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ABSTRACT

The wave-particle duality of light introduces two fundamental problems to imaging, namely, the
diffraction limit and the photon shot noise. Quantum information theory can tackle them both in
one holistic formalism: model the light as a quantum object, consider any quantum measurement,
and pick the one that gives the best statistics. While Helstrom pioneered the theory half a century
ago and first applied it to incoherent imaging, it was not until recently that the approach offered a
genuine surprise on the age-old topic by predicting a new class of superior imaging methods. For
the resolution of two sub-Rayleigh sources, the new methods have been shown theoretically and
experimentally to outperform direct imaging and approach the true quantum limits. Recent efforts
to generalise the theory for an arbitrary number of sources suggest that, despite the existence of
harsh quantum limits, the quantum-inspired methods can still offer significant improvements over
direct imaging for subdiffraction objects, potentially benefiting many applications in astronomy as
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well as fluorescence microscopy.

1. Ingredients of the resolution problem:
diffraction, photon shot noise, statistics

In 1879 Lord Rayleigh proposed a criterion of resolu-
tion for incoherent imaging in terms of two point sources
[1]: the sources are said to be unresolvable if they are
so close that their images, blurred by diffraction, overlap
significantly. To quote Feynman [2], however, ‘Rayleigh’s
criterion is a rough idea in the first place’, and a better
resolution can be achieved ‘if sufficiently careful mea-
surements of the exact intensity distribution over the
diffracted image spot can be made’. Thus another lim-
iting factor is the noise in the intensity measurement,
with the photon shot noise being the most fundamental
source. Because of the particle nature of light, each cam-
era pixel can record its energy in discrete quanta only,
and ordinary light sources, including starlight and fluo-
rescence, introduce further randomness to the quantum
measurements [3].

To incorporate noise in the definition of resolution,
the theory of statistical inference offers a rigorous frame-
work [4,5]. For example, a measure of resolution can be
defined in terms of parameter estimation: given a blurry
and noisy image of two point sources, how well can one
estimate their separation [6-10]? Or it can be framed in
terms of hypothesis testing: how well can one decide from
the image whether there is one or two sources [11-14]?

Such statistical treatments of resolution have garnered
prominence in optical astronomy [6,12,15-19] and flu-
orescence microscopy [10,20-23], where the number of
photons is limited and shot noise is part of life.

2. Quantum detection and estimation theory

Imaging has grown into a multidisciplinary problem that
straddles optics, quantum mechanics, statistics, and sig-
nal processing. In a Herculean effort that began in the
1960s, Helstrom merged the subjects into a theory of
quantum detection and estimation [24], which marked
the beginning of quantum information theory. His aim
was to determine the best measurement, out of the infi-
nite possibilities offered by quantum mechanics, that
optimises the performance of an inference task. For a
given light source, the optimal performance then rep-
resents the most fundamental limit on the resolution,
valid for any optics design that is allowed by quantum
mechanics, as well as any computational technique in
data postprocessing. In setting fundamental limits, Hel-
strom’s theory plays a role for sensing and imaging not
unlike the second law of thermodynamics for engines,
ruling out unphysical superresolution methods in the
same manner the second law rules out perpetual-motion
machines.
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Figure 1. Basic setup of direct imaging.

The mathematics was formidable, but Helstrom man-
aged to apply his theory to a few simple scenarios of
incoherent imaging. For example, he studied the prob-
lem of locating an incoherent point source from far-field
measurements [25], but the result was unsurprising: the
quantum limit is close to the ideal performance of direct
imaging, which measures the intensity on the image
plane, as depicted by Figure 1. A more intriguing problem
he studied was the decision between one or two inco-
herent sources [26]. Helstrom computed the mathemat-
ical form of the optimal measurement and the resulting
error probabilities, but he did not propose an experimen-
tal setup or show how much improvement the optimal
measurement could offer over existing imaging methods.
Helstrom himself was quite pessimistic [26]: “The opti-
mum strategies required in order to attain the minimum
error probabilities calculated here require the measure-
ment of certain complicated quantum-mechanical pro-
jection operators, which, though possible in principle,
cannot be carried out by any known apparatus’.

Unfortunately, in all the problems studied by Hel-
strom, the improvements predicted by his theory seemed
modest at best, rendering the question of quantum lim-
its academic. Quantum opticians turned their attention
to nonclassical light sources [27-33], while classical opti-
cians turned their attention to near-field microscopy
[34,35], fluorescence control [34,36,37], and computa-
tional imaging [5]. Helstrom’s work on incoherent imag-
ing was all but forgotten.

Surprise came a few decades later. Applying quantum
estimation theory to the problem of resolving two inco-
herent point sources, we recently discovered that sub-
stantial improvements via novel far-field measurements
are indeed possible [38]. The theory has since been gen-
eralised for an arbitrary number of sources [39-45]. The
implication is that, even for astronomy, where the sources
are inaccessible, the new techniques can enhance the res-
olution beyond the limits of direct imaging - the de
facto method developed by evolution for eons and honed
by opticians for centuries. I present in the following an

introduction to the breakthrough in Ref. [38], as well as
the rapid theoretical [39-74] and experimental [75-86]
advances that followed.

3. Rayleigh’s curse

With two incoherent point sources, direct imaging, and
photon shot noise, many studies have shown that their
separation becomes harder to estimate if they violate
Rayleigh’s criterion [6-10]. The central tool used in
those studies is the Fisher information, which sets gen-
eral lower bounds called Cramér-Rao bounds on the
parameter-estimation error [87]. The simplest Cramér-
Rao bound (CRB) is

MSE(9) > CRB(9) = FI(0) !, (1)

where MSE is the mean-square error of any unbiased
estimator, 6 is the unknown parameter, and FI(0) is the
Fisher information; see Appendix 1 for precise defini-
tions. The error can reach the Cramér-Rao bound in
many situations, including an asymptotic limit where the
sample size approaches infinity, the noise can be approx-
imated as additive and Gaussian, and the maximum-
likelihood estimator is used [87]. Thus, the Fisher infor-
mation is a useful measure of the sensitivity of the exper-
iment to the unknown parameter.

Assume one-dimensional paraxial imaging [88] for
simplicity, as illustrated by Figure 2, and Poisson noise,
which is an excellent approximation for both optical
astronomy [18,19,89] and fluorescence microscopy [90].
The Fisher information becomes

F1ireeH (9y = C(H)N, (2)

where 6 here is the separation, N is the average photon
number, and C(0) is an N-independent prefactor that
varies with 6. 0 and C(0) are dimensionless if 6 is nor-
malised in Airy units (1 Airy unit is roughly A/N.A.
where X is the wavelength and N.A. is the numerical
aperture, or A/D for angular resolution, where D is the
aperture diameter [90]). Equation (2) was earlier sug-
gested by many as a fundamental measure of resolution
for incoherent imaging [7-10].

The details of C(6) depend on the point-spread func-
tion, but the general behaviour is as follows: If the sources
are well separated relative to Rayleighs criterion (6 >
1), C(#) is relatively constant, but when 6 is close to
Rayleigh’s criterion or starts to violate it (0 < 1), C(6)
decays to zero, causing the Cramér-Rao bound to blow
up as 6 — 0. In other words, there is a progressive
penalty on the Fisher information for the violation of
Rayleigh’s criterion, as illustrated by Figure 3 for a Gaus-
sian point-spread function. In Ref. [38], we called this
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Figure 2. The image of two point sources (histogram) is blurred
by diffraction and corrupted by photon shot noise. # denotes the
separation between the sources, f(x | 6) (solid curve) is the mean
intensity, and x is the image-plane coordinate.
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Figure 3. Fisher information for the estimation of the separation
0 between two incoherent point sources, assuming a Gaussian
point-spread function. With direct imaging, the information drops
to zero for 6 — 0, but the Helstrom information according to
quantum estimation theory stays constant.

penalty Rayleigh's curse to distinguish it from Rayleigh’s
criterion - sub-Rayleigh sources are resolvable, but the
more they violate Rayleigh’s criterion, the harder it gets
to estimate their separation.

