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ABSTRACT
Some stellar objects exhibit very narrow spectral lines in the visible range additional to their
blackbody radiation. Natural lasing has been suggested as a mechanism to explain narrow
lines in Wolf–Rayet stars. However, the spectral resolution of conventional astronomical
spectrographs is still about two orders of magnitude too low to test this hypothesis. We want
to resolve the linewidth of narrow spectral emissions in starlight. A combination of spectral
filtering with single-photon-level temporal correlation measurements breaks the resolution
limit of wavelength-dispersing spectrographs by moving the linewidth measurement into the
time domain. We demonstrate in a laboratory experiment that temporal intensity interferometry
can determine a 20-MHz-wide linewidth of Doppler-broadened laser light and identify a
coherent laser light contribution in a blackbody radiation background.Q4

Key words: line: identification – instrumentation: interferometers – techniques: spectro-Q5

scopic.

1 NA R ROW E M I S S I O N L I N E S A N D
ASTROPHYSICAL LASERS

Some spectral lines in the visible range emitted from stellar systems
appear to be unusually narrow. Specifically, some emission lines
from the Weigelt blobs in η Car, when observed with the Hubble
Space Telescope, appeared to be limited by the instrument resolution
of about 40 GHz, corresponding to velocity spreads of 25 km s−1

(Hamann & DePoy 1994; Zethson et al. 2012). Another example
is the Wolf–Rayet progenitor SN2013cu, for which emission lines
with relatively broad base of 2500 km s−1 full width at zero intensity
were observed, on which narrow unresolved (instrument-limited at
150 km s−1) lines are superimposed (Gal-Yam et al. 2014).

Such observations suggest very low temperatures of the emission
medium, and trigger speculations on mechanisms like stimulated
emission, which can lead to optical emission much narrower than
the participating atomic or molecular transition. Following first lab-
oratory demonstrations of maser and laser radiation and the detec-
tion of strong interstellar microwave emission from molecular gas
clouds (Weaver et al. 1965), natural non-visible lasers from astro-
physical sources were proposed to be responsible for such narrow
emission lines (Menzel 1970; Varshni & Nasser 1986).

Natural stellar laser candidates in the visible range are suspected
to have a spectral linewidth around 10 MHz (Johansson & Letokhov
2005), which would not even be resolvable by conventional astro-
nomical spectrographs with a high resolution (105) like the Keck

� E-mail: phyck@nus.edu.sg

High Resolution Echelle Spectrometer (Griest et al. 2010). There-
fore, alternative spectroscopical techniques like heterodyne spec-
troscopy (Hale et al. 2000; Sonnabend et al. 2005) or, as we in-
vestigate in this paper, temporal photon correlation spectroscopy
may help to better understand the nature of these narrow emission
lines. Temporal photon correlation spectroscopy is in widespread
use in material science and fluorescence microscopy, where it is also
referred to as dynamic light scattering and quasi-elastic light scatter-
ing, and used to characterize the particle distribution in suspensions
(Saleh 1978; Becker 2005; Pike 2010). Application of this spec-
troscopy technique in astronomy seems less common (Dravins &
Germanà 2008), but may be advantageous in characterizing nar-
row linewidths. Moreover, one may even be able to experimentally
assess the presence of a natural lasing mechanism directly in the
visible range , as we show in this work.

2 C O M PA R I S O N W I T H OT H E R
SPECTROSCOPY TECHNI QUES

Modern astronomical echelle spectrographs have typical resolutions
between 30 000 and 150 000 (Murphy et al. 2007) with the target
starlight and reference calibration light (such as laser frequency
combs) fed by multimode fibres, because starlight cannot be effi-
ciently coupled to single-mode optical fibres in the visible regime
(Wilken et al. 2012).

Optical homo- or heterodyning (Siegman 1966; Mandel & Wolf
1975) has the potential for a basically unlimited spectral resolution,
but is conditional on the overlap of spatial modes between the
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input light with the local oscillator. While this can be accomplished
in a lab environment using single-mode fibres, it is inefficient to
couple starlight into optical single-mode fibres due to atmospheric
turbulence and seeing (Fried 1967). Mode matching in a free space
geometry for heterodyning is equally difficult for the same reason
(Shaklan & Roddier 1988).

