughly with

√
λ, which requires the

PMF to be accurate to at least 1/
√
λ, e.g., λ ≤ 104 needs

at least ∼ 10−2 accuracy. Since F (k|λ) ∈ [0, 1] and the
fact that exponentiation can be easily applied for large
N using numerical techniques (such as exponentiation-
by-squaring), the rounding errors can be minimized to
near the floating-point precision, e.g., ∼ 10−16 for 64-bit
floats.

For larger λ > 104 (i.e., high accidental coincidence
rates per time bin), the normal approximation for each
bin remains appropriate,

f(k) ∼ P(k|λ) ≈ N (x = k|µ = λ, σ =
√
λ),

and the corresponding max-order probability distribution
function (PDF) follows a more tractable form for numer-
ical computation,

f(N)(x|µ, σ) =
d

dx
F(N)(x|µ, σ)

=
d

dx
[F (x|µ, σ)]N

= Nf(x|µ, σ) [F (x|µ, σ)]N−1
.

This in fact corresponds to the first order term for the
discrete case after a binomial expansion, noting that

f(k|λ) ≤ F (k|λ), with

f(N)(k|λ)

= [F (k|λ)]N − [F (k|λ)− f(k|λ)]N

= [F (k|λ)]N −
[
[F (k|λ)]N

−Nf(k|λ) [F (k|λ)]N−1
+ . . .

]
= Nf(k|λ) [F (k|λ)]N−1 −O

(
f2FN−2

)
.

Appendix D: Peak tracking derivation

We perform active frequency compensation by estimat-
ing the clock frequency offset from the set of timestamps.
The timing difference τi := ti − t′i, between a timestamp
pair {ti, t′i} from both parties, is continuously served by
searching for photon pair detection events within a pre-
scribed coincidence tracking window.

The frequency offset ∆u is given by the ratio between
measured elapsed time ∆ti := ti − ti−1 with respect to
some reference elapsed time, in this case the elapsed time
measured by the other peer ∆t′i,

∆ti
∆t′i

= 1 +∆u.

Rewriting in terms of the measured successive timing
difference, we can estimate the frequency offset by mea-
suring the rate of change in the timing difference, i.e.,

∆ui =
τi − τi−1

∆t′i
.
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FIG. 7. Tracking measurement over 50 hours, similar to that of Fig. 1.

Active frequency compensation is therefore achieved
by performing a timing correction for each timestamp ti
using the estimated frequency offset,

ti → ∆ti(1 + ∆u) + ti−1 = ti +∆ti∆u, (D1)

where the overall frequency offset ∆u accumulated is also

given by ∆u =
∏i

0 (1 + ∆ui)− 1.
The peak tracking is intrinsically noisy due to the sig-

nal being dominated by accidental coincidences. We use
an exponential moving average filter given by,

τ ′i = ατi + (1− α)τ ′i−1, τ ′0 = τ0,

which behaves like a low pass filter to smooth the signal.
The cofficient α represents the relative weight of timing
offset τi with respect to the accumulated average τ ′i−1,
and can be adjusted depending on the observed signal
rate.

Given a unit step impulse, the time it takes to reach
1− 1/e of the signal is associated with a time constant β
related to the coefficient α,

α = 1− exp

(
−∆t

β

)
≈ ∆t

β
, β ≫ ∆t,

after Taylor expansion of the exponential, where ∆t is
the average separation time between consecutive times-
tamp events. The singles rate s in our experiment is

200 kcounts/s, so ∆t = 1/s = 5µs. We set the time con-
stant β = 50ms, which is 4 orders of magnitude longer
than ∆t for averaging.

Appendix E: Longer time scale measurement

Fig. 7 shows a longer experimental measurement span-
ning over 50 hours, with a similar drift behaviour ob-
served in the reconstructed frequency offset. The fre-
quency offsets were not measured concurrently, so no
tracking accuracy estimation is available for this dataset.

Measurement was performed using a different pair of
Si APDs instead (Micro Photon Devices SPAD), which
had an order of magnitude lower system efficiency and
resulted in a lower −90 dB attenuation channel possible
at the same detection rate parameters. The measurement
was also performed using suboptimal parameters for peak
tracking that dropped off too many coincidences.

The timestamps were disciplined with onboard
voltage-controlled temperature-compensated quartz
crystal oscillators, so the frequency offset between the
two timestamps generally remained the same, as well as
nearly an order of magnitude better frequency stability.
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