4, Dispelling Rayleigh’s curse

Rayleigh’s curse happens if we measure the intensity on
the image plane, but what if we allow any quantum mea-
surement that may be sensitive to the phase as well? To
find the quantum limit, we can use a quantum version
of the Fisher information proposed by Helstrom [24],
which sets an upper bound on the Fisher information for
any measurement [91,92], as elaborated in Appendix 2.
We found that the Helstrom information (HI) for the
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Figure 4. Basic setup of SPADE for incoherent imaging.
separation estimation problem is given by [38]
FI(#) < HI(#) = C(co)N. (3)

Remarkably, HI(0) is constant regardless of the separa-
tion and completely free of Rayleigh’s curse, as plotted in
Figure 3.

The constant Helstrom information would be no sur-
prise if it were simply a loose upper bound; the million-
dollar question is whether one can find a measurement
that attains the limit. Mathematical studies following Hel-
strom’s work have shown in general that a quantum-
limited measurement should exist, at least in the limit
of infinite sample size [93,94]. The mathematics offers
little clue to the experimental implementation, however,
and finding one in quantum estimation theory is often a
matter of educated guessing.

Luckily we found one. Assuming a Gaussian point-
spread function, we found that sorting the light on the
image plane in terms of the Hermite-Gaussian modes,
followed by photon counting in each mode, can lead to
a Fisher information given by [38]

FI(SPADE) (9) — C(OO)N, (4)

which attains the quantum limit and is free of Rayleigh’s
curse for all 6. Figure 4 illustrates the setup. We called
the measurement spatial-mode demultiplexing with the
acronym SPADE, to follow the convention of giv-
ing catchy acronyms to superresolution methods [36].
Numerical simulations have shown that SPADE com-
bined with a judicious estimator can give an error very
close to the quantum bound 1/HI and substantially lower
than that achievable by direct imaging [38,50]. Further
studies have proposed measurements that work for other
point-spread functions [38,46,53,55].

5. How SPADE works

To understand how SPADE can beat direct imaging and
achieve the quantum limit, it is helpful to consider a sim-
plified model of thermal light [38] that is valid for optical
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frequencies and beyond, as described in the following.
The model may sound heuristic, but it is possible to
derive it from a quantum formalism by assuming a ther-
mal quantum state [3], the paraxial optics model [95],
and an ‘ultraviolet’ limit, as elaborated in Appendix 3.

Treat each photon on the image plane as a quan-
tum particle with wavefunction v (x), where x is the
image-plane coordinate normalised with respect to the
magnification factor [88]. Direct imaging corresponds to
a measurement of its position, obeying the probability
density

f) =y P, (5)
by virtue of Born’s rule. It is also possible to measure the
particle in any other orthonormal basis {¢,(x) : g € No},
and the probability of finding the photon in the gth spatial
mode is

2
89 = : (6)

| v

For incoherent imaging, the wavefunction of each photon
is ¥ (x — X), where ¥ is determined by the point-spread
function of a diffraction-limited imaging system and the
displacement X depends on the position of the point
source that emits the photon. Denoting the density of
the incoherent sources as F(X), X can be regarded as a
random variable with F(X) as its probability density. For
direct imaging, the probability density on the image plane
becomes

fo) = / dX |y (x — X)[*F(X), 7)

which agrees with the classical theory of incoherent
imaging [88]. In general, the probability of finding the
photon in the ¢4 (x) mode is

oo} o] 2
gq=f dXV dxg? (O (x — X)| FX).  (8)

If we treat the arrivals of the photons at the spatial modes
as a temporal Poisson process, then the photon counts
integrated over time are independent Poisson random
variables, each with mean and variance given by Ng,,
where N is the average photon number in all modes. For
direct imaging, the photon statistics should be treated as
a spatial Poisson process with mean intensity Nf (x) [96].

Consider two point sources, one at X = —/2 and
one at X = 6/2 such that F(X) = [6(X — 6/2) + §(X +
6/2)]/2. If their separation is deeply sub-Rayleigh (6 «
1), the wavefunctions can be approximated as

0\ 0 9y (x)
w(m 2) S

as depicted by Figure 5. If ¢ (x) is even, 3y (x)/dx is odd,
and they can be regarded as two orthogonal modes. To
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Q

Wz —0/2) ¥(x) - a‘gsl)
AN 0 A
0/ 2
/\ 0

i IRV

Figure 5. The wavefunction due to each point source can be
decomposed in terms of the fundamental mode (x) and
the derivative mode —adv (x)/dx for 6 < 1. For incoherent
point sources, the total energy in the derivative mode consists
of the incoherent contributions from the sources (o (6/2)2 +
(—6/2)? = 62/2). Thus the derivative mode contains the signal
about 9, while the fundamental mode acts as a background noise.

Pz +6/2)

Q

the first order, the mean photon count in the fundamen-
tal ¥ (x) mode is insensitive to the parameter 6, while
the mean count in the derivative mode is the incoher-
ent sum of the contributions from the two sources, or o
(0/2)% + (—6/2)* = 62/2. If the sources were coherent
and in-phase instead, their contributions to the deriva-
tive mode would cancel each other, leading to a much
reduced signal [97]. In other words, the incoherence plays
a key role in retaining a significant signal in the first
order, and SPADE can extract this signal by measuring
the derivative mode.

Another reason that SPADE can outperform direct
imaging has to do with the fundamental mode ¥ (x). It
contains little signal, but it overlaps spatially with the
derivative mode and contributes a background to the spa-
tial intensity measured by direct imaging, increasing the
variances of the photon counts at each pixel. By pro-
jecting the fundamental mode into a different channel,
SPADE filters out this background noise and substantially
improves the signal-to-noise ratio.

The heuristic discussion so far can be made more
rigorous by considering the Fisher information and the
Cramér-Rao bounds. Assume that the object distribution
F(X|0) and therefore f(x|6) and g;(6) depend on 6.
For the spatial Poisson process from direct imaging, the
Fisher information is [96]

(direct) _ > 1 3f (x]0) :|2
FI (9)_N/_oodxf(x|9)|: 50 . (10)

For separation estimation with 0 <« 1,

6% 8%y (x|
0) ~ Py 11
fEIO W@+ -— (11)
The denominator in Equation (10) approaches |y (x)|? as
6 — 0, meaning that the fundamental mode is the major
noise contributor, and the Fisher information approaches



zeroas @ — 0. For discrete Poisson variables on the other
hand, the Fisher information is

2
M] W

1
FIO) =Ny —— [
Xq: 2O | 00

For separation estimation, as long as ¢;(x) is orthogo-
nal to ¥ (x) and has significant overlap with the deriva-
tive mode, g1(0) 0% for 0 <« 1, leading to a nonzero
[0g1 (9)/89]2/g1 (0)as6 — 0.

To summarise, SPADE relies on the subtle interplay
between the coherence induced by diffraction, the inco-
herence of the sources, and the signal-dependent nature
of photon shot noise. It would have been difficult to dis-
cover such a fortuitous possibility via conventional wis-
dom alone, but quantum estimation theory - and quan-
tum information theory in general - have the advantage
of being oblivious to conventional wisdom. The mathe-
matics may look daunting, but it can sometimes give rise
to new physics beyond our imagination.

6. Implementations of SPADE

To implement SPADE, different spatial modes should be
coupled into physically separate channels before detec-
tion. This in principle requires only linear optics [98], but
the most efficient implementation remains unclear. Many
methods have been proposed and demonstrated, partic-
ularly for the purpose of mode-division multiplexing in
optical communication [33]. Here I highlight a few meth-
ods that have been experimentally demonstrated for the
two-point resolution problem.