For Michelson interferometry or Fourier transform spectroscopy,
which could be less sensitive to phase fluctuations, a resolution
of tens of MHz would require scanning a path length difference
over several metres in steps shorter than the optical wavelength
(Loewenstein 1966; Sakai, Vanasse & Forman 1968) – a require-
ment that would be mechanically very challenging.

3 INTENSITY INTERFERO METRY FOR T I ME
DOMAIN SPECTROSCOPY

Intensity interferometry was used to investigate the spatial coher-
ence properties of starlight to infer their angular diameter (Hanbury-
Brown & Twiss 1956), but first demonstration experiments were
carried out on spectral lines from a Mercury gas discharge lamp
(Hanbury-Brown & Twiss 1958). In essence, normalized intensity
correlations

g(2)(τ ) = 〈I (t)I (t + τ )〉
〈I (t)〉2

(1)

are recorded as a function of the time difference τ by evaluat-
ing photodetection events from detectors observing the same light
source. For stationary light of a single polarization, the normalized
intensity correlation g(2)(τ ) is related to the normalized (electrical)
field correlation g(1)(τ ) (Mandel & Wolf 1995) via

g(2)(τ ) = 1 + |g(1)(τ )|2 . (2)

The Wiener–Khinchin theorem (Wiener 1930; Khinchin 1934) links
the field correlation to the spectral power density S(f) through a
Fourier transform F :

S(f ) ∝ F [g(1)(τ )] . (3)

Therefore – within the limits of reconstructing the phase of the
complex g(1)(τ ) from g(2)(τ ) via (2) – it is possible to extract in-
formation about the spectral power density S(f) of the light source
from a measured intensity correlation g(2)(τ ). A narrow spectral dis-
tribution S(f) of width δf will result in a g(2)(τ ) with a characteristic
time-scale τ c ∝ 1/δf.

The width δf of narrow spectral lines can therefore be measured
in the time domain overcoming the resolving power of wavelength-
dispersive instruments like spectrographs or narrow-band interfer-
ence filters. Note, however, that this does not allow determination
of the absolute spectral position of a line, since a frequency shift
�f of a narrow distribution results in a complex oscillating termQ6

e2πi�f τ in g(1)(τ ), but leaves g(2)(τ ) unchanged due to the modulus
in (2).

In stellar light sources, narrow spectral lines tend to appear against
a large background of blackbody radiation. A direct measurement of
the second-order correlation function is therefore difficult, because
the signal is dominated by the blackbody contribution with a very
short coherence time in the order of 10−14 s. Therefore, adequate
preliminary filtering has to suppress the thermal background to
a level where time domain spectroscopy can be carried out. It is
also necessary that the light exhibits some non-Poissonian intensity
fluctuations, since for light with Poissonian statistics, e.g. coherent
laser light, the intensity correlation is flat [g(2)(τ ) = 1; Glauber 1963
and has no structure that would reveal any spectral properties.

Figure 1. Experimental set-up. Light from a laser diode (λL = 513.8 nm)
is Doppler-broadened by passing through a suspension of microspheres
(0.2 μm diameter), combined with light from an Argon arc lamp on a mi-
croscope slide, and coupled into a single-mode optical fibre (SMF). The
bottom part shows the analysis system, consisting of a grating monochro-
mator and a temperature-tuned etalon pair to select a 3.2-GHz-wide spectral
window around 513.8 nm from the composite light. Temporal photon pair
correlations are recorded to identify different light contributions. PBS: po-
larizing beam splitter; λ/2: half wave plate; APD: single-photon avalanche
photodetectors.

In this work, we simulate the characteristic spectrum of natural
stellar laser candidates in the visible range by combining phase-
randomized artificially Doppler-broadened laser light with spec-
trally wide blackbody radiation. We then characterize the narrow
spectral line by time-resolved intensity interferometry after passing
the composite light through a diffraction grating and two etalons to
suppress the blackbody contribution.

4 EXPERI MENTA L SET-UP

Our experimental set-up is illustrated in Fig. 1. Composite test Q7

light is prepared by combining light from a laser diode (Osram
PL520, P = 50 mW) at a wavelength of λL = 513.8 nm with black-
body radiation from an Argon arc lamp with an effective blackbody
temperature of around 6000 K on an uncoated microscope glass
slide. This combines approximately 4 per cent of the incident laser
light with 92 per cent of the Argon arc lamp output, with another
4 per cent loss in the splitter due to the lack of antireflective coat-
ing. The resulting spectrum recorded with a grating spectrometer of
approximately 0.12-nm resolution is shown in Fig. 2.

The very narrow-band laser light is Doppler-broadened by pass-
ing it through a cuvette containing a suspension of standard mono-
disperse polystyrene microspheres of 0.2 μm diameter in wa-
ter, following Dravins, Lagadec & Nunẽz (2015). These micro-
spheres serve as scattering centres undergoing Brownian motion at
room temperature. The resultant phase randomization causes the
laser light to exhibit pseudo-thermal photon bunching behaviour
(Martienssen & Spiller 1964; Arecchi 1965; Scarl 1966, 1968;
Estes, Narducci & Tuft 1971; Hard, Zeh & Allen 1977). The co-
herence properties of light leaving the suspension depend on the
temperature of the suspension, the viscosity (ratio of water to mi-
crospheres) and beam focus (Dravins & Lagadec 2014); these pa-
rameters were not fully characterized, but a combination of a beam
waist of roughly 1 mm, with beads-concentration of approximately
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Temporal intensity interferometry for characterization of very narrow spectral lines 3

Figure 2. Spectrum of the test light source in Fig. 1 without Doppler
broadening. The broad background over the whole visible range resembles
blackbody radiation at an effective temperature of T = 6000 K, while the
inset shows the unresolved spectrum around the laser line. The resolution
of the spectrometer is about 0.12 nm.

0.1 per cent solids [weight/volume] at room temperature (23◦C) lead
to Doppler-broadened light we could investigate with our technique.

The microsphere suspension with its milky appearance reduces
the intensity of the laser light by over two orders of magnitude,
which is too low to allow proper identification against the blackbody
radiation background in a spectral measurement with our grating
spectrometer.

To identify the laser light admixture to the blackbody radiation,
the test light is first coupled into a single-mode fibre (Thorlabs
460HP). After collimation, the light passes through a monochroma-
tor based on a reflective diffraction grating (1200 lines mm−1, blazed
for 500 nm). The monochromator is calibrated to the 546.1 nm
line from a Mercury discharge lamp, where it shows a transmission
bandwidth (full width at half-maximum, FWHM) of about 0.12 nm.

A second single-mode fibre enforces spatial coherence again,
before the light passes through a pair of temperature-tuned plane-
parallel solid etalons made of fused silica (Suprasil311) with a
refractive index n = 1.4616 and coatings of a nominal reflectivity
R = 95.2 per cent at λL. This corresponds to an estimated finesse
FR = π

√
R/(1 − R) = 63.9. The etalons have thicknesses of d1 =

0.5 mm and d2 = 0.3 mm, corresponding to a free spectral range
FSR = c/(2dn) of 205 and 342 GHz, respectively. Their tempera-
tures are stabilized to overlap the transmission maxima at the laser
wavelength. Both etalons, in conjunction with the diffraction grat-
ing, suppress most of the blackbody background (Tan et al. 2014),
transmitting only an optical bandwidth δf ≈ FSR1/FR ≈ 3.2 GHz
(FWHM), corresponding to a coherence time τ c = 1/δf ≈ 0.31 ns.
This filter combination has an effective spectral resolving power
of about 105, which is comparable to current astronomical spectro-
graphs (Griest et al. 2010).