6.1. Interferometry

Nair proposed an interferometer called SLIVER (super-
localization via image-inversion interferometry) that can
in principle achieve a quantum-limited Fisher infor-
mation for 6 — 0 and any even point-spread function
[46]. Although image-inversion interferometry has ear-
lier been proposed and demonstrated to combat atmo-
spheric turbulence for astronomy [99] and to achieve
a modest resolution improvement for general confocal
microscopy [100-103], its extraordinary precision for
sub-Rayleigh resolution was hitherto not recognised.
The setup, depicted by Figure 6, consists of a two-
arm interferometer with spatial inversion in one arm. The
inversion can be implemented via mirrors, lenses, or a
Dove prism for example. As a result of the inversion and
the interference at the second beamsplitter, all the even
modes on the image plane are routed to one output port
while the odd modes are routed to the other port. Hence,
the fundamental mode v (x), as long as it is even, is sepa-
rated from the odd derivative mode, which is detected at
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Figure 6. An image-inversion interferometer. Through the inver-
sion and the interference, the even modes are coupled to one port
while the odd modes are coupled to the other port.

the other port. Tang, Durak, and Ling reported a proof-
of-concept demonstration of SLIVER [75], although their
reported errors were not close to the quantum limit. Lar-
son and coworkers recently reported a common-path
configuration of the interferometer that may be more
stable [104].

SLIVER works best for sub-Rayleigh separations but
is suboptimal for larger separations. A variant of SLIVER
called pix-SLIVER replaces the detectors by detector
arrays and can work better for larger separations [48].
Another way to generalise SLIVER is to think of image
inversion as a special case of fractional Fourier trans-
form (FRFT). A tree of FRFT interferometers, with the
image-inversion interferometer at its root, can sort the
Hermite-Gaussian modes and implement SPADE [105].
The interferometer-tree concept can be generalised to
sort in any other basis if appropriate mode-dependent
phases can be introduced [106,107].

Along this direction, Hassett and coworkers demon-
strated a Michelson interferometer with variable FRFT
in one arm and used it to infer the Hermite-Gaussian-
mode spectrum g; of a shifted Gaussian beam [82]. They
suggested that the setup could be useful for estimating
sub-Rayleigh separations, although its statistical perfor-
mance remains to be studied. In another work, Zhou
and coworkers demonstrated a binary radial-mode sorter
that is also based on FRFT interferometry and used it to
enhance the estimation of the axial separation between
two sources [83].

6.2. SPLICE

Tham, Ferretti, and Steinberg proposed an elegant setup
called SPLICE (super-resolved position localisation by
inversion of coherence along an edge) to capture the
derivative mode [76]. SPLICE consists of a phase plate
that introduces a 7w phase shift to half of the image plane
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Figure 7. Setup and principle of SPLICE [76]. The phase plate
introduces a 7 phase shift to half of the image plane relative to
the other half. Only the odd mode that has been converted by
the phase plate to the fiber mode is coupled into the fiber and
detected.

and a single-mode fiber, as illustrated by Figure 7. An
odd mode on the image plane is thus coupled into the
fiber and detected, while all other modes orthogonal to
it are rejected by the fiber. Despite the imperfect match
between the odd mode and the derivative mode, Tham
and coworkers were still able to demonstrate a mean-
square error around five times the quantum bound and
a significant improvement over direct imaging [76].

The use of phase plates is, of course, routine in phase-
contrast microscopy [88,108], while the use of a half-
plane 7 -phase plate specifically also has a long history in
coherent imaging [108,109]. The important distinctions
here are that we are dealing with incoherent sources, the
phase plate is placed at the image plane, and there is a
fiber that performs judicious spatial-mode selection.

6.3. Holograms

A hologram is capable of performing a spatial matched
filter, and it can be designed such that the diffracted
intensities at specific points in the far field are propor-
tional to the modal spectrum g, [88,110]. The use of such
a hologram for separation estimation was demonstrated
by Padr and coworkers [77]. Their reported mean-square
errors were around twice the quantum bound, but it is
important to note that they scaled the quantum bound
with respect to the diffracted photon number, not the
photon number before the hologram, meaning that the
result did not take into account the low diffraction effi-
ciency of their hologram. Efficient SPADE is possible with
multiple holograms, however [33].

6.4. Point-spread-function shaping

In the context of direct imaging, the approximation given
by Equation (11) for 6 < 1 leads to

FI(direct)
_No* [ [02 [y (x)[2/0x2]
~ 6 /_oo SR @ mrverae P

It is often assumed [8,9] that this can be approximated by

. NO2 [o° 1 52 212
FI(dlrect) ~ _f dx : [ |w(2x)| i| , (14)
16 Jooo ¥ ()] ox

which scales quadratically with 6. This is indeed true
if | (x)|? is Gaussian, but it turns out that the inte-
gral in Equation (14) may not converge if [ (x)|* has
zeros, and one must go back to Equation (13), which can
give a linear scaling of FI(4Y with 0 instead. Patir and
coworkers exploited this phenomenon by introducing a
signum phase mask at the pupil plane of a direct-imaging
system, changing v (x) from a Gaussian to an odd func-
tion with a zero in the middle [81]. Although the resulting
Fisher information still approaches zero for & — 0, they
were able to demonstrate a significant improvement of
the estimation accuracy with a simple change. Further
experiments along the same line for spectroscopy have
recently been reported [84].

6.5. Heterodyne

Given the experimental difficulties of performing effi-
cient SPADE, a seemingly appealing alternative is to per-
form heterodyne detection of the derivative mode by
interfering the light with a shaped reference beam on a
detector, as demonstrated by Yang and coworkers [78].
It was later found, however, that the homodyne or het-
erodyne Fisher information still suffers from Rayleigh’s
curse for weak thermal light [54]. This can be attributed
to the constant vacuum noise that plagues a heterodyne
or homodyne detection regardless of the signal, com-
pared with the Poisson variance that reduces with the
signal for photon counting. A similar problem was dis-
covered earlier in the context of stellar interferometry
[111,112]. The surprisingly poor performance of hetero-
dyne detection demonstrates the importance of analysing
a measurement using rigorous quantum optics as well as
statistics, even when dealing with classical light, to ensure
an acceptable statistical performance.



6.6. Sum-frequency generation

Donohue and coworkers implemented SPADE in the
time or frequency domain for estimating the separa-
tion between optical pulses via an interesting nonlinear-
optical technique: sum-frequency generation [79]. If
the light is combined with a strong local-oscillator
pulse in a second-order nonlinear medium with the
right phase matching, the Hamiltonian of the sum-
frequency generation is the same as that of linear optics
[113], and a temporal or spectral mode projection can
be implemented if the local oscillator has the desired
mode shape and the up-converted signal is measured.
While the efficiency of their measurement was only
0.7%, the principle was clearly demonstrated in their
experiment.

6.7. Two-photon measurement

Last but not the least, I should mention an even more
radical proposal by Parniak and coworkers, which uses
a two-photon measurement to estimate the centroid
and the separation of two sources simultaneously near
the quantum limit [80]. Its applicability to usual light
sources is questionable, but it demonstrates the fact that
our model of linear optics and Poisson statistics does
not encompass all the possibilities offered by quantum
mechanics, and there exist multiphoton measurements
that can offer advantages in multiparameter estimation,
at least in principle.

7. Extended sources
7.1. Estimation of the second moment

While the two-point problem is historic and significant,
it has rather limited applications, and the important next
step is to apply the concepts developed so far to more
general objects. Suppose now that the number of point
sources is arbitrary, and the object intensity is given in
general by F(X). Similar to the sub-Rayleigh approxima-
tion earlier, here I focus on a subdiffraction regime where
the object width around X = 0, defined as A, is much
smaller than the width of the point-spread function, or
A < 1. Otherwise, F(X) is assumed to be unknown to
the experimenter. Similar to Equation (9), the photon
wavefunction due to each point X within the object can
be approximated as

i — x V0 (15)

Vix—X)~ ™

Summing the incoherent contributions from all the
points via Equation (8), the mean photon count in the
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Figure 8. The wavefunction due to each point source can be
decomposed in terms of the fundamental mode v (x) and the
derivative mode —adv(x)/dx for |X| < 1. For multiple incoher-
ent point sources, the total energy in the derivative mode consists
of the incoherent contributions from the sources (x X12 + Xz2 +
X32 + ... for equally bright sources). In other words, the energy is
proportional to the second moment of the source distribution.

derivative mode ¢ (x) o 9y (x)/0x is
o0
Ng, ~ N¢? / dXX?F(X), (16)
—0Q0

where ¢; is a constant and ffooo dXX?F(X) is the sec-
ond moment of F(X). Figure 8 illustrates this concept
for multiple point sources. Thus we can expect SPADE
to enhance the estimation of the second moment for
any subdiffraction object in the same way it enhances
the two-point resolution. As the second moment can be
related to the width of F(X), it should not be surprising
that SPADE can also enhance the estimation of the object

size [39,41].

7.2. Even moments

To go another step further, let us expand ¥ (x — X) up to
the gth order. It is more convenient to work in the spatial
frequency domain, as defined by

- dxyr (x) exp(—ikx), (17)

1
— k = —
¥x) = Wl JE/_OO

which leads to

Y (x — X) — exp(—ikX)W (k) ~ Z - Z‘X) W (k).

p=0
(18)
A natural orthonormal basis that includes the funda-
mental mode ¥ (x) — W(k) and the derivative mode
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—0Y¥(x)/9x — —ikW (k) can be defined as [53]
{¢q(x) — O4(k) = (=) Ibg(k)W (k) : g € No}, (19)

where {bg(k)} are the orthogonal polynomials obtained
by applying the Gram-Schmidt process [114] to mono-
mials {1,k k%,...} with respect to the weighted inner
product [115]

(u(k), v(k)) E/ dk|W (k) [*u* (k) v(k), (20)

leading to (by(k), by(k)) = ffooo dkCDZ (k) @y (k) = Sgp.
Appendix 4 gives a brief review of the Gram-Schmidt
process. The basis {¢q(x)} is called the point-spread-
function-adapted basis [53], or the PAD basis for short
[40]. For example, if |W(k)|? is Gaussian, then {bg(k)}
are the Hermite polynomials. An important property
of by(k) that follows from the Gram-Schmidt process
is that (by(k),k’) = 0 if p <g. The overlap function in
Equation (8) becomes

/ dx (1) (x — X)

9 (_ix\p OO

@Z(;j{)/ k@WK (21)
p=0 I
I, (—ix)p

=) o i1(bg(k), k) = X9, (22)
p=0

where c; is a real constant. In other words, ®4(k) is
orthogonal to all the terms in Equation (18) except
the last gth-order term (and the neglected higher-order
terms). The mean photon count given by Equation (8)
becomes

[e.0]
Ngg ~ N¢; / dXX*F(X). (23)
—o0
Similar to the relation between the derivative mode and
the second moment, each PAD mode can access an even
moment while rejecting the background noise from all
the lower moments [40]. Hence, SPADE with respect to
the PAD basis can be expected to enhance the estimation

of all even moments.

If ¥ (x) is Gaussian, the PAD basis becomes the
Hermite-Gaussian basis, and its sensitivity to even
moments was noted in Refs. [39,78]. The general
PAD basis was proposed in Refs. [53,55] for the
two-point problem and applied to general imaging in
Refs. [40,43,44]. The use of SPLICE for moment esti-
mation was recently proposed by Bonsma-Fisher and
coworkers [45].

7.3. Error analysis

Define the moment parameters as
oo
O = / dXX*F(X), (24)
—00

where u € N denotes the moment order. Appendix 5
introduces the multiparameter-estimation theory in
more detail. The mean and variance of the photon count
ng in each PAD mode is

Ngg ~ Ncé@zq, (25)

so the estimator ézq = ng/ (chi) is approximately unbi-
ased, and the mean-square error is [39,40,44]

MSESPADE) b2q O(A%)
2q N2 N

, (26)

where the subscript 2g denotes the error for the 6,
parameter, the big-O notation denotes terms on the order
of the argument, and 8,, = O(A*). For direct imaging on
the other hand, the Cramér-Rao bound for any moment
is [39,40,44]

MSE{firee) > CRB(fireet) = (27)

0(1)

N
so SPADE can achieve much lower errors for the even
moments in the A < 1 subdiffraction regime. The exact
Cramér-Rao bounds for both SPADE and direct imaging,
as well as the unbiased estimators to achieve them, have
been derived recently in Ref. [44] via semiparametric
methods and are consistent with the approximate results
here.

As large as the enhancement seems, the signal-to-
noise ratio (SNR), defined as

2

_ 9#
SNR,, = Lo, (28)
"

offers a more sobering perspective, as the signal Gﬁ =
O(A?*) is an even smaller number. For SPADE and even
moments, the SNR turns out to be equal to the mean
photon count in a PAD mode, or

SNRG™PP & Ngg = NO(A), (29)

which decreases for smaller A and higher moments. The
degradation of the SNR can be attributed to the inher-
ently low efficiency of a subdiffraction source coupling
into a higher-order mode. While this shows that SPADE



has its own limitations, the fact remains that direct imag-
ing is even worse, with a SNR given by

SNR'ELdil‘eC'E) — NO(AzM), (30)

which is NO(A%) for u = 2q. With enough photons,
the enhancements offered by SPADE can still be useful,
especially for the lower moments.

7.4. Odd moments

To estimate an odd moment, consider projections into
the pair of so-called iPAD modes

$q(x) £ ¢gy1(x)
ﬁ >

which result from the interference of two adjacent PAD
modes [40]. It makes intuitive sense that, if each ¢, mode
is sensitive to the 2qth moment, then a superposition of
two adjacent PAD modes should be sensitive to an odd
moment in-between. Expanding ¥ (x — X) up to the (g +
1)th order and following the same steps as Equations (21)
and (22), the overlap function becomes

P (x) = (31)

/ dxp T (Y (x — X) ~ % (cgX? £ cqrXT*1),
(32)

where |W (k)|? is assumed to be even such that {bg(k)} are
alternatively even and odd, leading to (bq (k), k1t1y = 0.

Let the output counts be n,(ii). The mean counts are
@ N q g+1)2
Ngo' ~ 0 dX (cgXT + ¢ X)) F(X).  (33)

Subtracting one count by the other, the mean is

N (géJr) - g;_) ) & 2NcgCq+1024+15 (34)
so an estimator of the odd moment 6441 can be
constructed as é2q+1 = (nf;r) — n,({)) /(2Ncgcg+1). The
variance of n51+) - n;_) is N(géJr) +gé_)) A N(cé@zq +
c§+102q+2), so the mean-square error becomes [39,40]

1 (6 6 2> 0(A2)
(SPADE) q q+
MSE, ~— ( + = , (35)
q+1 2 2
AN Cat1 (o N

and the SNR becomes

spADE) __ N (g;+) —gé_))z
SNRyet1 X O
& T8
For the first moment (q = 0), the error is the same as
the well known O(1)/N error for point-source localisa-
tion [15,20]. For the third and higher moments, however,
there is significant enhancement over direct imaging.
Note also that n[(;r) + nff) can give information about the
even moments as well.