The filtered light is polarized by a first polarizing beam split-
ter (PBS), and distributed by a second PBS into a pair of actively
quenched silicon avalanche photodetectors (APD) with a timing jit-
ter of about 40 ps (Tan, Chan & Kurtsiefer 2016). Photodetection
rates are balanced by rotating the first PBS that is preceded by a half
wave plate to maximize the count rates. Coincidence photoevents
are recorded using a fast digital oscilloscope. The photodetectors
exhibit a dark count rate of 50 events s−1, predominantly from the
detector thermal noise, which is negligible in the subsequent coinci-
dence measurements. The coincidence histograms were normalized
to obtain a g(2)(τ ) = 1 for large τ , because the oscilloscope had

Figure 3. (a) The two-photoevent coincidence histogram from filtered
blackbody radiation with a Doppler- broadened laser light contribution
shows two exponential decays on a short and a long time-scale (bin width
50 ps). The solid line shows a fit of the data to model (8), assuming fB = fL.
The two zooms show (b) an oscillatory behaviour on top of the slow decay
and (c) a good match between the fit and measured data for the filtered
blackbody radiation on a short time-scale.

an unknown dead time for histogram processing that made a direct

Q8

normalization impossible.

5 IDENTI FYI NG EMI SSI ON LI NEWI DT H

In the first experiment, we want to measure the linewidth of the
laser light that was Doppler-broadened by random scattering in the
microsphere suspension on a background of blackbody radiation.
Both broadened laser light and blackbody radiation resulted in about
2 × 104 photoevents per second each behind the filter stack formed
by gratings, etalons and polarization filters.

The histogram of two-photon coincidences as a function of pho-
todetection event separation τ is shown in Fig. 3, with a total of
2 × 106 coincidences recorded for −2 ns < τ < 96 ns. For time
differences |τ | < 1 ns, the sharp peak due to filtered blackbody radi-
ation is visible, while on a longer time-scale, the Doppler-broadened
laser contribution due to phase randomization in the microsphere
suspension leads to photon bunching with a slower decay constant.

A single Lorentzian frequency distribution

S(f ) =
√

a

π

δf /2

(f − f0)2 + (δf /2)2
, (4)

around a centre frequency f0 with a linewidth (FWHM) of δf leads
via (2) and (3) to a normalized correlation function

g(2)(τ ) = 1 + ae−|2τ |/τc with τc = 1/δf . (5)

For a mixed spectral distribution S(f), the intensity correlation
function g(2)(τ ) can be obtained in a similar way. If the two con-
tributions from blackbody and laser light are assumed to be mutu-
ally incoherent, the spectral power densities SB(f) and SL(f) can be
added,

S(f ) = SB(f ) + SL(f ), (6)

and the resulting intensity correlation is given by

g(2)(τ ) = 1 + |g(1)(τ )|2 = 1 + ∣∣F−1 [SB(f )] + F−1 [SL(f )]
∣∣2

,

(7)
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with F−1 indicating the inverse Fourier transform. Assuming
now two Lorentzian distributions SB(f) and SL(f) according to
equation (4) with amplitudes aL, aB, coherence times τB, τL, and
centre frequencies fL, fb, respectively, the Fourier transformation
can easily be carried out, leading to

g(2)(τ ) = 1 + ∣∣aBe−|τ |/τB + aLe−|τ |/τL
∣∣2

= 1 + a2
Be−|2τ |/τB + a2

Le−|2τ |/τL

+ 2 cos[2π(fL − fB)τ ] aBaL e−|τ |(1/τB+1/τL). (8)

For fL = fB, the oscillating term vanishes, and equation (8) becomes
a sum of three exponential decays on the top of g(2) = 1 that can
readily explain the correlation function in Fig. 3. There, the decay
for large τ is dominated by the larger coherence time τL. The small
peak near τ = 0 is a combination of two fast decays, one given
by the correlation of the blackbody contribution alone, the other
one by the mixed term with about twice the decay time for τL 	
τB. A fit of the observed correlation function to the model (8) over
photoevent separations of −2 ns < τ < 96 ns leads to τB = 0.39 ±
0.03 ns, τL = 49.0 ± 2.3 ns, aB = 0.36 ± 0.02 and aL = 0.452 ±
0.004. However, the relatively large reduced variance χ2

red = 1.26
indicates that model (8) is too simple and does not capture the
oscillatory contributions in the measured g(2) visible in Fig. 3(b).
The long coherence time corresponds to a linewidth of δf = 1/τL ≈
20 MHz, comparable to the ones predicted for natural stellar lasers.