= NO(A*T+%). (36)
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7.5. Fourier object analysis via moments

The moments can be used in a (generalized) Fourier anal-
ysis that may be more familiar to opticians [5]. Suppose
that F(X) can be expanded as

F(X) = Z Fuh, (X)G(X), (37)
n=0

where G(X) is a nonnegative reference density, {h, (X) =
Yo HuwXY : i € Ny} are orthogonal polynomials that
satisfy

f XG0, OM(X) = 8 (38)

and {F 1} are generalised Fourier coefficients. Each h;, (X)
has p distinct zeros on the support of G(X) [115], so each
h,(X)G(X) can be regarded as a wavelet that exhibits
localised oscillations. The Fourier coefficients can be
expressed as

"
F, = / dXh, (X)F(X) =Y Huby.  (39)
v=0

In other words, each Fourier coefficient of order y can
be reconstructed from moments up to order y. Thus
the number of accurately estimated moments can be
regarded as a measure of resolution, and SPADE can
help by bringing in more accurate moments and increas-
ing the number of obtainable Fourier coefficients for a
subdiffraction object.

With a finite number of moments or Fourier coefhi-
cients and no other prior information, the reconstruction
of F(X) is ill-posed and requires regularisation [5]. Many
linear or nonlinear algorithms can be used, depending on
the application [5].

7.6. Quantum limits

Through the Helstrom information, we have learned ear-
lier that SPADE is optimal for estimating the separation
of two point sources. References [25,39] show that direct
imaging is close to optimal for locating a subdiffraction
object with a known shape, while Ref. [39] also shows that
SPADE is close to optimal for estimating its size. Gener-
alizing such results for arbitrary moments is much more
difficult, as there are now an infinite number of param-
eters and an infinite number of spatial modes. Zhou
and Jiang [43] showed essentially that any measurement
should give a Fisher information that scales with A as

FI, = NO(A™"), 1 <u, (40)
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where @) is an integer. With the Cramér-Rao bound
MSE,, > 1/FI,,, the SNR should scale as

SNR,, < 6.FI, = NO(A"), py>p,  (41)

where 17 is another integer. This means that, for a given
> the SNR must decrease for smaller A, and the decrease
is faster for higher u. The best scaling with A is achieved
at (41 = w2 = W, matching the scaling of the SPADE
error given by Equation (26) for the even moments. Zhou
and Jiang did not provide a tractable bound on the pref-
actor of Equation (40), however, so it remains a question
whether SPADE is at all close to the quantum limit in
absolute terms, or there may yet be superior measure-
ments.

Using more standard quantum estimation theory,
Ref. [42] proves a quantum limit given by

FI, < HI, <HI}, = NO(A™?/2)), (42)

where HI' is an absolute limit that does not depend on
the measurement and can be approximated analytically
or numerically. The scaling of 1/HI), with A matches the
errors of SPADE given by Equations (26) and (35), sug-
gesting that SPADE is close to quantum-optimal for both
even and odd moments, but a more quantitative compar-
ison of the quantum limit with the SPADE performance
remains to be done. A limit on the SNR is

SNR,, < 62HI), = NO(A?/*/2T), (43)

For a given subdiffraction object, Ref. [42] also shows
that QﬁHILL must decay quickly with higher 4, meaning
that higher moments are fundamentally more difficult to
estimate.

8. Other generalisations
8.1. Unknown centroid

A crucial assumption in the preceding discussion is that
the object is highly concentrated near a known coordi-
nate X = 0, and the SPADE device is ideally aligned with
X = 0. To put it the other way, A should be regarded
as the object width plus any misalignment of SPADE
with the object centroid, and misalignment can reduce
the enhancement by increasing the effective A. As direct
imaging can locate the centroid accurately, the misalign-
ment can be minimised if the object of interest has been
imaged before and its centroid is already known accu-
rately, as is often the case in astronomy. Otherwise, some
overhead photons should be used to locate the centroid
first. Grace and coworkers found that, despite the over-
head, SPADE can still offer significant enhancements of
the two-point resolution over direct imaging with the
same total photon number [67].

In principle, it turns out to be possible to estimate the
centroid and the separation simultaneously at the quan-
tum limit if a multiphoton measurement is performed, as
demonstrated by Parniak and coworkers [56,80], but the
applicability of their measurement to usual light sources
is questionable.

8.2. Strong thermal light

While the model of weak thermal light and Poisson statis-
tics works well for astronomical or fluorescent sources
at optical frequencies, thermal sources at lower frequen-
cies or scattered laser sources can exhibit super-Poisson
statistics [3]. Nair computed the Helstrom information
for separation estimation with the exact thermal state
and also proposed variations of SPADE and SLIVER to
approach it [48]. Lupo and Pirandola computed the quan-
tum limit for the same problem but assumed arbitrary
quantum states, including the thermal state as a special
case [49]. Yang and coworkers studied the use of mode
homodyne or heterodyne detection for the two-point
problem and found that, although it is not competitive
for weak thermal light, it can offer an enhancement over
direct imaging for strong thermal light [54].

For radio and microwave frequencies, photon shot
noise is negligible at typical temperatures, and hetero-
dyne detection in any spatial-mode basis is quantum-
optimal in the low-frequency limit [42, Appendix A2].
As amplitude measurements via antennas are already
the standard detection method there and they are
usually contaminated with substantial excess noise,
the ideas here are not relevant to those frequencies
unfortunately.

8.3. Two point sources with unequal brightnesses

Rehacek and coworkers studied the quantum limits and
the optimal measurements for two point sources with
unequal brightnesses [57,58]. They found that, while sig-
nificant enhancements over direct imaging remain pos-
sible, the performance gets worse for unequal sources.
In hindsight, this is perhaps not surprising, as moments
up to the third are needed to fully parametrise unequal
sources and the SNR for the third moment is fun-
damentally poorer. The use of SPLICE for this case
was also studied by Bonsma-Fisher and coworkers [45],
while the three-dimensional case was recently studied by
Prasad [63].

8.4. More than two point sources

Bisketzi and coworkers [68] and Lupo et al. [69] recently
proposed methods to compute the quantum limit to the



localisation of more than two point sources. Bisketzi
and coworkers found numerically that, regardless of the
number of sources, the Helstrom information matrix
retains only two nonzero eigenvalues as the source sep-
arations approach zero. This result is complementary
to — and consistent with - existing results on moment
estimation [42,43], demonstrating the harsh quantum
limits to imaging beyond centroid and size estimation.
As the location parameters they considered are related
nonlinearly to the moment parameters, the Helstrom
information matrix transforms in a nontrivial way [116],
and a more quantitative comparison of Ref. [68] with
Refs. [42,43] will require further effort.

Lupo and coworkers also studied the achievability of
the general quantum limit via interferometers [69]. More
work remains to be done to ascertain whether their pro-
posed interferometer design can be implemented without
knowing the unknown parameters.

8.5. Excess detector noise

If the detectors are contaminated with excess noise
besides photon shot noise, the estimation performance
necessarily suffers. Len and coworkers studied the Fisher
information of SPADE in the presence of such noise [73],
while Lupo studied the quantum limits [74]. A fair com-
parison of these results with noisy direct imaging remains
to be done, however. Considering that the ideal model
of direct imaging assumes an infinitesimal pixel size, an
infinite number of pixels, no excess noise, and perfect cal-
ibration of all pixels, imperfections in real life may well be
even more detrimental to direct imaging.

8.6. Partially coherent sources

Larson and Saleh studied the separation estimation prob-
lem for two partially coherent sources and suggested that
Rayleigh’s curse would recur [64,66]. Their work has been
challenged by Refs. [65,70,85], however. Reference [65]
points out a few problems with Larson and Saleh’s anal-
ysis, such as the use of a formula for the Helstrom infor-
mation that becomes questionable for partially coherent
sources. References [65,70,85] also show that SPADE can
overcome the curse as long as the sources are not highly
correlated, contrary to Larson and Saleh’s claim. Another
interesting work on this topic was done by Hradil and
coworkers [72], who also used the questionable formula;
see Appendix 3 for details. In any case, the debate is
irrelevant to observational astronomy and fluorescence
microscopy, where there is no sound reason to doubt the
established model of spatially incoherent sources [89,90].
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8.7. Two-dimensional imaging

Although I have so far focussed on imaging in one
dimension for pedagogy, the same principles carry over
to two dimensions. For two point sources, there are now
two parameters for their vectoral separation. The quan-
tum limits for the two parameters are the same as that
for the one-dimensional case, and SPADE with respect to
the transverse-electromagnetic (TEM) modes or a pair of
SLIVER devices can still estimate the vectoral separation
near the quantum limit [51]. For extended sources in two
dimensions, a generalisation of the PAD and iPAD modes
have been studied in Refs. [39,40,43], and quantum limits
have been studied in Refs. [39,43].

8.8. Three-dimensional imaging

Reference [97] studies quantum limits to the three-
dimensional localisation of one point source as well as
two coherent sources using the full vectoral electromag-
netics model (the discussion of incoherent sources there
is flawed and superseded by Ref. [38]). In the context of
the paraxial model on the other hand, the axial dimension
requires special treatment [88]. For the axial localisation
of one point source, Rehd¢ek and coworkers demon-
strated that direct imaging with a judicious defocus, a
common technique in localisation microscopy [22,23],
can attain the quantum limit [86]. Backlund, Shecht-
man, and Walsworth computed the quantum limit to the
three-dimensional localisation of a point source using
a scalar wave model and proposed special interferome-
ters to achieve it [59]. Yu and Prasad [61-63] and Napoli
and coworkers [60] studied the same problem but for
two incoherent sources. Zhou and coworkers recently
demonstrated a FRFT interferometer to enhance the esti-
mation of the axial separation between two sources [83].

8.9. Spectroscopy

Donohue and coworkers demonstrated mode-selective
measurements to enhance time and frequency estima-
tion for incoherent optical pulses [79]. On a more math-
ematical level, the quantum model of a photon from
incoherent sources coincides with that of a quantum
probe subject to random displacements, as pointed out
by Ref. [42], so noise spectroscopy with optomechanics
or spin ensembles is another potential application of the
theory [71,117].

8.10. Biased estimators

The simplest form of the Cramér-Rao bound is appli-
cable to unbiased estimators only, and it turns out that
biased estimators may violate it significantly [87]. For
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example, the Cramér-Rao bound for separation estima-
tion with direct imaging blows up to infinity as 6 —
0, but the maximum-likelihood estimator, being biased
for this problem, can still achieve a finite error for all 6
[75,76,118]. For SPADE, the maximum-likelihood esti-
mator can also violate the Cramér-Rao bound and give
a vanishing error as & — 0 [38]. Given these violations,
one may wonder if the Cramér-Rao bound is meaningful
outside the theoretical construct of asymptotic statis-
tics [87] after all. The loophole can be fixed by using a
Bayesian version of the Cramér-Rao bound [119] that is
valid for any biased or unbiased estimator. Reference [50]
shows that, from the Bayesian and minimax perspectives,
there remains a significant performance gap between
direct imaging and SPADE for separation estimation,
even if biased estimators are permitted.

8.11. One-versus-two hypothesis testing

Another way of defining the two-point resolution is to
consider the error probabilities of deciding whether there
is one point source or two point sources with the same
total brightness. As mentioned in Section 2, Helstrom
performed a pioneering study of this problem using his
quantum detection theory [26], but his proposed mea-
surement depends on the separation in the two-source
hypothesis, he did not suggest any experimental setup to
realise it, and he did not show how much improvement it
could offer. In the context of direct imaging, the problem
was also studied in Refs. [11-14].

Coming in full circle, Lu and coworkers recently
showed that the quantum limit to the hypothesis-testing
problem is indeed a substantial improvement over direct
imaging, and both SPADE and SLIVER can reach the
quantum limit in the sub-Rayleigh regime, without
knowing the separation in advance [52].

9. Comparison with other imaging techniques

In the wider context of imaging research, SPADE is but
one of the countless superresolution proposals in the
literature. It nonetheless possesses many unique advan-
tages and avoids some common pitfalls of prior ideas,
thanks to its firm footing in quantum optics and statistics.
Its advantages over direct imaging and computational
techniques have already been emphasised in previous
sections, and here I highlight some other important or
popular ideas in imaging and how SPADE compares.

9.1. Stellar interferometry

SPADE perhaps bears the most resemblance to stellar
interferometry [89,99,120], as they are both examples

of applying coherent optical processing to incoherent
imaging. In particular, SLIVER resembles the folding
and rotation-shearing interferometers in optical astron-
omy, the only difference being that the former is placed
at the image plane and the latter usually at the pupil
plane [99]. Conventional wisdom suggests, however, that
the main advantage of stellar interferometry lies in its
robustness against atmospheric turbulence [89,99,120].
To quote Goodman [89]:

“The reader may well wonder why the Fizeau stellar
interferometer, which uses only a portion of the telescope
aperture, is in any way preferred to the full telescope
aperture in this task of measuring the angular diam-
eter of a distant object. The answer lies in the effects
of the random spatial and temporal fluctuations of the
earth’s atmosphere (‘atmospheric seeing’) ... It is easier
to detect the vanishing of the contrast of a fringe in the
presence of atmospheric fluctuations than it is to deter-
mine the diameter of an object from its highly blurred
image.

Zmuidzinas [18] also suggested that ‘the imperfect
beam patterns of sparse-aperture interferometers extract
a sensitivity penalty as compared with filled-aperture
telescopes, even after accounting for the differences in
collecting areas’. No work before ours recognised that
interferometry can outperform direct imaging on sta-
tistical terms for diffraction-limited, filled-aperture tele-
scopes.

Another use of stellar interferometry is to increase
the baseline by coherently combining light from multi-
ple apertures [120]. Our theory can also be applied to
this multi-aperture scenario if we take the optical trans-
fer function W (k) defined by Equation (17) to be the
total aperture function for all the apertures. While con-
ventional interferometer designs call for the interference
of light from pairs of apertures [120] or the mimick-
ing of image-formation optics [18,120], our theory offers
the novel insight that demultiplexing the light in terms
of the PAD or iPAD modes associated with W (k) can
bring substantial advantages. This perspective generalises
the recent studies on the quantum optimality of stellar
interferometry [69,112,121,122].

Another idea that sounds similar to SLIVER is nulling
interferometry [120], which was proposed for the spe-
cific purpose of exoplanet detection. The idea there is
to remove the light from a bright star via destructive
interference while leaving the light from a nearby planet
intact, but its fundamental statistical performance in the
subdiffraction regime has not been studied to our knowl-
edge. It remains open questions whether nulling interfer-
ometry or similar ideas in astronomy turn out to perform
similarly to SLIVER or SPADE, and how the quantum-
inspired techniques and the quantum limits may benefit



important astronomical applications in practice, such as
exoplanet detection.