The described technique thus allows linewidth measurements of
extremely narrow spectral lines, limited only by the ability to record
a sufficiently large number of photons to construct a coincidence
histogram. The upper bound of a linewidth measurement with this
technique is given by the time resolution of the photodetectors and
time-tagging mechanism (in our case a few GHz). However, the
phase uncertainty of g(1)(τ ), if inferred from g(2)(τ ) in (2), requires
further assumptions for a direct reconstruction of a spectrum via (3).

6 ID E N T I F Y I N G C O H E R E N T L I G H T

In the second experiment, we try to identify the presence of coher-
ent laser emission by a quantitative evaluation of the photobunching
signature g(2)(τ = 0). For this, we remove the microsphere suspen-
sion and record the temporal correlation measurement for different
admixture levels of attenuated laser radiation to a blackbody radi-
ation background of about 3 × 104 photoevents s−1 after the filter
stack. Assuming a Lorentzian spectral distribution (4), the fit of the
observed second-order correlation leads to a coherence time τ c =
0.31 ± 0.01 ns in agreement with τB obtained from the fit in the
first experiment.

The results are shown in Fig. 4. Without any laser light contribu-
tion, a detector-limited blackbody temporal bunching signature of
approximately g(2)(0) = 1.5 is observed, compatible with the trans-
mission bandwidth around 3.2 GHz of the etalon stack at λL central
wavelength and the timing jitter of the APD (Tan et al. 2016).

For a weak laser contribution (≈104 photoevents s−1) on top of
a blackbody background, the temporal photon bunching signal is
reduced to g(2)(0) ≈ 1.2, indicating a subthermal photon bunching
signature. This means that even the presence of small contribu-
tions of coherent light is revealed by the reduction of the thermal
photon bunching signature expected from the filtered blackbody
component.

For the third trace in Fig. 4, the laser light contribution is over
two orders of magnitude stronger than the filtered blackbody con-
tribution, corresponding to the power ratio used to obtain the spec-
trum in Fig. 2. The timing correlation appears constant within the

Figure 4. Temporal photodetection correlations for different ratios of co-
herent laser and filtered blackbody radiation: all measurements have a black-
body contribution of approximately 3 × 104 photoevents s−1. For the ‘strong
laser’ trace, the laser contributed about 6 × 106 photoevents s−1, for the
‘weak laser’ trace about 3 × 104 photoevents s−1. For reference, the pho-
todetection correlations of filtered blackbody radiation without any laser
light is also shown. Each measurement accumulated 106 coincidence pho-
toevents with −3.1 ns < τ < 3.3 ns into 40-ps-wide bins to allow for direct
comparison of the resulting histograms. The error bars reflect Poissonian
counting statistics and are representative for all time differences. Fitting the
‘no laser’ trace to model (5) leads to a coherence time τ c = 0.31 ± 0.01 ns
and to τ c = 0.26 ± 0.03 ns for the trace with a weak laser.

statistical uncertainty, without an observable temporal photon
bunching signature from the blackbody contribution.

The last trace resembles a typical photodetection correlation ob-
served among the photodetectors exposed to wideband radiation,
like in the traditional experiments of Hanbury-Brown & Twiss
(1958), but with a significant difference. Since the optical band-
width of the detected radiation is narrower than the inverse detector
timing uncertainty, the reduction of a photobunching signal can
be interpreted as a signature of a light source with sub-thermal
statistics, e.g. due to contributions of coherent light from a lasing
mechanism.

7 C O N S I D E R AT I O N S FO R S P E C T RO S C O P Y
O F A S T RO P H Y S I C A L C A N D I DAT E S

Precision spectroscopy of astronomical objects is often limited by
the signal-to-noise ratio (SNR) of a particular technique. To com-
pare the photocorrelation spectroscopy with other techniques, we
consider the SNR of temporal intensity interferometry due to prop-
agated Poissonian photon statistics for a narrow-band emission line
as described by Hanbury-Brown (1974) and Malvimat et al. (2013):

SNR = τc
r

2
V (b)2

√
�T

2�t
. (9)

In this expression, τ c is the coherence time of the emission line
with a lower bound provided by the spectral bandpass, r is the
photodetection rate, �T is the overall measurement duration, �t is
the electronic resolution constrained by the photodetectors and V(b)
is the spatial visibility over baseline separation b, which approaches
V = 1 for a telescope aperture much smaller than the transverse
stellar coherence length.