9.2. Multiphoton coincidence

While modern stellar interferometers all rely on ampli-
tude interference [120], also called g(l) measurements
in quantum optics, the intensity interferometer by Han-
bury Brown and Twiss — a g*) measurement — deserves
a mention as well, considering that it inspired the foun-
dation of quantum optics [3] and is still being held in
high regard by quantum opticians. In astronomy, how-
ever, the intensity interferometer has in fact been obso-
lete for decades because of its poor SNR [89,120]. It
relies on the postselection of two-photon-coincidence
events, which are much rarer than the one-photon events
used in amplitude interferometry and therefore must give
much less information in principle. For example, Davis
and Tango reported an amplitude interferometer that
obtained similar results to those from the intensity inter-
ferometer, using only ~2% of the observation time [123].
For microscopy, the use of multiphoton coincidence has
recently been demonstrated in some heroic experiments
[124-127], but again its statistical performance needs to
be studied more carefully. SPADE, on the other hand, is
a gV measurement that relies on the much more abun-
dant one-photon events without the need for coincidence
detection and its statistical performance has been proved
rigorously.

9.3. Electron microscopy and near-field microscopy

If the object is on a surface and accessible, then no
technique can compete with electron microscopy, atomic
force microscopy, and scanning-tunnelling microscopy
in terms of resolution. Those techniques impose strin-
gent requirements on the sample however, and that is why
optical microscopy remains useful, especially for biolog-
ical imaging, as it is able to image biological samples in
a more natural environment and provide protein-specific
contrast via fluorophore tagging.

In terms of optics, near-field techniques have not been
successful because of the short depth of focus and other
technical challenges [34]. In recent years, the use of plas-
monics and metamaterials to enhance the near field [35]
has also attracted immense interest in the academia, but
the requirement of close proximity to the object and the
impact of loss remain showstoppers in practice [128].

Being a far-field technique, SPADE is more compatible
with biological imaging, not to mention its unique capa-
bility for astronomy and remote sensing. Unlike metama-
terials, SPADE requires only low-loss optical components
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and there is no stringent requirement on their feature
size, so fabrication is more straightforward.

Given the theoretical similarity between optical imag-
ing and electron microscopy [8,9], the application of
SPADE to the latter is possible in principle and indeed
tantalising, but more research concerning its implemen-
tation for electrons needs to be done.

9.4. Superresolution fluorescence microscopy

Far-field superresolution techniques such as PALM and
STED have been hugely successful in biological floures-
cence microscopy [34,36,37], but many of them rely on
sophisticated control of the source emission, which intro-
duces many other problems, such as the need for special
fluorophores, slow speed in the case of PALM, and pho-
totoxicity in the case of STED. SPADE, on the other
hand, is a passive far-field measurement that can com-
plement or supersede the superresolution techniques by
extracting more information from the light or allevi-
ating the need for source control. The combination of
SPADE with microscope configurations, such as con-
focal and structured illumination [90], awaits further
research.

9.5. Nonclassical light

The application of nonclassical light to sensing and imag-
ing has been an active research topic in quantum optics
for many decades [27-33]. It is now well known, how-
ever, that nonclassical light is extremely fragile against
loss and decoherence [29,30], and any theoretical advan-
tage can be easily lost in practice, not to mention that
the efficient generation and detection of nonclassical
light remain very challenging. More recent proposals,
such as quantum illumination and quantum reading
[31], apply to high-noise scenarios, but the achievable
improvement turns out to be quite modest even in theory
[129].

As SPADE works with classical light, linear optics, and
photon counting, loss and other imperfections are not
nearly as detrimental. If we are to believe that the second
quantum revolution is near and applications using non-
classical resources will soon be widespread [130], then
SPADE should be an even surer bet.

For astronomy, obviously the light sources cannot be
controlled, but the use of entangled photons and quan-
tum repeaters has been proposed to teleport photons in
stellar interferometry and increase its baseline [131,132].
Unfortunately, quantum repeaters are nowhere near
practical yet, and conventional linear optical devices
remain the best option in the foreseeable future.
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9.6. Superoscillation, amplification, postselection

There are so many other superresolution ideas that going
through them all would not be feasible. I list here only a
few more: superoscillation [133], amplification [134], and
postselection [135]. They either require steep trade-offs
with the SNR or have questionable statistics [136,137].
These examples once again demonstrate the importance
of a rigorous analysis using quantum optics and statis-
tics. It is important to keep in mind that superresolution
is possible even with direct imaging and data processing,
and it is ultimately limited by the SNR [5]. A superresolu-
tion technique is viable only if it can beat direct imaging
on statistical terms.

10. Conclusion

Just as the design of engines must go beyond mechan-
ics and consult thermodynamics, the design of optical
sensing and imaging systems must go beyond electro-
magnetics and consult statistics. With the increasingly
dominant role of photon shot noise in modern appli-
cations, quantum mechanics is also relevant. Quantum
information theory can tackle all these subjects in one
unified formalism, setting limits to what we can do, and
also telling us how much further we can go. For incoher-
ent imaging, it gives us the pleasant surprise that there is
still plenty of room for improvement, and we just need
to find a way to achieve it. We found one in the form
of SPADE, which requires only low-loss linear optics and
photon counting. While we started with the simple model
of two point sources, we have since generalised the the-
ory to deal with any subdiffraction object, showing that
substantial improvements remain possible. The theoreti-
cal groundwork has been laid, proof-of-principle exper-
iments have been done, and applications in astronomy
and fluorescence microscopy can now be envisioned.
Special-purpose applications that require only the low-
order moments, such as two-point resolution and object-
size estimation, should be the first to benefit, while more
general imaging protocols will require further research.

Many open problems still remain. On the theoreti-
cal side, the exact quantum limits to general imaging
and the optimal measurements to achieve them remain
unclear. The theory for three-dimensional imaging and
spectroscopy remains underdeveloped. On the practical
side, an efficient implementation of SPADE at the right
wavelengths is needed for applications. The performance
of SPADE in the presence of atmospheric turbulence and
other technical noises also needs to be assessed. Fortu-
nately, adaptive optics [138], photodetectors [139], and
photonics in general have become so good in recent years
that we can be optimistic about reaching the quantum
limits in the near future.
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Appendices

Appendix 1. Cramér-Rao bound and Fisher
information

Let {Py(y|0) > 0:y € 2,0 € ® C R} be a family of proba-
bility distributions for an observed random variable Y, where 0

is an unknown scalar parameter and the support €2 is assumed
to be countable and common to all distributions for simplicity.

Let é(Y) be an estimator of 0. Define the mean-square error as
v 2 . 2
MSE©) = E [0(r) 6] =3 Prvio) [0 — 6],
y
(A1)
where [E denotes the expectation. The unbiased condition is

E [é(Y)] —9. (A2)

Under certain regularity conditions on the distributions, the
Cramér-Rao bound given by Equation (1) holds for any unbi-
ased estimator, where the Fisher information is [87]

_ 1 IPy(y|0) 7
FI(G):;PY(M)[ 26 } W)

Generalization for probability densities is straightforward [87].

Appendix 2. Helstrom information

Let {p(0) : 0 € ® C R} be a family of density operators for a
quantum object. Under a quantum measurement, the gener-
alised Born’s rule is given by

Py(y|0) = trEy(y)p(0), (A4)

where tr denotes the operator trace and Ey(y) is called the
positive operator-valued measure (POVM), which models the
measurement statistics [116]. Define the Helstrom information
as [24]

ap

HI = trpLl? = trﬁL, (A5)

where L is a solution to
ap
30
For any POVM, Helstrom proved MSE > HI™! [24], while
Nagaoka [91] and Braunstein and Caves [92] proved

FI(0) < HI(9). (A7)

Although they also proved that maxg, FI(6) = HI(A) and a
projection in the eigenstates of L gives an optimal POV, it
is important to keep in mind that L is a function of 6, and the
optimal POVM derived from it at one value of § may be subop-
timal at other values. In practice, obviously 6 is unknown, and
there is no guarantee that one can find a POVM that is opti-
mal across a range of 6. A solution, proposed by Nagaoka and
refined by Hayashi and Matsumoto [93] and Fujiwara [94], is
to consider repeated adaptive measurements, and they showed
that the total Fisher information of such measurements can
approach the Helstrom information in the limit of infinitely
many measurements under certain technical conditions.

1
= > (oL +Lp). (A6)

Appendix 3. Thermal state in the ultraviolet limit

Consider thermal light in one temporal mode and multiple spa-
tial modes, and let {ag, ay, ...} be the annihilation operators
for the spatial modes. As first proposed by Glauber [140], the
thermal state is [24]

o =E () () = /dzu(b(a) o) |, (A8)

® (@) xp (—oﬁrfla), (A9)

1
= detxl) ©

wherea = (o, 1, ...) " isa column vector of zero-mean com-

plex Gaussian random variables with probability density &, T
denotes the transpose, T denotes the conjugate transpose, |a)
is 2 multimode coherent state that obeys a, o) = o |}, and
" is the mutual coherence matrix [3]. In particular, the first
moments of « are given by

E(@) =0, E(a')=0, E(aa’)=T. (A10)

The photon-counting distribution is
P(n) = (n| o |n) = E|(n|a)]*, (A11)

Tyng
m =11 (aqn:! vac) (A12)

q
nla) = exp(—a’e [T4E (a13)
P ng! ’

q

where |n) is a Fock state and |vac) is the vacuum state.
Equation (A11) agrees with the semiclassical theory by Man-
del [3]. With M temporal modes, the density operator can be
modelled as M copies of o, or

p=oc%M (Al4)
To simplify the thermal state for optical frequencies, let
e =l (A15)
be the average photon number per temporal mode and
r
= — Al6
8= 0T (Al6)



be the normalised mutual coherence matrix. Define the ultra-
violet limit as € — 0 while holding N = Me constant. The
zero-photon probability per temporal mode is

P(,...,0) =E [exp(—oﬂa)] =1—€e+0(?), (Al7)
the one-photon probability is

P@O,...,n;=1,0,..)=E [exp(—aTa)|aq|2]

= egy + O(e?), (A18)

where the diagonal entries of a matrix are abbreviated as gzg =
gq> and the probability of two or more photons is O(e?). The
photon counts summed over M temporal modes hence become
Poisson in the ultraviolet limit [89]. A simplified quantum
model in this limit is [38,112]

o = (1 — €) |vac) (vac| + ep + O(€?), (A19)
where the one-photon density operator is
pr= gplbg) (Gpl, Idg) =allvac).  (A20)
ap
For paraxial incoherent imaging in particular [39],
00 - -
o= [ axreoe By i,
—0o0

where k is the spatial-frequency or momentum operator, |/)
is the one-photon state with spatial wavefunction (x|y) =
¥ (x), and |x) is the one-photon position eigenket that obeys
(x| x) = 8(x — x'). f(x) = (x| p1 |x) gives Equation (7), while
8q = (#ql p1 |¢4) gives Equation (8).Iff and g depend on 6 (but
€ does not), the Fisher information for the Poisson processes is
given by Equations (10) and (12).

The ultraviolet limit and the negligence of O(e?) terms
mean that multiphoton coincidence events and bunching
effects are ignored [89]. Besides thermal sources, the model
here also applies to any incoherent sources, such as fluorescent
sources [90] or even electrons [8,9], as long as they obey an
incoherent-imaging model with Poisson counting statistics.

For the thermal state given by Equations (A8) and (A9),
Helstrom showed that [24]

or
Hl =tr—7, (A22)
00
where Y is a solution to
or 1
=3 rryYa+n)+d+0)rrj, (A23)

and I is the identity matrix. Reference [42, Appendix A] shows
that the information given by Equations (A22) and (A23) on
a per-photon basis is upper-bounded by its ultraviolet limit,
which coincides with the information computed for the one-
photon density operator p; given by Equation (A20) if € does
not depend on 6, viz.,

HI©) HI©)
< lim

€ e—>0 €

= HI1, (A24)

With M temporal modes, the Helstrom bound is multiplied by
M [116], so HI®® = MHI©), and the total information in the
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ultraviolet limit becomes

HI® < lim HI® = NHI®", (A25)
€e—0

which means that HI?? also serves as a limit for thermal states

with arbitrary € if € does not depend on 6.

If € depends on 6, which may happen with partially coher-
ent sources [65], one must be more careful and go back
to Equations (A22) and (A23). For e € 1, I+ T ~ I, and
Equation (A23) can be approximated as

or 1 rY+7Yr

o o TT+ID).
Equations (A22) and (A26), in terms of the mutual coher-
ence matrix I', resemble Equations (A5) and (A6) in terms of
the density operator p. Notice, however, that Equations (A22)
and (A26) are in terms of the unnormalized T'. Refer-
ences [64,72], on the other hand, use the normalised version
g = T'/tT in the formulas and may have produced unphysical
results for partially coherent sources.

(A26)

Appendix 4. Gram-Schmidt process

Consider an inner-product space equipped with an inner prod-
uct (u,v) between two elements u and v and a norm |ju| =
/{u, u). An illustrative example is the space of Euclidean vec-
tors in R, with the dot product as the inner product and the
vector length as the norm. Given a set of linearly independent
elements S = {ug, uy, . . .}, the Gram-Schmidt process produces
an orthonormal basis {by, b1, ...} for the space spanned by S
[114]. The process starts with

Vo = Uop, h() = l (A27)
lIvoll
Then, foreachg =1,2,...,
q-1 v
vg=tg— Y (ugby)by, by= m (A28)
p=0

lbgll = /{bg> bg) = 1 by design. One can check that v, and b,
are orthogonal to {bo, ..., b;—1}. It follows that {by, ..., b} is
an orthonormal basis with

Since the space spanned by {by, ...
space spanned by {uy, . .

{uo, .. ., ug—1}-

,bg—1} is the same as the
., g1}, each by is also orthogonal to

Appendix 5. Multiparameter estimation

Now suppose that & € ® C RK is a column vector of parame-
ters, and the estimator is also a vector. Define the mean-square
error covariance matrix as

MSE,. (6) = E[6,(1) - 6, ] [6.00) - 6,].

Diagonal entries of a matrix are again abbreviated as MSE,,;, =
MSE,,. The multiparameter Cramér-Rao bound [87] can be
expressed as the matrix inequality

(A30)

MSE > CRB = FI"}, (A31)
FL,,(0) = Z 1 9Py(y|0) dPy(y|0) (A32)
s ~ Pr(y|0) 00, 30,
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The matrix inequality means that MSE — CRB is positive-
semidefinite [141], or equivalently u" (MSE — CRB)u > 0 for
any real column vector u. For example, the multiparameter
Cramér-Rao bounds for two point sources and more general
objects measured with direct imaging and SPADE have been
derived in Refs. [38-40,44,51].

The Helstrom information matrix is defined as

B
HI,, = RetrpL,L, = -2, (A33)
36,
ap 1
L — Z (oL L A34
26, 3 (Pl Lup) (439

The matrices can be shown to inherit all the properties of
their scalar version by substituting the directional derivative

9/00 =3, u,d/30, and L =} u, L, for an arbitrary real
vector u. For example, upon the substitutions, the scalar Fisher
information becomes u ' Flu and the scalar Helstrom informa-
tion becomes

trpLl? = u' Hu = u' Hlu, Hw = trpLy, Ly, (A35)

where I have used the fact that, since u'Hu and u
are real, u' Hu = Re(zﬂ uy Hyuy) = Zu uyRe(H,)uy =
>, 4pHIyuy. The Nagaoka bound given by Equation (A7)
becomes ' Flu < u' Hlu, meaning that Equation (A7) still
holds as a matrix inequality. A consequence of the matrix
inequality is that the inverses obey the reverse relation [141],
so the Nagaoka bound leads to

MSE > FI™! > HI L. (A36)
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