The observed visible emission lines from the Weigelt Blobs B,
C and D in the η Car system have intensities of the order of 104
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photons m−2 s−1 (Mehner et al. 2010; Dravins & Germanà 2008).
To achieve an SNR of three with the spectral filtering techniqueQ9

described in this paper with a 3 GHz bandpass and detectors with
40 ps timing jitter, collecting starlight with a telescope of about
0.4 m aperture would require an observation time of approximately
6 h. In contrast, using a conventional interference filter with 1 nm
bandpass would correspondingly increase the telescope aperture to
about 7 m for the same SNR in 6 h.

While tuning of the etalons by temperature leads to a very good
short-term stability for the pre-filters, it is still fast enough (i.e.
within a few minutes) to account for time-dependent Doppler shifts
of about 0.7 GHz light in the visible range due to the daily motion
of the earth with respect to an astronomical object, or about 50 GHz
due to the Earth’s motion around the Sun.

8 SU M M A RY

Time-resolved second-order correlation spectroscopy was used to
identify the presence of very narrow-band light on a thermal back-
ground. The linewidth of pseudo-thermal light could be determined
that was generated by phase-randomization in a multiple scatter-
ing process similar to light from an ensemble of emitters without a
fixed phase relationship, like a gas cloud excited by a nearby star.
Temporal intensity interferometry offers a spectral resolution of at
least a few 10 MHz for emission lines, exceeding by far that of
contemporary astrophysical spectrographs.

Also, an identification of sub-thermal photon statistics can be car-
ried out with the presented technique, indicating a possible optical
lasing mechanism, and therefore help to better understand the very
narrow spectral features of stellar light sources even in the presence
of a strong blackbody radiation background.
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Figure 1. Experimental set-up. Light from a laser diode (λL = 513.8 nm) is Doppler-broadened by passing through a suspension of microspheres (0.2 μm
diameter), combined with light from an Argon arc lamp on a microscope slide, and coupled into a single-mode optical fibre (SMF). The bottom part shows
the analysis system, consisting of a grating monochromator and a temperature-tuned etalon pair to select a 3.2-GHz-wide spectral window around 513.8 nm
from the composite light. Temporal photon pair correlations are recorded to identify different light contributions. PBS: polarizing beam splitter; λ/2: half wave
plate; APD: single-photon avalanche photodetectors.

Figure 2. Spectrum of the test light source in Fig. 1 without Doppler broadening. The broad background over the whole visible range resembles blackbody
radiation at an effective temperature of T = 6000 K, while the inset shows the unresolved spectrum around the laser line. The resolution of the spectrometer is
about 0.12 nm.



Figure 3. (a) The two-photoevent coincidence histogram from filtered blackbody radiation with a Doppler- broadened laser light contribution shows two
exponential decays on a short and a long time-scale (bin width 50 ps). The solid line shows a fit of the data to model (8), assuming fB = fL. The two zooms
show (b) an oscillatory behaviour on top of the slow decay and (c) a good match between the fit and measured data for the filtered blackbody radiation on a
short time-scale.

Figure 4. Temporal photodetection correlations for different ratios of coherent laser and filtered blackbody radiation: all measurements have a blackbody
contribution of approximately 3 × 104 photoevents s−1. For the ‘strong laser’ trace, the laser contributed about 6 × 106 photoevents s−1, for the ‘weak laser’
trace about 3 × 104 photoevents s−1. For reference, the photodetection correlations of filtered blackbody radiation without any laser light is also shown.
Each measurement accumulated 106 coincidence photoevents with −3.1 ns < τ < 3.3 ns into 40-ps-wide bins to allow for direct comparison of the resulting
histograms. The error bars reflect Poissonian counting statistics and are representative for all time differences. Fitting the ‘no laser’ trace to model (5) leads to
a coherence time τ c = 0.31 ± 0.01 ns and to τ c = 0.26 ± 0.03 ns for the trace with a weak laser.
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